229 research outputs found

    Improved Bounds for 3SUM, kk-SUM, and Linear Degeneracy

    Get PDF
    Given a set of nn real numbers, the 3SUM problem is to decide whether there are three of them that sum to zero. Until a recent breakthrough by Gr{\o}nlund and Pettie [FOCS'14], a simple Θ(n2)\Theta(n^2)-time deterministic algorithm for this problem was conjectured to be optimal. Over the years many algorithmic problems have been shown to be reducible from the 3SUM problem or its variants, including the more generalized forms of the problem, such as kk-SUM and kk-variate linear degeneracy testing (kk-LDT). The conjectured hardness of these problems have become extremely popular for basing conditional lower bounds for numerous algorithmic problems in P. In this paper, we show that the randomized 44-linear decision tree complexity of 3SUM is O(n3/2)O(n^{3/2}), and that the randomized (2k2)(2k-2)-linear decision tree complexity of kk-SUM and kk-LDT is O(nk/2)O(n^{k/2}), for any odd k3k\ge 3. These bounds improve (albeit randomized) the corresponding O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and O(nk/2logn)O(n^{k/2}\sqrt{\log n}) decision tree bounds obtained by Gr{\o}nlund and Pettie. Our technique includes a specialized randomized variant of fractional cascading data structure. Additionally, we give another deterministic algorithm for 3SUM that runs in O(n2loglogn/logn)O(n^2 \log\log n / \log n ) time. The latter bound matches a recent independent bound by Freund [Algorithmica 2017], but our algorithm is somewhat simpler, due to a better use of word-RAM model

    Clustered Integer 3SUM via Additive Combinatorics

    Full text link
    We present a collection of new results on problems related to 3SUM, including: 1. The first truly subquadratic algorithm for      \ \ \ \ \ 1a. computing the (min,+) convolution for monotone increasing sequences with integer values bounded by O(n)O(n),      \ \ \ \ \ 1b. solving 3SUM for monotone sets in 2D with integer coordinates bounded by O(n)O(n), and      \ \ \ \ \ 1c. preprocessing a binary string for histogram indexing (also called jumbled indexing). The running time is: O(n(9+177)/12polylogn)=O(n1.859)O(n^{(9+\sqrt{177})/12}\,\textrm{polylog}\,n)=O(n^{1.859}) with randomization, or O(n1.864)O(n^{1.864}) deterministically. This greatly improves the previous n2/2Ω(logn)n^2/2^{\Omega(\sqrt{\log n})} time bound obtained from Williams' recent result on all-pairs shortest paths [STOC'14], and answers an open question raised by several researchers studying the histogram indexing problem. 2. The first algorithm for histogram indexing for any constant alphabet size that achieves truly subquadratic preprocessing time and truly sublinear query time. 3. A truly subquadratic algorithm for integer 3SUM in the case when the given set can be partitioned into n1δn^{1-\delta} clusters each covered by an interval of length nn, for any constant δ>0\delta>0. 4. An algorithm to preprocess any set of nn integers so that subsequently 3SUM on any given subset can be solved in O(n13/7polylogn)O(n^{13/7}\,\textrm{polylog}\,n) time. All these results are obtained by a surprising new technique, based on the Balog--Szemer\'edi--Gowers Theorem from additive combinatorics

    Threesomes, Degenerates, and Love Triangles

    Full text link
    The 3SUM problem is to decide, given a set of nn real numbers, whether any three sum to zero. It is widely conjectured that a trivial O(n2)O(n^2)-time algorithm is optimal and over the years the consequences of this conjecture have been revealed. This 3SUM conjecture implies Ω(n2)\Omega(n^2) lower bounds on numerous problems in computational geometry and a variant of the conjecture implies strong lower bounds on triangle enumeration, dynamic graph algorithms, and string matching data structures. In this paper we refute the 3SUM conjecture. We prove that the decision tree complexity of 3SUM is O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and give two subquadratic 3SUM algorithms, a deterministic one running in O(n2/(logn/loglogn)2/3)O(n^2 / (\log n/\log\log n)^{2/3}) time and a randomized one running in O(n2(loglogn)2/logn)O(n^2 (\log\log n)^2 / \log n) time with high probability. Our results lead directly to improved bounds for kk-variate linear degeneracy testing for all odd k3k\ge 3. The problem is to decide, given a linear function f(x1,,xk)=α0+1ikαixif(x_1,\ldots,x_k) = \alpha_0 + \sum_{1\le i\le k} \alpha_i x_i and a set ARA \subset \mathbb{R}, whether 0f(Ak)0\in f(A^k). We show the decision tree complexity of this problem is O(nk/2logn)O(n^{k/2}\sqrt{\log n}). Finally, we give a subcubic algorithm for a generalization of the (min,+)(\min,+)-product over real-valued matrices and apply it to the problem of finding zero-weight triangles in weighted graphs. We give a depth-O(n5/2logn)O(n^{5/2}\sqrt{\log n}) decision tree for this problem, as well as an algorithm running in time O(n3(loglogn)2/logn)O(n^3 (\log\log n)^2/\log n)

