Improved Bounds for 3SUM, k-SUM, and
Linear Degeneracy*'

Omer Gold! and Micha Sharir?

1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
omergold@post.tau.ac.il

2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@post.tau.ac.il

—— Abstract

Given a set of n real numbers, the 3SUM problem is to decide whether there are three of them
that sum to zero. Until a recent breakthrough by Grgnlund and Pettie [FOCS’14], a simple
O(n?)-time deterministic algorithm for this problem was conjectured to be optimal. Over the
years many algorithmic problems have been shown to be reducible from the 3SUM problem or its
variants, including the more generalized forms of the problem, such as k-SUM and k-variate linear
degeneracy testing (k-LDT). The conjectured hardness of these problems have become extremely

popular for basing conditional lower bounds for numerous algorithmic problems in P.

In this paper, we show that the randomized 4-linear decision tree complexity! of 3SUM is
O(n®/?), and that the randomized (2k — 2)-linear decision tree complexity of k-SUM and k-
LDT is O(n*/?), for any odd k > 3. These bounds improve (albeit being randomized) the
corresponding O(n?/2y/Iogn) and O(n*/2\/logn) bounds obtained by Grgnlund and Pettie. Our
technique includes a specialized randomized variant of the fractional cascading data structure.
Additionally, we give another deterministic algorithm for 3SUM that runs in O(n? loglogn/logn)
time. The latter bound matches a recent independent bound by Freund [Algorithmica 2017], but
our algorithm is somewhat simpler, due to a better use of the word-RAM model.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases 3SUM, k-SUM, Linear Degeneracy, Linear Decision Trees, Fractional
Cascading

Digital Object Identifier 10.4230/LIPIcs. ESA.2017.42

1 Introduction

The general 3SUM problem is formally defined as

3SUM: Given a finite set A C R, determine whether there exist a,b,c € A such that
a+b+c=0.

An equivalent variant is that the input consists of three finite sets A, B, C' C R of the same

size, and the goal is to determine whether there are elements a € A, b € B, ¢ € C such

For the full version of this paper see [21]. Work on this paper has been supported by Grant 892/13 from
the Israel Science Foundation, by Grant 2012/229 from the U.S.-Israeli Binational Science Foundation,
by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11), by the Blavatnik
Research Fund in Computer Science at Tel Aviv University, and by the Hermann Minkowski-MINERVA
Center for Geometry at Tel Aviv University.

T A full version of the paper is available at http://arxiv.org/abs/1512.05279.

An r-linear decision tree is one in which each branching is based on a sign test of a linear expression
with at most r terms. The complexity of the tree is its depth.

© Omer Gold and Micha Sharir;
37 licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 42; pp. 42:1-42:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.42
http://arxiv.org/abs/1512.05279
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

that a + b+ ¢ = 0. When the sets A, B, C are not of the same size, the problem is named
unbalanced 3SUM.

The 3SUM problem and its variants are among the most fundamental problems in
algorithm design. Although the 3SUM problem itself does not seem to have many compelling
practical implications, it has been of wide interest due to numerous problems that can be
reduced from it. The notion of 3SUM-Hardness is often used to describe such problems,
namely, problems that are at least as hard as 3SUM. Thus, lower bounds on 3SUM imply lower
bounds on dozens of other problems. Among them are fundamental problems in computational
geometry [20, 3, 7, 30], dynamic graph algorithms [29, 1, 27], triangle enumeration [2, 27],
and pattern matching [31, 5, 9, 27, 6].

In the last decades, starting with a study of Gajentaan and Overmars [20], it was conjec-
tured that any algorithm for 3SUM requires Q(n?) time. However, a recent breakthrough by
Grgnlund and Pettie [22] showed that 3SUM can be solved in subquadratic time. Specific-
ally, they gave a deterministic algorithm that runs in O(n?(loglogn/logn)?/?) time, and
a randomized algorithm that runs in O(n?(loglogn)?/logn) expected time and with high
probability. Furthermore, they showed that there is a 4-linear decision tree for 3SUM with
depth O(n®/?y/Togn) (i.e., the depth bounds the number of branching operations, each one is
based on sign test of a linear expression with at most 4 terms). These results raised serious
doubts on the optimality of many algorithms for 3SUM-Hard problems. For example, the
following problems are known to be 3SUM-Hard. (1) Given an n-point set in R?, determine
whether it contains three collinear points (Gajentaan and Overmars [20]). (2) Given n
triangles in R?, determine whether their union contains a hole, or compute the area of their
union [20]. (3) Given two n-point sets X,Y C R, each of size n, determine whether all
elementsin X +Y ={z+y |z € X, y € Y} are distinct (Barequet and Har-Peled [7]). (4)
Given two n-edge convex polygons, determine whether one can be placed inside the other
via translation and rotation [7].

Problems 1 and 2 are solvable in O(n?) time (see [20]). Problems 3 and 4 are solvable
in O(n?logn) time (see [7]). In face of the new 3SUM result of Grgnlund and Pettie [22],
it is natural to ask whether these bounds are optimal. However, no better bounds are
currently known (in spite of the improvement in [22]). Problem 3 (or its stronger variant
of sorting X + Y') has special importance, as it is used for basing the conditional lower
bounds for the problems in [7] and in [23]; these problems are therefore also classified as
“(Sorting X + Y)-Hard”. It is a prominent long-standing open problem whether Problem 3
can be solved in o(n?logn) time (see [14]).

