
Broker-Mediated Multiple-Cloud

Orchestration Mechanisms for

Cloud Computing

Ganesh Neelakanta Iyer

Department of Electrical and Computer Engineering

National University of Singapore

A thesis submitted for the degree of

Doctor of Philosophy

2012

To my loving parents ...

Neelakanta Iyer
Vasantha

Acknowledgements

I wish to express my deep and sincere appreciation to my supervisor, Professor

Bharadwaj Veeravalli, for his guidance, help and support. It is Professor Bharad-

waj who planted the seed for exciting research in Cloud Computing. I would like

to gratefully and sincerely thank him for his guidance, understanding, patience,

and most importantly, his friendship during my graduate studies at NUS. His

mentorship was paramount in providing a well rounded experience consistent my

long-term career goals. He encouraged me to not only grow as an applied re-

searcher but also as an instructor and an independent thinker. I would probably

have been lost without him and his style of guidance.

I would like to thank Dr Peng-Yong Kong who introduced me to the interesting

world of game theory and economic models for computer engineering. I would

like to thank members of my thesis committee Prof Cheong Loong Fah and Dr

Marc Armand for their encouragement, insightful comments, and hard questions.

Special thanks to my friends Mingding, Yuncai, Dr Lingfang, Sakthiganesh,

Raghavendran, Dinesh, Sivakumar, Vaishali, Li Xiao, Ramkumar, Maitreya, Srikanth,

Balaji and Anupkumar for several useful discussions and also helping me in my

research in different ways.

ii

My time at NUS was made enjoyable in large part due to the many friends and

groups that became a part of my life. I am grateful for time spent with room-

mates and friends, for my travel buddies and our memorable trips to different

countries in south east Asia and for many other people and memories. Special

thanks to my friends Mridul, Chaitanya, Jerrin, Deepu, Manmohan, Abhilash

and Pramod for several useful discussions over lunch and tea at Dilys.

I would also like to thank all my teachers in Bhaskars Academy who made me

continue my passion for Kathakali and other traditions while carrying out my

research. I specially thank my Kathakali Guru Kalamandalam Biju and his wife

Mayadevi for making me not missing my home. My special thanks to my teachers

Bhaskar Uncle, Santha Bhaskar aunt, Sajith Sir, Binsin Teacher and Harikrish-

nan Sir.

Further I would like to thank my mentors and friends in Facilitators@NUS and

ECE Graduate Student Council which helped myself to develop my personal

skills. My special thanks to Mr Terence, Prof Leng Siew, Jaslin, Xiaolei and

Yongfu.

Lastly, I would like to thank my family for all their love and encouragement. For

my parents Neelakanta Iyer and Vasantha who raised me with a love of science

and supported me in all my pursuits. I thank my wonderful brother Girish who

is the best friend in my life. I thank my in-laws Narayana Swamy, Meenakshy,

Revathi and Harikrishnan and other family members for all the support and en-

couragement throughout my studies. And most of all for my loving, supportive,

encouraging, and patient wife Lakshmy for faithful support during the later stages

of this Ph.D.