    Solving kk-SUM using few linear queries

    Full text link
    The kk-SUM problem is given nn input real numbers to determine whether any kk of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within PP, and it is in particular open whether it admits an algorithm of complexity O(nc)O(n^c) with c<k2c<\lceil \frac{k}{2} \rceil. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic computation trees of depth O(n3log3n)O(n^3\log^3 n) solving kk-SUM. Furthermore, we show that there exists a randomized algorithm that runs in O~(nk2+8)\tilde{O}(n^{\lceil \frac{k}{2} \rceil+8}) time, and performs O(n3log3n)O(n^3\log^3 n) linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime almost identical (up to the +8+8) to the best known algorithm but for the first time also with the number of queries on the input a polynomial that is independent of kk. The O(n3log3n)O(n^3\log^3 n) bound on the number of linear queries is also a tighter bound than any known algorithm solving kk-SUM, even allowing unlimited total time outside of the queries. By simultaneously achieving few queries to the input without significantly sacrificing runtime vis-\`{a}-vis known algorithms, we deepen the understanding of this canonical problem which is a cornerstone of complexity-within-PP. We also consider a range of tradeoffs between the number of terms involved in the queries and the depth of the decision tree. In particular, we prove that there exist o(n)o(n)-linear decision trees of depth o(n4)o(n^4)

    Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails

    Full text link
    The Frechet distance is a well-studied and very popular measure of similarity of two curves. Many variants and extensions have been studied since Alt and Godau introduced this measure to computational geometry in 1991. Their original algorithm to compute the Frechet distance of two polygonal curves with n vertices has a runtime of O(n^2 log n). More than 20 years later, the state of the art algorithms for most variants still take time more than O(n^2 / log n), but no matching lower bounds are known, not even under reasonable complexity theoretic assumptions. To obtain a conditional lower bound, in this paper we assume the Strong Exponential Time Hypothesis or, more precisely, that there is no O*((2-delta)^N) algorithm for CNF-SAT for any delta > 0. Under this assumption we show that the Frechet distance cannot be computed in strongly subquadratic time, i.e., in time O(n^{2-delta}) for any delta > 0. This means that finding faster algorithms for the Frechet distance is as hard as finding faster CNF-SAT algorithms, and the existence of a strongly subquadratic algorithm can be considered unlikely. Our result holds for both the continuous and the discrete Frechet distance. We extend the main result in various directions. Based on the same assumption we (1) show non-existence of a strongly subquadratic 1.001-approximation, (2) present tight lower bounds in case the numbers of vertices of the two curves are imbalanced, and (3) examine realistic input assumptions (c-packed curves)

    Conditional Lower Bounds for Space/Time Tradeoffs

    Full text link
    In recent years much effort has been concentrated towards achieving polynomial time lower bounds on algorithms for solving various well-known problems. A useful technique for showing such lower bounds is to prove them conditionally based on well-studied hardness assumptions such as 3SUM, APSP, SETH, etc. This line of research helps to obtain a better understanding of the complexity inside P. A related question asks to prove conditional space lower bounds on data structures that are constructed to solve certain algorithmic tasks after an initial preprocessing stage. This question received little attention in previous research even though it has potential strong impact. In this paper we address this question and show that surprisingly many of the well-studied hard problems that are known to have conditional polynomial time lower bounds are also hard when concerning space. This hardness is shown as a tradeoff between the space consumed by the data structure and the time needed to answer queries. The tradeoff may be either smooth or admit one or more singularity points. We reveal interesting connections between different space hardness conjectures and present matching upper bounds. We also apply these hardness conjectures to both static and dynamic problems and prove their conditional space hardness. We believe that this novel framework of polynomial space conjectures can play an important role in expressing polynomial space lower bounds of many important algorithmic problems. Moreover, it seems that it can also help in achieving a better understanding of the hardness of their corresponding problems in terms of time

    Subquadratic Algorithms for Algebraic Generalizations of 3SUM

    Get PDF
    info:eu-repo/semantics/publishe
    corecore