In view of the results in [22], the 3SUM conjecture has been replaced by a relaxed,
modern variant, asserting that 3SUM cannot be solved in strongly subquadratic time (even
in expectation), i.e., in O(n?~¢) time, for any € > 0. This conjecture is widely accepted
and believed by the computer science community, and so are its implications for deriving
lower bounds for other problems. Abboud and Vassilevska-Williams [2] argue, based on
the collective computer science community efforts, that lower bounds that are based on the
relaxed 3SUM conjecture should be at least as believable as any other known conditional
lower bounds for a problem in P.

The 3SUM problem was also extensively studied in its generalized forms, k-SUM and
k-variate linear degeneracy testing (k-LDT), formally defined as
k-LDT and k-SUM: Given a k-variate linear function ¢(x1, ..., x5) = ao—l—Zle ;x;, where

ag,...,ar € R and a finite set A C R, determine whether there exists (x1,...,2) € AF

such that ¢(x1,...,25) =0. When ¢ is Zle x; the problem is called k-SUM.
There are simple algorithms that solve k-LDT in time O(n**+1/2) when k is odd, or
O(n*/?logn) when k is even; see [4]. These algorithms are based on straightforward reduc-

0. Gold and M. Sharir

tions to a 2SUM problem or to an unbalanced 3SUM problem, depending on whether k is
even or odd, respectively. These are currently the best known upper bounds for the running
time of solving k-LDT. Erickson [16] showed that, for an even k, there is a k-linear decision

tree with depth O(n*/2), removing an O(logn) factor when comparing to the uniform model.

The above bounds match with the seminal lower bound results of Erickson [16], and of Ailon
and Chazelle [4], who showed that any k-linear decision tree for solving k-LDT must have
depth Q(n*/?) when k is even and Q(n(*+1)/2) when k is odd. In particular, any 3-linear
decision tree for 3SUM has depth Q(n?). Grgnlund and Pettie [22] showed that using only
one more variable per comparison leads to a dramatic improvement in the depth of the tree,
which significantly beats the above lower bounds. Specifically, as will be reviewed below, they
showed that there is a 4-linear decision tree for 3SUM with depth O(n®/2y/logn), and by the
reduction from k-LDT to unbalanced 3SUM, they concluded that there is a (2k — 2)-linear
decision tree for k-LDT with depth O(n*/2\/logn), for any odd k > 3. Cardinal, Iacono, and
Ooms [10] showed that if we allow arbitrarily many variables in a comparison (polynomial in
n), then the linear decision tree complexity of k-SUM and k-LDT is O(n®log® n). This bound
was recently improved by Ezra and Sharir [17] to O(n?log®n). A very recent breakthrough
by Kane, Lovett, and Moran [26] significantly improves these results, not only by showing an
O(nlog?® n) bound, but also by using only 2k variables in a comparison, namely, a 2k-linear
decision tree (see below for further details).

Apart from the many lower bounds obtained from the conjectured hardness of 3SUM
and its variants, in recent years, many lower bounds were obtained also from two other
plausible conjectures. The first is that computing the (min, +)—product of two n x n matrices
takes Q(n>°W) time (aka APSP-Hardness); see for examples [32, 2, 1]. The second is that
CNF-SAT takes Q(2(1=°(1)") time. The latter is often referred to as the Strong Exponential
Time Hypothesis (SETH) [24, 25]. A natural question is whether any of these conjectures
(3SUM, SETH, APSP) are in fact equivalent, or whether they all derive from a basic unifying
hypothesis. At the current state of knowledge, there is no strong relationship between
any pair of these problems, so it may be possible that any one of them could be true or
false, independently of the status of the others. A recent breakthrough by Carmosino,
Gao, and Impagliazzo [11] provides evidence that such a relationship is unlikely, based on a
nondeterministic variant of SETH; see [11] for details.

1.1 Our Results and Related Work

Before presenting our results, we recall the definition of the randomized r-linear decision tree
complexity, for a particular target function f. Consider a probability distribution P over a
set T of (deterministic) r-linear decision trees that compute f. For a particular input z, let
¢(P,x) be the expected number of branching operations a tree chosen from T will make on
input z. Then, the randomized r-linear decision tree complexity of f is

min max ¢(P, z).
P x

The following theorems capture our main results.
» Theorem 1. The randomized 4-linear decision tree complexity of 3SUM is O(n3/?).

» Theorem 2. The randomized (2k — 2)-linear decision tree complezity of k-SUM and of
k-LDT is O(n*/?), for any odd k > 3.

We show these results by giving a randomized algorithm that constructs a (2k — 2)-linear
decision tree whose expected depth is O(n*/2). Theorems 1 and 2 improve (albeit in a

42:3

ESA 2017

42:4

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

randomized setting) the respective O(n?/2\/Iogn)-depth and O(n*/2\/Togn)-depth decision
trees given by Grgnlund and Pettie [22]. The aforementioned recent breakthrough by Kane,
Lovett, and Moran [26] gives a 6-linear decision tree for 3SUM with depth O(nlog®n), and
in general, a 2k-linear decision tree for k-SUM, and a (2k 4 2)-linear decision tree for k-LDT,
both with depth O(knlog®n). These bounds nearly match the standard Q(nlogn) lower
bound. Viewing our (and Grgnlund and Pettie’s) k-SUM results for (2k — 2)-linear decision
tree, with respect to Erickson’s Q(n““/ 27) k-linear decision tree lower bound, and the 2k-linear
decision upper bound by Kane, Lovett, and Moran [26], shows that even adding only 1 or 2
terms for each linear comparison, can significantly improve the depth of the tree.