iii

Contents

Acknowledgements ii

Contents iv

Summary xi

List of Figures xiii

List of Tables xix

Acronyms xxi

Notations xxiii

1 Introduction 1

1.1 Cloud Service Delivery Models . 2

1.2 Key Challenges in Cloud Computing 5

1.3 Objectives and organization of the thesis 7

1.3.1 General focus, Contributions and Scope 7

1.3.2 Outline of the thesis . 8

iv

CONTENTS

2 Problem Statement, Background and System Architecture 10

2.1 Problem Formulation and Motivation 10

2.1.1 Need for Broker-based Cloud Orchestration mechanisms . 10

2.1.2 Cloud Broker Service Models 11

2.2 Literature Review . 13

2.2.1 Cloud Service Arbitrage Models 13

2.2.2 Cloud Service Aggregation Models 17

2.2.3 Cloud Service Intermediation 19

2.3 Cloud Service Broker System Architecture 21

2.3.1 Job Distribution Manager (JDM) 21

2.3.2 Operations Monitor (OM) 23

2.3.3 Price Manager (PM) . 23

2.4 Chapter Summary . 24

PART I: MULTIPLE CLOUD ARBITRAGE MECHANISMS 28

3 Broker-based Cloud Service Arbitrage Mechanisms using Sealed-

bid Double Auctions and Incentives 29

3.1 Introduction . 29

3.2 Important Terms and Definitions 30

3.3 Incentive-based Cloud Arbitrage Mechanism 31

3.3.1 Dynamic Pricing strategies for CSPs 33

3.3.2 Handling Security aspects by CSP 34

3.4 Auction-based Multiple-Cloud Orchestration Mechanism 35

3.4.1 Pricing strategies for CSPs and Users 37

3.4.2 Calculation of Reputation by the Broker 37

v

CONTENTS

3.4.3 Calculation of Trust by the User 38

3.5 Belief-based Game-theoretic Model for User Reliability 39

3.6 Performance Evaluation . 40

3.6.1 Comparison of the revenues obtained in various cases . . . 41

3.6.2 Effect of user preferences in the utility function 44

3.6.3 Effect of CSP preferences to participate in the proposed

schemes . 45

3.6.4 User migration between the proposed schemes 47

3.6.5 Cloud market offering multiple services 49

3.6.6 Remarks . 51

3.7 Chapter Summary . 52

4 Risk-aware Multiple Cloud Orchestration Mechanism 53

4.1 Introduction . 53

4.2 The Proposed Risk-based Cloud Broker Arbitrage Mechanism . . 54

4.2.1 Formulation of Trust Function 55

4.2.2 Formulation of User’s Utility Function 57

4.2.3 Dynamic Pricing Strategies 60

4.3 Performance Evaluation . 61

4.3.1 Simulation Setup . 61

4.3.2 Effect of Dynamic Credit with static price 63

4.3.3 Effect of Dynamic Credit with dynamic pricing strategies . 64

4.3.4 Analysis of Revenue for static and dynamic pricing cases . 66

4.3.5 Analysis of various dynamic pricing mechanisms 69

4.3.6 Effect of Different settings of Expected Acceptance Rate . 71

vi

CONTENTS

4.3.7 Effect of the frequency in changing the Price offers 75

4.3.8 Comparison of different Broker arbitrage mechanisms . . . 78

4.3.9 Cloud market offering multiple services 80

4.4 Chapter Summary . 81

PART II: CLOUD AGGREGATION MECHANISMS 83

5 Cooperative Game-theoretic Approaches for Cloud Aggregation 84

5.1 Introduction . 84

5.2 Cooperative Game-Theory Framework 86

5.2.1 Nash Bargaining Solution (NBS) 88

5.2.2 Raiffa-Kalai-Smorodinsky Bargaining Solution (RBS) . . . 90

5.3 Performance Evaluation and Discussions 94

5.3.1 Resource allocation based on Deadline 95

5.3.2 Budget requirements based resource allocation: Asymmet-

ric pricing schemes . 102

5.3.3 Combined effect of deadline and pricing on resource allocation104

5.4 Chapter Summary . 105

6 Design and Analysis of Broker-Mediated Cloud Aggregation and

Task Scheduling Mechanisms Using Markovian Queues for Bag-

of-Tasks 107

6.1 Introduction . 107

6.2 Proposed Multiple-Cloud Aggregation and Task Scheduling Mech-

anism . 109

6.2.1 Task distribution to minimize application completion time 109

vii

CONTENTS

6.2.2 Task distribution based on budget requirements 113

6.3 Task scheduling within a Cloud environment 114

6.3.1 Makespan . 118

6.3.2 Monetary Cost . 118

6.3.3 Resource Usage Index (RUI) 119

6.3.4 The Queuing Model for Task Scheduling 119

6.4 Performance Evaluation and Discussions 126

6.4.1 Performance analysis of multiple-Cloud aggregation mech-

anism . 126

6.4.2 Performance analysis of the task scheduling strategy within

a Cloud environment . 129

6.5 Chapter Summary . 140

7 Conclusions and Future Remarks 142

7.1 Conclusions . 142

7.2 Future Work . 145

Appendix: Example for Data Aggregation on Cloud - Large-scale

Polynomial Multiplication 147

A.1 Introduction . 147

A.2 Analysis For the Load Fractions 149

A.3 Performance Evaluation and Discussions of the Results 153

A.3.1 Processing time . 155

A.3.2 Strategies for eliminating redundant processors 157

A.4 Summary . 158

viii

CONTENTS

References 159

Author’s Publications 175

ix

CONTENTS

x

Summary

With a plethora of Cloud Service Providers (CSPs) offering various kinds of ser-

vices, it is difficult for a user to choose an appropriate CSP or a set of CSPs

for executing its tasks. Users are also concerned about other parameters such

as security and trustworthiness of the CSPs. Further some of the user applica-

tions have tight requirements such as deadline and budget specifications and they

need to be deployed among multiple CSPs to meet such requirements. On the

other hand, CSPs currently follow fixed price per resource and they need efficient

mechanisms to monitor the market and to develop attractive dynamic pricing

strategies based on several parameters including user demand, competition and

user profile.

In the first part of this thesis, we describe a comprehensive Cloud Broker ar-

chitecture and focus on designing Broker-mediated Multiple-Cloud Orchestra-

tion mechanisms to connect various CSPs and users together. We propose three

Broker-based Cloud service arbitrage mechanisms (Incentive based, Sealed-bid

continuous double auction based and Risk based) for different types of applica-

tions in which the Broker supplies flexibility and opportunistic choices for users

xi

and foster the competition between Clouds. Users can consider various parame-

ters such as trust, reputation and security to choose an appropriate CSP. We also

propose market-oriented dynamic pricing strategies for CSPs to adapt to market

conditions quickly.

In the second part of this thesis, we propose two Cloud Broker aggregation mecha-

nisms for IaaS Clouds where one is based on cooperative bargaining games and the

other one is based on Markovian queues. In the first case, we employ bargaining

solutions propounded in literature to efficiently determine the resource require-

ments for a set of tasks, requesting for one type of resources, so as to maximize

the resource utilization and to handle elastic user requirements. It also introduces

an asymmetric pricing mechanism to consider user’s budget requirements. The

Markovian queue based approach efficiently aggregates user tasks/data among

Clouds with heterogeneous resource capabilities based on user’s deadline and

budget specifications. We further address the task scheduling within a Cloud to

reduce the makespan and to improve the resource usage after the aggregation is

completed. Our Broker can function either as an entity to connect several CSPs

and users or as an entity to connect several users to one CSP and incorporates

several features suitable for various situations and different types of users.

