78 research outputs found

    Ishu bunsan shisutemu ni okeru kabun tasuku no sukejulingu

    Get PDF
    制度:新 ; 報告番号:甲2691号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/7/30 ; 早大学位記番号:新486

    Milk Run Design: Definitions, Concepts and Solution Approaches

    Get PDF
    Efficient inbound networks in the European automotive industry rely on a set of different transport concepts including milk runs - understood as regularly scheduled pickup tours. The complexity of designing such a mixed network makes decision support necessary: In this thesis we provide definitions, mathematical models and a solution method for the Milk Run Design problem and introduce indicators assessing the performance of established milk runs in relation to alternative transport concepts

    Broker-mediated Multiple-Cloud Orchestration Mechanisms for Cloud Computing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimization of Critical Infrastructure with Fluids

    Full text link
    Many of the world's most critical infrastructure systems control the motion of fluids. Despite their importance, the design, operation, and restoration of these infrastructures are sometimes carried out suboptimally. One reason for this is the intractability of optimization problems involving fluids, which are often constrained by partial differential equations or nonconvex physics. To address these challenges, this dissertation focuses on developing new mathematical programming and algorithmic techniques for optimization problems involving difficult nonlinear constraints that model a fluid's behavior. These new contributions bring many important problems within the realm of tractability. The first focus of this dissertation is on surface water systems. Specifically, we introduce the Optimal Flood Mitigation Problem, which optimizes the positioning of structural measures to protect critical assets with respect to a predefined flood scenario. Two solution approaches are then developed. The first leverages mathematical programming but does not tractably scale to realistic scenarios. The second uses a physics-inspired metaheuristic, which is found to compute good quality solutions for realistic scenarios. The second focus is on potable water distribution systems. Two foundational problems are considered. The first is the optimal water network design problem, for which we derive a novel convex reformulation, then develop an algorithm found to be more effective than the current state of the art on select instances. The second is the optimal pump scheduling (or Optimal Water Flow) problem, for which we develop a mathematical programming relaxation and various algorithmic techniques to improve convergence. The final focus is on natural gas pipeline systems. Two novel problems are considered. The first is the Maximal Load Delivery (MLD) problem for gas pipelines, which aims at finding a feasible steady-state operating point that maximizes load delivery for a severely damaged gas network. The second is the joint gas-power MLD problem, which couples damaged gas and power networks at gas-fired generators. In both problems, convex relaxations of nonconvex dynamical constraints are developed to increase tractability.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169849/1/tasseff_1.pd

    Agent-based material transportation scheduling of AGV systems and its manufacturing applications

    Get PDF
    制度:新 ; 報告番号:甲3743号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/10 ; 早大学位記番号:新6114Waseda Universit

    Resource Management in Large-scale Systems

    Get PDF
    The focus of this thesis is resource management in large-scale systems. Our primary concerns are energy management and practical principles for self-organization and self-management. The main contributions of our work are: 1. Models. We proposed several models for different aspects of resource management, e.g., energy-aware load balancing and application scaling for the cloud ecosystem, hierarchical architecture model for self-organizing and self-manageable systems and a new cloud delivery model based on auction-driven self-organization approach. 2. Algorithms. We also proposed several different algorithms for the models described above. Algorithms such as coalition formation, combinatorial auctions and clustering algorithm for scale-free organizations of scale-free networks. 3. Evaluation. Eventually we conducted different evaluations for the proposed models and algorithms in order to verify them. All the simulations reported in this thesis had been carried out on different instances and services of Amazon Web Services (AWS). All of these modules will be discussed in detail in the following chapters respectively
    corecore