Our technique includes some new insights into the 3SUM problem, and uses a specialized
data structure, based on an unusual randomized variant of fractional cascading in a grid.

Additionally, in the full version of this paper [21], we give an actual deterministic
algorithm for 3SUM that runs in O(n?loglogn/logn) time.?2 The latter improves the
O(n?(loglogn/logn)?/3)-time bound of Grgnlund and Pettie [22], and matches the bound
given by a recent independent work of Freund [19]. Both algorithms, Freund’s [19] and ours,
have common high-level ideas, but ours makes a better use of the word-RAM model, and is
hence somewhat simpler.?

Recently, Lincoln, Vassilevska-Williams, Wang, and Williams [28] showed a reduction
result in which they apply our 3SUM algorithm (based on an initial version of this paper [21])

as a black-box, leading to a 3SUM algorithm that uses only O (x/nlog n/loglog n) space,
while preserving the time bound of our algorithm.

2 Methods and Lemmas

We give an overview of the techniques we use. Some of them were also used for some of the
results mentioned above. This includes Fredman’s prominent work from 1976 [18]. For our
result, we will develop a special randomized variant of fractional cascading (Chazelle and
Guibas [12, 13]). In this section we also briefly review the standard fractional cascading
method, to set the infrastructure upon which we will later develop our specialized variant.

Throughout the paper we refer to the trivial (albeit ingenious) observation that a + b <
o +V iff a—a <V —bas Fredman’s trick. We denote by [N] the first [N natural numbers
succeeding zero {1,...,[N]}, where N may or may not be an integer.

Fredman showed that, given n numbers whose sorted order is one of II < n! realizable
permutations, they can be sorted using a linear number of comparisons when II is sufficiently
small. More generally, we have:

» Lemma 3 (Fredman 1976 [18]). A list L of n numbers, whose sorted order is one of I1
possible permutations, can be sorted with 2n + log Il pairwise comparisons.

Sorting Pairwise Sums and its Geometric Interpretation. Fredman describes the relation
between the complexity of hyperplane arrangements and the decision tree complexity of
sorting pairwise sums. Grgnlund and Pettie [22] use similar arguments in their 3SUM decision

2 We consider a simplified Real RAM model. Real numbers are subject to only two unit-time operations:

addition and comparison. In all other respects the machine behaves like a w = O(logn)-bit word RAM
with the standard repertoire of unit-time AC® operations: bitwise Boolean operations, left and right
shifts, addition, and comparison.

The independent result of Freund [19] was brought to our attention after the completion of an initial
version of this paper; see [21].

0. Gold and M. Sharir

tree, where they sort pairwise sums. Specifically, given lists A = (a;);c},) and B = (b;);e[n) of
distinct real numbers, define the pairwise sum A + B = {a; +b; | 4,7 € [n]}. The input A, B
can be regarded as a point p = (a1, ..., an,b1,...,b,) € R?™. The points in R?" that agree
with a fixed permutation of A 4+ B form a convex cone bounded by the set H of the (”22)
hyperplanes x; + y; — x, —y; =0, for 4, j, k,l € [n], (¢,7) # (k,1). The number of possible
sorted orders of A 4+ B is therefore bounded by the number of regions (of all dimensions) in
the arrangement A(H) of H. As shown by Buck [8], the number of regions in an arrangement

of m hyperplanes in R? of dimension k < d is at most

) () () e ()

Thus, the number of regions of all dimensions is O(m?) (where the constant of proportionality
is independent of d). Hence, the number of possible sorting permutations of A + B is
O ((n*)?™) = O(n®"). One can also construct the hyperplane arrangement explicitly in O(m?)
time by a standard incremental algorithm [15]. The following lemma, taken from Grgnlund
and Pettie [22], extends this analysis by considering only a subset of these hyperplanes, and
is an immediate consequence of these observations.

» Lemma 4. Let A = (a;)icpn) and B = (b;)icn) be two lists, each of n real numbers, and
let F C [n]? be a set of positions in the n X n grid. The number of realizable orders of

(A+B)p:={a;i+0b;|(i,j) € F'} is O((U;\)Qn), and therefore (A + B)|p can be sorted with
at most 2|F| + 4nlog |F| + O(1) comparisons.

In Lemma 4, the case F' = [n]? goes back to Fredman [18], who showed that O(n?) comparisons
suffice to sort A + B.

For some of the algorithms presented and reviewed in this paper, it is important to
assume that the elements of the pairwise sum are distinct, and therefore have a unique
sorting permutation. When numbers do appear multiple times, a unique sorting permutation
can be obtained by breaking ties consistently (see [22] for details).

Iterative Search and Fractional Cascading. In our decision tree construction for 3SUM,
we aim to speed-up binary searches of the same number, in many sorted sets. We will use
for this task a special randomized variant of fractional cascading, which will be described in
Section 4. First, we briefly recall the standard fractional cascading technique, which was
introduced by Chazelle and Guibas [12, 13], for solving the iterative search problem, defined
as follows. Let U be an ordered universe of keys. Define a catalog as a finite ordered subset
of U. Given a set of k catalogs C1,Cy,...,Cy over U, such that |C;| = n; for each i € [k],
and Zle n; = n, the iterative search problem is to provide a data structure that supports
efficient execution of queries of the form: given a query x € U, return the largest value less
than or equal to = in each of the k catalogs.