xii

List of Figures

2.1 An overview of various Cloud Broker Mechanisms [1] 12

2.2 Architecture of the Proposed Multiple-Cloud Orchestration Mech-

anisms . 22

3.1 Flow Diagram for Incentive-based Scheme 32

3.2 A classification of classic auction types [2] 35

3.3 Flow Diagram for Auction-based Scheme 36

3.4 The state transition diagram for calculating the reliability index . 40

3.5 Comparison of revenue obtained in different cases 42

3.6 Jain’s Fairness Index . 43

3.7 Effect of user preferences in Incentive-Based model 44

3.8 Effect of user preferences in Auction-Based model 44

3.9 Effect of CSP preferences in Auction-Based model 46

3.10 Effect of CSP preferences in Incentive-Based model 46

3.11 Migration from Auction-Based to Incentive-Based 47

3.12 Migration from Incentive-Based to Auction-Based 47

3.13 Revenue obtained when CSPs offer different products 50

4.1 Flow Diagram for Risk-based Scheme 54

xiii

LIST OF FIGURES

4.2 Effect of dynamic credit on CSP revenue 64

4.3 Effect of dynamic credit on CSP revenue for Setting 1 66

4.4 Effect of dynamic credit on CSP revenue for setting 2 67

4.5 Analysis of revenue in static and dynamic cases 68

4.6 Acceptance rate for various CSPs 69

4.7 Analysis of Jain’s Fairness Index for CSPs 70

4.8 ξ = 0: Price adjustment only based on market price 70

4.9 ξ = 0.5: Price adjustment based on both market price as well as

price offered by same CSP in past iterations 71

4.10 ξ = 1: Price adjustment based on only the price offered by same

CSP in past iterations . 71

4.11 Analysis of revenue for acceptance rate Athr = 0.2 73

4.12 Analysis of revenue for acceptance rate Athr = 0.1 73

4.13 Analysis of revenue for acceptance rate Athr = 0.05 74

4.14 Analysis of revenue when acceptance rate Athr is random; Scenario 4 74

4.15 Analysis of revenue when acceptance rate Athr is random; Scenario 5 75

4.16 Effect of the frequency in changing the Price offers in revenue sce-

nario 1 . 76

4.17 Effect of the frequency in changing the Price offers in revenue sce-

nario 2 . 77

4.18 Revenue for auction based scheme proposed in Chapter 3 77

4.19 Comparison of revenue for various schemes 79

4.20 Comparison of Jain’s fairness index for various schemes 80

4.21 Revenue obtained when CSPs offer different products 80

xiv

LIST OF FIGURES

5.1 Architecture for the proposed bargaining model. Here, DC stands

for Datacenter and these datacenters may belong to one or more

CSPs . 87

5.2 Geometrical Interpretation of Nash and Raiffa solutions 93

5.3 Percentage of Resources allocated/Free with Rtot = 3000 and T =

300 . 96

5.4 Number of resources allocated in 6 iterations with dynamic change

in demand . 97

5.5 Auto-elasticity of Cloud when the demand varies with time with

Rtot = 300 and T = 35 . 98

5.6 Auto-elasticity of Cloud when the demand varies with time with

Rtot = 3000 and T = 300 . 99

5.7 Resource allocation on RBS in two cases 100

5.8 Percentage of Resources allocated/Free on RBS in two cases with

Rtot = 300 and T = 30 . 101

5.9 Analysis of pricing effects with change in number of tasks present 102

5.10 Analysis of the combined effect of pricing and deadline on resource

allocation . 104

6.1 Proposed architecture for the Broker-mediated Cloud-aggregation

mechanism . 108

xv

LIST OF FIGURES

6.2 The system model. (a) Data from a BoT application arriving at

the Cloud system can be assigned to M VMs with input data

di, where, di1, di2, and diM are belong to task n1, n2, and nM ,

respectively. This is, task n1, n2, and nM are assigned to VM

VM1, VM2, and VMM , respectively. In the same way, dt is the

temp data created by Cloud system, and do is the output data of

Cloud system. (b) A map-reduce example. 116

6.3 The scheduling model dispatches BoTs to a virtual cluster for par-

allel execution in a Cloud platform. This model can handle not

only the subset of tasks dispatched by the Broker, but also tasks

submitted directly by independent BoT applications. Thus the dis-

patcher itself can be a Broker within one Cloud (private or public

Cloud) to perform the task scheduling among multiple datacenters. 120

6.4 Task Execution Time . 127

6.5 Expenditure . 128

6.6 Task distribution . 128

6.7 The execution of a BoT application with 1000 BoTs (number of

VMs is 64, mk is 13, uncertain task proportion is 30%). (a) Batch

strategy; (b) Elastic strategy; (c) Pie chart of certain and uncertain

BoTs for elastic execution (as shown in (b)). 133

6.8 The effect of the number ofmk for makespanMc and resource usage

index ψ (number of VMs is 64). (a) makespan Mc; (b) resource

usage index ψ. 134

xvi

LIST OF FIGURES

6.9 The effect of the number of applications for makespan Mc (num-

ber of VMs is 64). (a) 10% uncertain task proportion; (b) 20%

uncertain task proportion; (c) 30% uncertain task proportion. . . 134

6.10 The effect of the number of applications for resource usage index

ψ (number of VMs is 64). (a) 10% uncertain task proportion; (b)

20% uncertain task proportion; (c) 30% uncertain task proportion. 135

6.11 The effect of large-scale BoT applications for makespan Mc (num-

ber of VMs is 64). (a) 10% uncertain task proportion; (b) 20%

uncertain task proportion; (c) 30% uncertain task proportion. . . 136

6.12 The effect of large-scale BoT applications on resource usage index

ψ (number of VMs is 64). (a) 10% uncertain task proportion; (b)

20% uncertain task proportion; (c) 30% uncertain task proportion. 137

6.13 The effect of large-scale BoT applications for makespan Mc (num-

ber of VMs is 1024). (a) 10% uncertain task proportion; (b) 20%

uncertain task proportion; (c) 30% uncertain task proportion. . . 138

6.14 The effect of large-scale BoT applications for resource usage index

ψ (number of VMs is 1024). (a) 10% uncertain task proportion; (b)

20% uncertain task proportion; (c) 30% uncertain task proportion. 139

A.1 Timing Diagram for Compute Cloud with solution-back propagation150

A.2 Processing Time vs Number of processors (a) θcm = 0.01 (b)θcm =

0.05 (c) θcm = 0.1 . 155

xvii

LIST OF FIGURES

A.3 Processing Time: Influence of system characteristics in selecting

the required VCIs when the number of processors required is less

than the available number of processors (a) θcm = 0.01 (b)θcm =

0.05 (c) θcm = 0.1 . 157

xviii

List of Tables

2 Table of Major Notations . xxiii

1.1 Classification of Network-Based Computing Systems ([3], [4]) . . . 3

2.1 Comparison of various Cloud Broker Arbitrage Mechanisms 25

2.2 Comparison of various Cloud Aggregation Models 26

2.3 Comparison of various Cloud Broker Intermediation Mechanisms . 27

3.1 Incentive Scheme: Dynamic Pricing for CSPs 33

3.2 General performance evaluation parameters 41

3.3 Capability Management Database in the Broker 49

4.1 Different types of users . 59

4.2 General simulation parameters . 62

4.3 Resource specifications of CSPs [5] 62

4.4 Initial price offers by various CSPs [5] 63

4.5 Simulation parameters for Section 4.3.3 65

4.6 Credit Setting 1 . 65

4.7 Simulation parameters for Section 4.3.6 72

4.8 Base Credit, Initial Price and Acceptance Rate for 10 CSPs . . . 72

xix

LIST OF TABLES

4.9 Simulation parameters for Section 4.3.7 76

6.1 Example to illustrate the mathematical model 112

6.2 Example to illustrate Drop-out condition 112

6.3 Example Drop-out condition: Avoiding slow CSPs 113

6.4 Short Caption . 113

6.5 Recomputed optimal values without P3 and P4 in Example1 . . . 114

6.6 Sub-space of Φk. 123

6.7 Major simulation parameters . 127

6.8 Parameters used in the experiments in Section 6.4.2 130

6.9 Comparison between simulation and theoretical analysis. 131

6.10 Monetary costs (64 VMs). 138

6.11 Monetary costs (1024 VMs). 138

6.12 Relative monetary costs of using 1024 VMs vs. 64 VMs 139

A.1 Simulation parameters . 154

xx

Acronyms

AWS Amazon Web Services

B2B Business to Business

BoT Bag-of-Tasks

CDA Continuous Double Auction

CPU Central Processing Unit

CSP Cloud Service Provider

DC Datacenter

DLT Divisible Load Theory

EC2 Elastic Compute Cloud

ERP Enterprize Resource Planning

FCFS First Come First Serve

IaaS Infrastructure as a Service

JDM Job Distribution Manager

LAN Local Area Network

NBS Nash Bargaining Solution

OM Operations Monitor

OST Optimal Sequence Theorem

PaaS Platform as a Service

xxi

PM Price Manager

PVR Point Value Representation

QoS Quality of Service

RBS Raiffa - Kalai-Smorodinsky Bargaining Solution

RUI Resource Usage Index

S3 Simple Storage Service

SaaS Software as a Service

SAN Storage Area Network

SLA Service Level Agreement

SME Small and Medium scale Enterprizes

SSO Single Sign-On

VC Virtual Cluster

VCI Virtual CPU Instance

VIA Virtual Interface Architecture

VM Virtual Machine

VNM-UT Von Neumann Morgenstern Utility Theory

VO Virtual Organization

WAN Wide Area Network

xxii

Notations

Table 2: Table of Major Notations

Notation Meaning

PART 1: Cloud Broker Arbitrage Mechanisms

N Total number of users in the system

Ci ith user

M Total number of CSPs in the system

Pj jth provider

RRij Return Ratio of Ci maintained by Pj

ERij Expected Return Ratio of Ci maintained by Pj

eij Number of jobs from Ci executed by Pj

Sij Number of job requests submitted to Pj by Ci

Prtij Price per resource of Pj for Ci at time t

Xij Offer price quoted by Pj for Ci

Yij Affinity index of Pj by Ci

Zij Security index of Pj by Ci

Uij Utility for Ci if Pj is chosen

Ei Total expenditure for Ci

Ij Gross income for Pj

Di Number of resources requested by user Ci

Lt
j Load on Pj at time t

χi Reliability factor of user Ci

Hj Weighted average system security for Pj

Rij Reputation index of Pj by Ci

Continued on next page

xxiii

Table 2 – continued from previous page

Notation Meaning

Tij Trust index of Pj by Ci

ϕ Threshold vale for load in CSP

χt
i Reliability index for User Ci

TRr
i,j Job Rating of user i to CSP j for all past transactions with reference

TRi,j Job Rating of user i to CSP j for all past transactions without reference

JRn
i,j Job Rating of user i to CSP j for transaction n

RCn
i,γ Credit Rating of user i to reference user γ for reference transaction n

RCi,γ Credit Rating of user i to reference user γ for all past reference transactions