Fractional cascading lets one preprocess the catalogs in O(n) time, using O(n) storage,
and answer iterative search queries in O(logn + k) time per query. This is essentially optimal
in terms of query time, storage size and preprocessing time. The idea is to maintain a
sufficient number of pointers across catalogs, so that, once we have the answer ¢; to a query
in a catalog C;, we can follow a pointer to an element in C;11, which is only O(1) indices
away from the answer ¢;y; € Ciy;.

In order to obtain optimal query time, the fractional cascading method expands each
catalog C; to an augmented catalog L;, starting with Lj and proceeding backwards down to
Lq. Ly is the same as C, and for each 1 < ¢ < k, L; is formed by merging C; with every

42:5

ESA 2017

42:6

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

second element of L;y;. The items in C; that were not originally in the catalog are marked
as synthetic keys. From each synthetic key in C; we add a bridge (pointer) to the element in
L;+1 on which it was based. Using these bridges and additional pointers, from each real key
to the two consecutive synthetic keys nearest to it, one can follow directly from each element
of L; (real or synthetic) to the elements in L;;1 nearest to it, and by construction, the gap
between these elements is 2. Thus, given a query number z, after spending O(logn) time for
searching it in Ly, it takes only O(1) time to locate z in each subsequent catalog, for a total
of O(logn + k) time, as desired. Since the total number of elements that were copied to the
catalogs form a convergent geometric series, one can show that the total number of elements
that are copied through the catalogs is only O(n), and that the cost of doing it is also O(n).

Fractional cascading can also be extended to support a collection of catalogs stored at
the vertices of a directed acyclic graph (DAG), and each query searches with some specified
element x through the catalogs stored at the nodes of some specified path in the DAG. In
more detail, a catalog graph is a DAG in which each vertex stores a catalog (ordered list of
keys). A query consists of a key « and a path 7 in the graph, and the goal is to search with x
in the catalog of each node of 7. When the maximum in/out degree A of the catalog graph
is constant, fractional cascading can be extended to this scenario, with the same bounds
as before (albeit with larger constants of proportionality). Here too each catalog C, at a
node v, is expanded into an augmented catalog L., and each L, passes to its predecessors
every 2A-th element (instead of every second element in the earlier case, where A was 1).
See [12, 13] for more details on the construction of the data structure, proof of correctness,
and performance analysis.

In our algorithms we will present a special non-standard variant of this method, that lets
us preserve the advantages of the other techniques (e.g., Fredman’s trick) that we use.

The Quadratic 3SUM Algorithm. We next give a brief overview of the quadratic-time
algorithm. We follow the implementation given by Grgnlund and Pettie [22], which is slightly
different from the standard approach, but is useful for the explanation of the results of [22]
and of this paper. For later references, we present the algorithm for the more general three-set
version of 3SUM, as defined in the first paragraph of Section 1.

The algorithm runs over each ¢ € C' and searches for —c in the pairwise sum A+ B. With
a careful implementation, given below, each search takes O(|A| + |B|) time, for a total of
O(|C|(JA| + |B])) time. We view A + B as being a matrix whose rows correspond to the
elements of A and columns to the elements of B, both listed in increasing order. To help
visualizing some steps of the algorithms, we think of the rows arranged in increasing order
from top to bottom, and of the columns from left to right.

1. Sort A and B in increasing order as A(0),..., A(]4| — 1) and B(0),...,B(|B|—1).
2. For each c € C,

2.1. [Initialize lo - 0 and hi «+ |B| — 1.

2.2. Repeat:

2.2.1. If —¢ = A(lo) + B(hi), report witness “(A(lo), B(hi), c)”.

2.2.2. If —¢ > A(lo) + B(hi) then increment lo, otherwise decrement hi.

2.3. Until lo = |A| or hi = —1.

3. If no witnesses were found report “no witness.”

The correctness easily follows from the fact that each row and column of A + B is sorted
in increasing order. Note that when a witness is discovered in Step 2.2.1, the algorithm
can stop right there. However, in order to simplify future definitions and explanations, this

0. Gold and M. Sharir

372 | 389 | 407 | 439 | 454 | 480 | 534 | 609 | 635 | 655
397 | 414 | 432 | 464 | 479 | 505 | 859 | 634 | 660 | 680
420 | 437 | 455 | 487 | 502 | 528 | 582 | 657 | 683 | 703
442 | 459 | 477 | 509 | 524 | 550 | 604 | 679 | 705

478 | 495 | 513 | 545 [560 | 586 | 640 761
500 | 517 | 535 | 567 | 582 | 608 | 662 | 737 | 763 | 783
523 | 540 | 558 | 590 | 605 | 631 | 685 | 760 | 786 | 806

548 | 965 | 583 | 615 | 630 | 656 785 | 811 | 831
594 | 611 | 629 | 661 | 676 | 702 | 756 | 831 | 857 | 877
627 | 644 | 662 | 694 | 709 789 | 864 | 890 | 910

Figure 1 The sky-blue colored entries form CONTOUR(710), and the purple colored ones form
CONTOUR(558); A shared cell is shown in green. The lighter colors (light purple and light sky-blue)
depict their partial contour, that is, the positions of the contours where we chose to go down. All
the elements in the matrix whose values are in [558, 710) are enclosed between these two contours,
excluding the partial contour of 558 and including the partial contour of 710.

implementation continues to search for more witnesses. After finding a witness we will always
choose to decrement hi. This choice will be made throughout the paper.

Define the contour of x, CONTOUR(z, A + B), (CONTOUR(x), when the context is clear)
to be the sequence of positions (lo, hi) encountered while searching for in A 4+ B in the
preceding algorithm. Lemma 5 is straightforward.

» Lemma 5. For xz < y € R, CONTOUR(z) lies fully above CONTOUR/(y); that is, for each
i,i',7 €{0,...,n—1}, if (¢,j) € CONTOUR(z) and (i’,j) € CONTOUR(y), then i <4 .

By Lemma 5 a pair of contours can overlap, but never cross. Moreover, Lemma 5 implies a
weak total order relation < on the contours, which corresponds to the order between the
searched elements, such that « < y iff CONTOUR(z) < CONTOUR(y), where the latter relation
means that the two contours satisfy the properties stated in the lemma; see Figure 1.

3 Grgnlund and Pettie’s Subquadratic 3SUM Decision Tree

In this section we give an overview of the subquadratic decision tree of Grgnlund and
Pettie [22]. In the following sections we show how their ideas can be extended and combined
with additional techniques, to yield our improved results.

We give an overview of the subquadratic decision tree for 3SUM over a single input set
A of size n, taken from [22], resulting in a 4-linear decision tree with depth O(n*/2\/logn).
This is shown by an algorithm that performs at most O(n3/ 2/logn) comparisons, where
each comparison is a sign test of a linear expression with at most 4 terms.

1. Sort A in increasing order as A(0),...,A(n — 1). Partition A into [n/g] groups
A1,..., Arnyg1, each of at most g consecutive elements, where g is a parameter that we
will fix later, by setting A; := {A((i — 1)g),...,A(ig — 1)}, foreach i =1,...,[n/g] — 1,
where Ar,/41 may be shorter. The first and last elements of A; are min(4;) = A((i —1)g)
and max(A4;) = A(ig — 1).

2. Sort D :=U;cpn/q) (Ai — Aj) ={a—a’ | a,d’ € 4; for some i}.

3. Foralli,jen/g],sort A;;:=A;+A;j={a+blac A andbec A}

4. For k from 1 to n,

4.1. [Initialize lo <— 1 and hi < [n/g].

42:7

ESA 2017

42:8

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

4.2. Repeat:

4.2.1. If —A(k) € Ajoni, report “solution found” and halt.

4.2.2. If max(Ay) + min(Ayp;) > —A(k) then decrement hi, otherwise increment lo.

4.3. Untillo= [n/g] 4+ 1 or hi =0.

5. Report “no solution” and halt.

This algorithm can be generalized in a straightforward way to solve the (unbalanced) three-set

version of 3SUM. For the easy argument concerning the correctness of the algorithm, see [22].
With a proper choice of g, the decision tree complexity of the algorithm is O(n3/ 2/logn).

Step 1 requires O(nlogn) comparisons. By Lemma 4, Step 2 requires O(nlogn + |D|) =

O(nlogn + gn) comparisons to sort D. By Fredman’s trick, if a,a’ € A; and b, € A;,

a+b < a’+b holds iff a—a’ < b’ —b, and both sides of this inequality are elements of D. Thus,

Step 3 does not requires any real input comparisons, given the sorted order on D. For each

iteration of the outer loop (in Step 4) there are at most 2[n/g] iterations of the inner loop

(Step 4.2), since each iteration ends by either incrementing lo or decrementing hi. In Step 4.2.1

we can determine whether —A(k) is in Aj, pi using binary search, in log |Aj, ni| = O(log g)

comparisons. The total number of comparisons is thus O(nlogn + gn + (n?logg)/g), which

becomes O(n3/2y/Togn) when g = /nlogn.

4 Improved Decision Trees for 3SUM, k-SUM, and k-LDT

In this section we show that the randomized decision tree complexity of 3SUM is O(n?/?),
and more generally, that the randomized decision tree complexity of k-LDT is O(nk/ 2), for
any odd k > 3. This bound removes the O(y/logn) factor in Grgnlund and Pettie’s decision
tree bound. We show these results by giving a randomized algorithm that constructs a
(2k — 2)-linear decision tree whose expected depth is O(n*/?).

To make the presentation more concise, we present it for the variant where we have three
different sets A, B, C of n real numbers each, and we want to determine whether there exist
a€ A, be B,ce C,suchthat a+b+c=0.

As in the previous section, we partition each of the sorted sets A and B into [n/g]
blocks, each consisting of g consecutive elements, denoted by Ay, ..., A, 4, and By, ..., By, /g,
respectively. As above, but with a slightly different notation, we consider the n x n matrix
M = MAB | whose rows (resp., columns) are indexed by the (sorted) elements of A (resp., of
B), so that M (k,?) = ay + by, for k, £ € [n]. The partitions of A and of B induce, as before,
a partition of M into n?/g* boxes M, ;, for i,j € [n/g], where M; ; is the portion of M with
rows in A; and columns in Bj;.

As above, Fredman’s trick allows us to sort all the boxes M;; with O(nlogn + ng)
comparisons. Since the problem is fully symmetric in A, B, C, we can also define analogous
matrices MA¢ and MBC, constructed in the same manner for the pairs A, C and B, C,
respectively, partition each of them into n?/g? boxes, and obtain the sorted orders of all the
corresponding boxes, with O(nlogn + ng) comparisons.