V Utility function based on Trust T

U Utility function for the user based on trust and cost

Ec Explicit cost involved in the current transaction

δ Discount factor for calculating utility based price offers

Ecd Explicit cost for the current transaction with discounting

Pt Price offered by a CSP at time t

Qt Average price other CSPs offered at time t

St Amount of resources sold at time t

Ot Amount of resources offered at time t

Athr Expected acceptance rate for CSP

At Actual acceptance rate for CSP

ξ the weighing parameter for past price and reference price

W User’s budget

PART 2 Cloud Broker Aggregation Mechanisms

N Total number of tasks

Nj Number of tasks in CSP j

B Budget specified by the user

R∗
i Optimal number of resources derived based on NBS

R̃∗
i Optimal number of resources derived based on RBS

d Disagreement Point

αi Bargaining power for player i

Rtot Total number of resources available for allocation

µ0 Rate of dispatcher

pj Fraction of job sent to CSP j

Continued on next page

xxiv

Table 2 – continued from previous page

Notation Meaning

λj Arrival rate of tasks in CSP j

µj Service Rate of CSP j

tj Average time a task spent in CSP j

Tj Total amount of time spent by all tasks that are assigned to CSP j

Dj Unit cost per resource per time unit

Dtot Total expenditure for the execution of one BoT application

A Total number of BoT applications

ck Monetary cost/computation time unit of VMk expressed in dollars

K Number of virtual clusters (VCs)

ek Expected number of tasks

l0 Expected number of certain tasks

l1 Expected number of uncertain tasks

ρ0 System utilization for certain tasks in a VC

ρ1 System utilization for uncertain tasks in a VC

nk Number of VMs in V Ck

mk Maximum number of VMs that can be allocated to uncertain tasks in V Ck

T 0
k Execution time for all certain tasks in V Ck

T 1
k Execution time for all uncertain tasks in V Ck

Mc Makespan of certain tasks

ψ Resource Usage Index

Appendix

m+1 Total Number of processors including the resource allocator VCI

pi i th processor

Tcm Time taken to transmit a unit load by the communication link

Tcp Time taken to process a unit load by a VCI

αi Fraction of the load assigned to VCI pi.

wi The inverse of the computation speed of VCI pi
zi The inverse of the communication speed of the link i

Ei The product wiTcp referring to the time taken to process a unit load by pi
Ci The product ziTcm referring to the time taken to transfer a unit load via link

li

Continued on next page

xxv

Table 2 – continued from previous page

Notation Meaning

θcm An additive communication overhead component that includes the sum of all

delays associated with the communication process.

θcp An additive computation overhead component that includes the sum of all

delays associated with the computation process

Al
i Availability of link i

Ap
i Availability of VCI i

L Load that will be distributed to all VCIs for processing

xxvi

Chapter 1

Introduction

Cloud Computing has been emerged as an attractive paradigm for small, medium

and large scale business enterprises due to its inherent characteristics. Cloud

Computing can be defined as a model which delivers applications as services

(known as Software as a service or SaaS) over internet and providing hardware

and system software for users to implement, deploy and maintain their custom-

made applications and/or services [6].

There are five essential characteristics for Cloud environments [7]. Firstly, Re-

sources can be provisioned rapidly on-demand and customers can configure the

Cloud resources as needed automatically. Secondly, Cloud allows a broad network

access wherein users can access and use Cloud resources through network using

various heterogeneous client devices such as mobile phones and laptops. Thirdly,

Cloud Service Providers (CSPs) use Virtualization techniques to pool the com-

puting resources to serve multiple consumers based on user demand. Fourthly,

the auto-elasticity of Cloud allows users to configure resources in minutes and

enables them to scale the capacity based on their instant resource requirements

1

elastically. Finally, Cloud Computing has an attractive utility computing based

pay-as-you-go policy in which a user needs to pay only for the capacity that

he/she actually uses.

Cloud Computing has several key differences with respect to other traditional

distributed computing models such as Grid Computing and Cluster Computing.

A computing Cluster [3] consists of interconnected stand-alone computers which

works cooperatively as a single interconnected computing resource. In Grid Com-

puting, resources from several locations are connected via high-speed network

links and allows close interactions among the applications running. In case of

Cloud Computing, workloads can be quickly scaled out through on-demand re-

source provisioning of virtual and/or physical resources which is characterized by

several key features such as failure handling via VM migration, utility computing

model and resource monitoring. A classification of key characteristics of these

distributed computing systems are summarized in Table 1.1.

1.1 Cloud Service Delivery Models

Cloud Computing paradigm is characterized by three main service models as

described below:

Software as a Service (SaaS) SaaS delivers software and data as a service

over internet which are accessible from various client devices. Customers

do not need to buy software licences or additional infrastructure equipment,

but they need to pay for what they use. There are both free as well as paid

applications delivered in this way. Examples include Google Apps [8] and

2

Table 1.1: Classification of Network-Based Computing Systems ([3], [4])
Functionality,

Applications

Cluster Comput-

ing

Grid Computing Cloud Computing

Architecture,
Network Con-
nectivity and
Size

Network of com-
puter Nodes inter-
connected by SAN,
LAN or WAN hier-
archically

Heterogeneous clusters
interconnected by high-
speed network links

Virtualized clusters of servers
over data centers via SLA

Control and Re-
source Manage-
ment

Homogeneous
nodes with dis-
tributed control,
running UNIX or
LINUX

Centralized control,
server-oriented with
authenticated security

Dynamic resource provision-
ing of servers, storage and
networks

Security and
Privacy

Traditional
login/password-
based. Medium
level of privacy

Public/private key pair
based authentication and
mapping a user to an ac-
count. Limited support
for privacy.

Each user/application is pro-
vided with a virtual machine.
High security/privacy is guar-
anteed.

Service Negotia-
tion

Limited Yes, SLA based Yes, SLA based

User Manage-
ment

Centralized Decentralized and also
Virtual Organization
(VO)-based

Centralized or can be dele-
gated to third party

Resource Man-
agement

Centralized Distributed Centralized/Distributed

Allocation /
Scheduling

Centralized Decentralized Both centralized/ decentral-
ized

Standards
/ Inter-
Operability

Virtual Inter-
face Architecture
(VIA)-based

Some Open Grid Forum
standards

Web Services (SOAP and
REST)

Capacity Stable and guaran-
teed

Varies, but high Provisioned on demand

Failure Man-
agement (Self-
healing)

Limited (of-
ten failed
tasks/applications
are restarted).

Limited (often failed
tasks/applications are
restarted).

Strong support for failover
and content replication. VM
migration is possible

Pricing of Ser-
vices

Limited, not open
market

Dominated by public good
or privately assigned

Utility pricing, pay-as-you-
go, dynamic strategies like
spot pricing

Internetworking Multi-clustering
within an Organi-
zation

Limited adoption, but be-
ing explored through re-
search efforts such as
Gridbus InterGrid

High potential, third party
providers can loosely tie to-
gether services of different
Clouds

Potential for
building third-
party value-
added solutions

Limited due to rigid
architecture

Limited due to strong ori-
entation for scientific com-
puting

High potential can create
new services by dynamic pro-
visioning of different services
and offer as their own Cloud
services to users

Application and
Network-centric
services

High performance
computing, search
engines, web ser-
vices etc.

Distributed super com-
puting, global problem
solving

utility computing, outsourced
computing services and elas-
tic applications

Representative
operational
systems

Google search en-
gine, SunBlade,
IBM road Runner

TeraGrid, UK EGEE, D-
grid

Google App Engine, Ama-
zon Web Services, IBM Blue-
Cloud

3

sales management applications by Salesforce.com[9].

Platform as a Service (PaaS) PaaS delivers a development platform as well

as a solution stack on demand. Users can rent virtualized servers and

services to develop, test and run their applications. It allows developers

from different parts of the world to work together on software development

projects. With the PaaS model, the developer needs the knowledge only to

integrate various building blocks of a project such as the hardware, oper-

ating system, database etc, leaving minor details to be taken care by the

CSP. PaaS is also used to enhance the capabilities of the applications devel-

oped as SaaS. Some typical examples include Google App Engine [10] and

Microsoft Azure Platform [11].

Infrastructure as a Service (IaaS) In IaaS, CSPs offer all the tools necessary

for building, deploying and extending their custom-made applications and

services. Offered equipment include storage hardware, servers and network-

ing components owned and maintained by the CSPs. The user pays based

on the actual usage of the resources. It serves as a foundation for PaaS and

SaaS models which is flexible, standard, and virtualized operating environ-

ment. Clients have more options to customize their applications compared

to PaaS and IaaS. A typical example is Amazon Elastic Compute Cloud

(EC2) [12]. In Amazon EC2, you can develop and execute your applica-

tions on a virtual computer (also known as Virtual Instance) with a specific

configuration. A typical standard large instance of Amazon is 7.5 GB of

memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units

each), 850 GB of local instance storage and 64-bit platform.

4

1.2 Key Challenges in Cloud Computing

There are several key challenges for both users and providers to enter and establish

in this new distributed computing paradigm. Key challenges faced by the users

in moving their data/services to Cloud platforms include the following:

• Choosing the right provider: With the variety of services offered by

several CSPs, users may find it difficult to choose the right provider which

matches their requirements. At present, there is no platform which provides

information about the capabilities of all the CSPs.

• Security and Privacy issues: As several users may share the same phys-

ical infrastructure in a virtualized manner simultaneously, users are often

concerned about the security and privacy of their data in the Cloud plat-

form. This is an important issue because, the data/service storage/running

location specific information is abstracted from the users in Cloud environ-

ments.

• Trustworthiness of CSPs: Users are concerned about the trustworthiness

of the CSPs. This aspect is different from security because, trustworthiness

conveys information pertaining to the task execution such as adhering to

Service-Level Agreements (SLA adherence) and reliability of task execution

(such as handling node failure, meeting task deadline etc).

• Dealing with lock-in: In economics, vendor lock-in makes a customer

dependent on a vendor for specific products and/or services making it dif-

ficult for users to choose another CSP without substantial switching costs.

The switching cost includes possible end-of-contract penalties, charges for

5

format conversion and data/application switching and possible additional

charges for bandwidth usage.

From the providers’s perspective, there are many challenges to be addressed for

exploiting various features of Cloud platforms. It include:

• Understanding the market: New Cloud providers may need to under-

stand the current market status in terms of the competitors in the domain,

the user preferences in terms of the products/services they prefer most of

the time, user preferences for various features such as security and trust

requirements etc.

• Adapting to the market: Current Cloud platforms follow a fixed price

per resource for their products and services with some small exceptions

like Amazon spot pricing [13]. Dynamic pricing strategies are required to

improve their performance and to attract more customers based on the

market situation.

• Monitoring user profile: With competition among different providers,

CSPs may be required to monitor the reliability of users in terms of the

feedback given by them to decide user acceptance criteria. It also helps to

avoid any unhealthy competition among the providers and users.

6

1.3 Objectives and organization of the thesis

1.3.1 General focus, Contributions and Scope

This thesis focuses on developing a comprehensive architecture for a Cloud Bro-

ker and devising strategies for various Cloud Broker service models for multiple

Cloud orchestration mechanisms. Our Broker architecture helps both users and

CSPs to make their business decisions and addresses services for a variety of user

applications. Our architecture also gives flexibility to add new services in the

future based on future requirements.

We divide the thesis into two parts. First part proposes three strategies for

Multiple-Cloud arbitrage mechanisms. These are based on incentives, sealed-bid

double auction and Von Neumann-Morgenstern utility theory. All these strategies

help users to choose an appropriate CSP based on their preferences. CSPs can

make attractive dynamic price offers based on the market conditions. Through

extensive performance evaluation, we study the effectiveness of these schemes un-

der various cases and compare the performance with the current Cloud market

without Cloud Broker for Cloud Service Arbitrage.