The crucial (costliest) step in Grgnlund and Pettie’s algorithm, which we are going
to improve, is the searches of the elements of —C in M“4E. For each ¢ € C, let o(c) =
CONTOUR(—c¢) denote the staircase path contour of —c¢, as defined before Lemma 5. The
length of o(c) is thus at most 2n. Each of the paths o(c) visits some (at most 2[n/g]) of the
boxes M; ;, and the index pairs (7, j) of these boxes also form a staircase pattern, as in the
preceding sections. For each ¢ € C, the sequence of boxes that o(c¢) visits can be obtained
by invoking (an appropriate variant of) Step 4 of the algorithm in Section 3, excluding the
binary search in Step 4.2.1. The total running time of this step, over all ¢ € C, is O(n?/g).

0. Gold and M. Sharir

The paths o(c), being contours, have the structure given in Lemma 5, including the weak
total order < between them. Thus, we obtain the following.

» Corollary 6. For each box M, ;, let C; ; denote the set of elements of C whose paths o(c)
traverse M; ;. Then C; ; is a contiguous subsequence of (the sorted) C.

Put £, ; := |Cj;|. Then we clearly have 3=, .1,/ Kij = O(n?/g). That is, the average
number of elements of C' that visit a box is O(g), and, for each box, these elements form a
contiguous subsequence of C, as just asserted in Corollary 6. Let C7; denote the contiguous
sequence of indices in C' of the elements of C; ;. That is, C; ; = {c, | £ € C};}. With all
these observations, we next proceed to derive the mechanism by which, for each box M; ;, we
can efficiently search in M; ; with the (negations of the) x; ; corresponding elements of C; ;.

We apply a special variant of fractional cascading. The twist is in the way in which we
construct the augmented catalogs. Note that in each box M; ;, we have g2 elements of the
form ag, + by, but only 2¢g indices k, {. We want to sample elements from a box, and then copy
and merge them into its neighbor boxes. However, in order to be able to use Fredman’s trick,
we have to preserve the property that the number of element-indices (rows and columns)
in each augmented box stays O(g) (unlike a naive implementation of fractional cascading,
where it is enough that each augmented box be of size O(g?)).

Thus, we sample elements from A (row elements) and elements from B (column elements)
separately. We construct augmented sets Af, ..., Al[n/g]‘ Starting with A/(n/sﬂ = Arn/g1s
we sample each element in A’M /g1 with probability p = i. Each sampled element is copied
and merged with A, ,,1_1, and we denote by A’M g1 the new augmented set. Then we
sample each element from A’[n Jg]-1 with the same probability p, copy and merge the sampled
elements with A, 41_2, obtaining A’M Jg1—27 and continue this process until the augmented
set A} is constructed. Similarly, we construct the augmented sets Bj, ... ,B’[n /g1’ but we do
it in the opposite direction, starting from Bj = B; and ending with B’M /ol Clearly, similar
to standard fractional cascading, the expected size of each of the augmented sets is O(g), as
the expected numbers of additional elements placed in each box form a convergent geometric
series. Now we sort

Dy = U (A, — A)) ={a—d | a,a € A} for some i}.
i€[n/g]

In each A} — A/, the expected number of elements ay, — ays is O(g?), and the expected number
of element indices k, k' is only O(g). Thus, by Lemma 4, we can sort D4 with expected
O(nlogn + ng) comparisons. Similarly, we sort Dp: = U;¢(n/q) (B} — Bj) with the same
expected number of comparisons. Then, we form the union D’ = D4 U Dp/ and obtain its

sorted order by merging D 4 and Dp:. This costs additional expected O(ng) comparisons.

By Fredman’s trick, from the sorted order of D', we can, and do, obtain the sorted order of
the augmented boxes A} + B, for each i,j € [n/g], without further comparisons.

With these augmentations of the row and column blocks, the matrix M4 itself is now
augmented, such that each modified box M; ; = Aj + B} receives some fraction of the rows
from the box M;41,; below it, and a fraction of the columns from the box M; ;1 to its
left. Each box M, ; corresponds to a vertex in the catalog graph, and it has (at most) two
outgoing edges, one to the vertex that corresponds to M; 1 ; and one to the vertex that
corresponds to M; j_1 (it also has at most two incoming edges). Clearly this is a DAG with
maximum in/out degree A = 2, which is why we sampled i = i of the rows/columns in
each step. We complete the construction of this special fractional cascading data structure,
by adding the appropriate pointers, similar to what is done in a standard implementation of

42:9

ESA 2017

42:10

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150
160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250
260 | 270 | 280 | 290 | 300 | 310 | 320 | 330 | 340 | 350

Figure 2 An expensive step in the fractional cascading search: Assume that only the first and
third rows (appearing in gray) are sent to the preceding box (above the current one), and that we
search with —c = 205. The previous search locates —c between ¢~ = 150 and ¢+ = 260, say, and
now we have to examine the entire second row to locate —c in the current box.

fractional cascading (see Section 2). This does not require any further comparisons, since
the pointers from synthetic keys (the sampled elements) to real keys, and pointers from real
keys to synthetic keys, depend only on the sorted order of the augmented sets M; ;, which
we already computed. So the overall expected number of comparisons needed to construct
this data structure is still O(nlogn + ng).