Second part of the thesis specifically focuses on Cloud Aggregation mechanisms

for compute and data intensive IaaS applications such as BoT applications and

large-scale divisible load applications. First, we propose two bargaining mod-

els based on cooperative game theoretic approaches propounded in literature for

Cloud Aggregation which decide the task distribution for a set of tasks arriving

at the Broker based on various parameters such as deadline and budget require-

ments. We then propose a Cloud aggregation based on Markovian queues which

7

can deploy user tasks into CSPs with heterogeneous resource capabilities to sat-

isfy user requirements. Further, we address the task scheduling and its effect on

a particular Cloud after the task aggregation is completed.

The scope of this thesis is to develop a comprehensive architecture model for

a Cloud Broker and is to devise strategies for addressing various Cloud Broker

service models to address different categories of users. We also propose demand-

based dynamic pricing strategies for the CSPs to adapt to market situations

quickly. We further show the effectiveness of our proposed models through ex-

tensive performance evaluation studies.

1.3.2 Outline of the thesis

In Chapter 2, we first describe the problem addressed by this work and the moti-

vation. Then we provide a comprehensive survey of various various Cloud Broker

mechanisms existing in the literature and classify them into three based on the

services offered. Then the broker-based system architecture for multiple-Cloud

orchestration is described in detail.

In Chapter 3, we propose two Cloud Service Arbitrage mechanisms that enable

users to choose the right CSP and the CSPs to offer competitive price offers

based on market conditions. One scheme is based on incentives whereas the

other scheme is based on sealed-bid continuous double auctions. Incentive-based

strategy is shown to be suitable for loyal users who use Cloud for their applica-

tions very often. The applications that fall under this include SaaS applications

such as B2B and ERP applications and PaaS applications such as web hosting.

The auction-based scheme is suitable for users who use Cloud on an ad-hoc basis

8

and for users with tighter budget requirements who can afford to wait for longer

time to deploy and complete the execution of their applications.

In Chapter 4, we propose a Cloud Arbitrage mechanism based on risk and trust

wherein users choose the right CSP based on various system parameters. This

scheme is suitable for users who are more risk-averse in making their business

decisions and higher flexibility is given to users to choose various parameters in

calculating the Von Neumann-Morgenstern utility function. We also propose a

dynamic pricing strategy based on acceptance rate and compare our scheme with

the other proposed schemes as well as static pricing cases.

In Chapter 5, we propose a Cloud aggregation model for distributing tasks among

compute resources (with similar characteristics) based on Cooperative game-

theoretic approaches. We use two bargaining solutions propounded in the lit-

erature - Nash Bargaining Solution (NBS) and Raiffa Bargaining Solution (RBS)

for Cloud aggregation and intermediation.

In Chapter 6, we propose a Broker mediated Cloud aggregation mechanism us-

ing Markovian Queues which can effectively deploy customer applications over

multiple CSPs for Bag-of-Tasks (BoT) applications. We then analyze the task

distribution and resource allocation within a datacenter using queueing theory

and analyze the effectiveness of our model in various cases.

In Chapter 7, we conclude this thesis by providing a summary of all our works.

We also describe possible/interesting future works based on this thesis.

9

Chapter 2

Problem Statement, Background

and System Architecture

2.1 Problem Formulation and Motivation

We propose a comprehensive Cloud Broker architecture and strategies for Multiple-

Cloud Orchestration based on the Broker architecture to solve several key issues

faced by users and CSPs in Cloud Computing environments.

2.1.1 Need for Broker-based Cloud Orchestration mecha-

nisms

As Cloud emerges as a competitive sourcing strategy, a demand is clearly arising

for the integration of Cloud environments to create an end-to-end managed land-

scape of Cloud-based functions. A Broker-based multiple Cloud orchestration

mechanism can solve most of the issues faced by both users as well as the CSPs.

10

Cloud orchestration relates to the connectivity of IT and business process levels

between Cloud environments. Major benefits of Cloud Orchestration are:

• Helps users to choose the best service they are looking for

• Helps providers to offer better services and adapt to market conditions

quickly

• Ability to create a best of breed service-based environment in which tasks

can be dynamically deployed among multiple CSPs to reduce task execution

time and to meet budget requirements

• Helps users and providers to make their business decisions based on sev-

eral collective parameters such as trust, reputation, security and reliability

which are difficult to handle in the absence of a Broker.

• Helps users to designate Broker to make some decisions on behalf of them

so that users can focus on their core business rather than focusing on task

deployment strategies and other system administration jobs.

2.1.2 Cloud Broker Service Models

Cloud Broker plays an intermediary role to help customers locate the best and

the most cost-effective CSP for the customer needs. Cloud Broker is by far the

best solution for Multiple Cloud Orchestration (includes aggregating, integrating,

customizing and governing Cloud services) for SMEs and large enterprises. Major

advantages are cost savings, information availability and market adaptation. As

the number of CSPs continues to grow, a single interface (Broker) for information,

combined with service, could be compelling to companies who prefer to spend

11

Figure 2.1: An overview of various Cloud Broker Mechanisms [1]

more time with their Clouds than devising their own strategies for finding the

suitable CSP to meet their needs.

This is further corroborated by various research statistics. According to Gartner

[14], “By 2015, at least 20 percent of all Cloud services will be handled via brokers,

rather than directly, up from less than 5 percent today.” Another research by

Gartner states that, “Through 2014, Cloud service brokerage will generate more

than $5 billion in sales, up from less than $50 million this year, making it the

fastest growing area of Cloud Computing”.