Consider now the search with —c, for some ¢ € C'. Assume that the search has just visited
some box M j, and now proceeds to search in box M; ;, where either (i,7) = (' +1,5") or
(i,7) = (¢',5" — 1). Assume, without loss of generality, that (i,j) = (¢’ + 1, j'); a symmetric
argument applies when (4,7) = (¢, 5’ — 1), using columns instead of rows. In this case, the
fractional cascading mechanism has sampled, in a random manner, an expected quarter
of the rows of (the already augmented) M; ; and has sent them to M j; = M;_1 ;. The
output of the search at M;_; ;, if —c was not found there, includes two pointers to the largest
element £~ of M, ; that is smaller than —c, and to the smallest element {* of M; ; that is
larger than or equal to —c. We need to go over the elements in the sorted order of M; ; that
lie between £~ and £T, and locate —c among them. If we do not find it, we get the two
consecutive elements that enclose —c, retrieve from them two corresponding pointers to a
pair of elements in the next box to be searched, that enclose —c between them, and continue
the fractional cascading search in the next box, in between these elements.

The main difficulty in this approach is that the number of elements of M; ; between £~
and £T might be large, because there might be many elements between £~ and £ in rows
that we did not sample, and then we have to inspect them all, slowing down the search.

Concretely, in this case we sample, in expectation, a quarter of the rows of M, ; (recall
that, we actually sample the rows from an augmented box that has already received data
from previous boxes, but let us ignore this issue for now). Collectively, these rows contain
(in expectation) ©(g?) elements of M; ;, but we have no good control over the size of the
gaps of non-sampled elements between consecutive pairs of sampled ones. This is because
there might be rows that we did not sample which contain many elements between £~ and
&1, and searching through such large gaps could slow down the procedure considerably. See
Figure 2 for an illustration. (For a normal fractional cascading, this would not be an issue,
but here the peculiar and implicit way in which we sample elements has the potential for
creating this problem.)

We handle this problem as follows. Consider any gap of non-sampled elements of M; ;
between a consecutive pair £~ < &1 of sampled ones. We claim that the expected number of
rows to which these elements belong is O(1). Indeed, the probability to have k distinct rows

in such a gap, conditioned on the choice of the row containing £~ is % (%) , which follows

since each row is sampled independently with probability 1/4. Hence, the (conditionally)

0. Gold and M. Sharir

expected row-size of a gap is

1/3\"

k= -] =0(Q),
>4 () —ow
as claimed. Denote this expected value as . In other words, for each c € C; ;, let R. be the
set of rows that show up in the gap between the corresponding elements £~ and £V for c.
The overall expected size Zceci,j |R.| is thus 5|C; ;.

Fix a box M; ;. For each ¢ € Ci’jj and for each k € R.,, we need to locate —c, among
the elements in row k& of M; ;. That is, we need to locate —c; among the elements of the set
ar + B;. This however is equivalent to locating —ax — ¢, among the elements of B;.

We therefore collect the set S of all the sums —ay, — ¢y, for £ € Ci’fj and k € R.,, and
recall that in expectation we have |S| = O(|C; ;|). The crucial observation is that we already
(almost) know the order of these sums. To make this statement more precise, partition, in the
usual manner, the sorted sequence C'into [n/g] blocks C1,Cs, ..., Cr, 47, each consisting of
g consecutive elements in the sorted order. As mentioned earlier, a symmetric application of
Fredman’s trick allows us to obtain the sorted order of each box of the form A} 4+ C;, using a
total of O(ng) comparisons.

The number of (consecutive) blocks Cy of C' that overlap C;; is t;; < [ki;/g] + 2.
Moreover, each sum in S belongs to —(A] + Cs) for one of these t; ; blocks. Since each of
these sets is already sorted, we extract from them (with no extra comparisons) the elements
of S as the union of ¢; ; sorted sequences S; 5, where S; ; C —(A;+C;) for each s. Arguing as
above, the expected size of S; 5 is 5|Cs| = O(g). We now merge each of the sorted sequences
Si,s with B}, using an expected O(g) comparisons for each merge. As a result, each sum
—a; — ¢y is located between two consecutive elements b;z < b:e of B}. In other words, for
each ¢ € C; j, we have at most |R,,| candidates for being the largest element of M; ; that is
smaller than —c, (these are the elements a; + b;e7 for i € R.,), and we select the largest of
them, requiring no comparisons, as these are all elements of the already sorted A + B;». In
the same manner, we find the smallest element of M; ; that is larger than —c,. Having found
these two elements, we can proceed to search —c, in the next box, using the appropriate
pointers created by the fractional cascading mechanism (see Section 2).

The overall number of merges is

Yooty < Y (mig/g+2)=00*/g),

i,j€[n/g] i,j€[n/g]

and each of them costs O(g) expected comparisons, for a total of O(n?/g) expected compar-
isons. Thus, the overall number of expected comparisons is O(nlogn + ng + n(logg + n/g)),
which is O(n3/2), when g = \/n. This completes the proof of Theorem 1. <

4.1 k-SUM and Linear Degeneracy Testing

The standard algorithm for k-variate linear degeneracy testing (k-LDT) for odd k& > 3, is based
on a straightforward reduction to an instance of unbalanced 3SUM, where |A| = | B| = n(k=1)/2
and |C| = n; see [4] and [22]. The analysis of this section also applies for unbalanced 3SUM,
and directly implies that it can be solved by using an expected number of

O (|Allog|A[+ [Bllog [B| + [Cllog [C] + g (|A] + [B| + |C]) + [C| (Al + |B]) /g + log g))

comparisons, where the first four terms come from the cost of sorting the blocks of (the
augmented) MAB, MAC and MBC, and where the last term is the cost of the fractional
cascading searches. We have |A| = |B| = n*~1/2|C| = n, so by choosing g = /n, the

42:11

ESA 2017

42:12

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

bound becomes O(n*/2). Thus, the randomized decision tree complexity of k-LDT (and thus
of k-SUM) is O(n*/?), for any odd k > 3, as stated in Theorem 2.

—— References

1

10

11

12

13

14

15

16
17

18

19
20

A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds
for dynamic problems. In Proc. 55th Annu. Sympos. on Foundations of Computer Science
(FOCS), pages 434-443, 2014.

A. Abboud, V. Vassilevska Williams, and H. Yu. Matching triangles and basing hardness
on an extremely popular conjecture. In Proc. 47th Annu. ACM on Sympos. on Theory of
Computing (STOC), pages 41-50, 2015.

O. Aichholzer, F. Aurenhammer, E. D. Demaine, F. Hurtado, P. Ramos, and J. Urrutia.
On k-convex polygons. Comput. Geom., 45(3):73-87, 2012.

N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157—
171, 2005.

A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing.
In Proc. 41st Int’l Collog. on Automata, Languages, and Programming (ICALP), pages 114—
125, 2014.

A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. Riva Shalom. Mind the gap:
Essentially optimal algorithms for online dictionary matching with one gap. In Proc. 27th
Int’l Sympos. on Algorithms and Computation (ISAAC), pages 12:1-12:12, 2016.

G. Barequet and S. Har-Peled. Polygon containment and translational min-Hausdorff-
distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl., 11(4):465—
474, 2001.

R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541-544, 1943.

A. Butman, P. Clifford, R. Clifford, M. Jalsenius, N. Lewenstein, B. Porat, E. Porat, and
B. Sach. Pattern matching under polynomial transformation. SIAM J. Comput., 42(2):611—
633, 2013.

J. Cardinal, J. Tacono, and A. Ooms. Solving k-SUM using few linear queries. In Proc.
24th Annu. European Sympos. on Algorithms (ESA), pages 25:1-25:17, 2016.

M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Non-
deterministic extensions of the strong exponential time hypothesis and consequences for
non-reducibility. In Proc. 2016 ACM Conference on Innovations in Theoretical Computer
Science, pages 261-270, 2016.

B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Al-
gorithmica, 1(2):133-162, 1986.

B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica,
1(2):163-191, 1986.

E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems project. Accessed:
2015-10-28.

H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput., 15(2):341-363, 1986.

J. Erickson. Bounds for linear satisfiability problems. Theor. Comput. Sci, 8:388-395, 1999.
E. Ezra and M. Sharir. A nearly quadratic bound for the decision tree complexity of k-SUM.
To Appear in Proc. 33st Int’l Sympos. on Computational Geometry (SoCG), 2017.

M. L. Fredman. How good is the information theory bound in sorting? Theor. Comput.
Sei, 1(4):355-361, 1976.

A. Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440-458, 2017.

A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in computational geo-
metry. Comput. Geom., 5:165-185, 1995.

0. Gold and M. Sharir

21

22

23

24

25

26

27

28

29

30

31

32

0. Gold and M. Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. CoRR,
abs/1512.05279, 2015. URL: http://arxiv.org/abs/1512.05279.

A. Grgnlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th
Annu. Sympos. on Foundations of Computer Science (FOCS), pages 621-630, 2014.

A. Herndndez-Barrera. Finding an o(n?logn) algorithm is sometimes hard. In Proc. 8th
Canadian Conference on Computational Geometry, pages 289-294, 1996.

R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367-375, March 2001.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.

D. M. Kane, S. Lovett, and S. Moran. Near-optimal linear decision trees for k-SUM and
related problems. CoRR, abs/1705.01720, 2017.

T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In
Proc. 27th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 12721287,
2016.

A. Lincoln, V. Vassilevska Williams, J. R. Wang, and R. Williams. Deterministic time-
space trade-offs for k-SUM. 1In Proc. 48rd Int’l Collog. on Automata, Languages, and
Programming (ICALP), pages 58:1-58:14, 2016.

M. Patragcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd ACM
Sympos. on Theory of Computing (STOC), pages 603610, 2010.

M. A. Soss, J. Erickson, and M. H. Overmars. Preprocessing chains for fast dihedral
rotations is hard or even impossible. Comput. Geom., 26(3):235-246, 2003.

O. Weimann, A. Abboud, and V. Vassilevska Williams. Consequences of faster sequence
alignment. In Proc. 41st Int’l Colloq. on Automata, Languages, and Programming (ICALP),
pages 39-51, 2014.

V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and
triangle problems. In Proc. 51st Annu. IEEE Sympos. on Foundations of Computer Science
(FOCS), pages 645-654, 2010.

42:13

ESA 2017

http://arxiv.org/abs/1512.05279

	Introduction
	Our Results and Related Work

	Methods and Lemmas
	Grønlund and Pettie's Subquadratic 3SUM Decision Tree
	Improved Decision Trees for 3SUM, k-SUM, and k-LDT
	k-SUM and Linear Degeneracy Testing