We can broadly classify Cloud Brokers into three based on the services offered

12

by them as illustrated in Figure 2.1. First one is Cloud Service Intermediation,

wherein Broker can build services on top of the services offered by the CSPs,

such as additional security features and/or management capabilities. Second

one is Aggregation in which the Broker deploys customer services over multiple

CSPs. Finally Cloud Service Arbitrage where the Brokers supply flexibility and

opportunistic choices for users and foster the competition between Clouds.

2.2 Literature Review

In this section, we provide a comprehensive survey on the current literature on

various Cloud Broker models. Our studies reveal that, most of the proposals on

Cloud Broker architecture and mechanisms are found in the literature from the

year 2009. In this literature review, we specifically focus on Cloud Brokers and

hence Broker mechanisms in other related fields such as Grid Brokers are not

discussed here. Taxonomy and classification of Grid Brokers can be found in [15],

[16] and [17]. We have categorized the Cloud Broker models according to the

services offered by them.

2.2.1 Cloud Service Arbitrage Models

Different from traditional arbitrage mechanisms which involves in simultaneous

purchase and sale of an asset to make profit, a Cloud Service Arbitrage aims

to enhance the flexibility and choices available for users with different require-

ments and to foster competition between CSPs. For example, a user may want to

choose the best secure email provider whereas another user may want to choose

the cheapest email service provider.

13

In [18], the authors propose a distributed negotiation mechanism wherein mul-

tiple buyers and sellers are allowed to negotiate with each other concurrently

and an agent is allowed to decommit from an agreement at the cost of paying

a penalty. This scheme is designed specifically for IaaS Clouds and proposes

a dynamic pricing scheme. But the utility function can take into account only

deadline and price.

In [19], the authors propose a Broker model to help the users to choose an ap-

propriate IaaS CSP. Broker helps prospective Cloud consumers to compare and

contrast different CSPs according to their specific requirements. It also helps

them to test benchmark applications on different CSPs to get a better estimate

of the cost and the performance. In [20], the authors propose a Broker based on

Analytic hierarchy process (AHP) in which users can specify their requirements

such as reliability and Broker displays a catalogue. Users choose appropriate IaaS

CSP based on the catalogue. A basic implementation is done on Eucalyptus. But

these schemes are user-centric and do not allow the CSPs to interact with Broker

to adapt to market conditions.

In [21], the authors propose a scheme called as RAINBOW for choosing appro-

priate CSP based on deadline and budget constraints. The scheme has several

limitations. It is designed for handling only compute resource requirements. Fur-

ther CSPs are not allowed to use any dynamic pricing strategies and they can not

adapt to market conditions using Broker. In [29], the authors propose a Cloud

resource negotiation scheme to choose appropriate CSPs for Cloud users. Both

schemes do not describe any system modeling or performance evaluation. In [22],

the authors propose a Bayesian learning mechanism for resource allocation in

14

Cloud. Users submit their bid and auctioneer selects appropriate CSP after a set

of auctions. Users use Bayesian learning mechanisms to update their bid prices

whereas CSPs offer a fixed pricing mechanism. Main drawback is the assumption

that several users compete for same resources which may not be the case in real-

ity.

In [23], the authors propose an intelligent Cloud resource allocation scheme which

helps in discovering all available resource configurations, choosing the desired con-

figuration, negotiating an SLA, monitoring the SLA and assisting in the migra-

tion of services between CSPs. But only single resource requests are considered.

Further, details of the pricing policies of CSPs are not presented. No other pa-

rameters (such as trust, security, geographical information etc) are considered in

their modeling.

In [24], the authors present a market exchange framework based on auctions for

resource negotiation in Cloud environments. But the model is restricted for bid-

ding compute resources. They specify that it supports multiple types of auction

mechanisms, but do not specify the one used in their performance evaluation. Fur-

ther, their performance evaluation does not specify the relative merits/demerits

of different auctions in their model for users and CSPs. The model considers only

compute resources and seems to be applicable to any distributed systems such as

Grid and failed to prove the advantages for CSPs to use this system.

In [25], the authors propose a market-oriented time optimization and cost op-

timization resource scheduling strategies for IaaS Clouds (offering compute re-

sources) using budget and deadline constraints. But, the optimization is not

done across multiple CSPs and CSPs offer fixed pricing. Further, this scheme

15

can be applied to any distributed environments such as Grids and the applicabil-

ity in a Cloud context is not specified.

In [26], the authors present a scheme called as MC-QoSMS which collects QoS

specifications from CSPs and QoS requirements from users and finds a suitable

match based on reduct in rough set theory. The model considers various QoS

parameters such as availability, security etc. But handling of QoS parameters are

not modeled realistically. Further, this model does not allow CSPs to adapt to

market conditions.

In [27], the authors propose an architecture and a scheme for a Cloud Coordinate

to improve the performance of various entities in a Cloud ecosystem. They model

a market which trades VMs. Cloud Exchange is presented to help in negotiation

services and a Cloud Coordinator is available for SOA implementation. But, a

market competition is not created and CSPs can not adapt to market conditions

to improve their revenue. Further this scheme is designed to handle only compute

resources.

In [28], the authors propose a knowledge-based auction model for trading re-

sources in Cloud environments particularly for futures market and spot market.

The intersection of demand curve and supply curve is considered as the market

clearing price at which all resources are sold. The model is very limited as it is

restricted to handle the limited supply resources (Future Market and Spot Mar-

ket). Hence it is applicable to any other distributed domain such as Grid.

A comparison of all the Cloud Arbitrage mechanisms described in this section

are summarized in Table 2.1.

16

2.2.2 Cloud Service Aggregation Models

Cloud Aggregation Brokers help to deploy customer applications across multiple

CSPs for various reasons. Users may have some deadline and budget requirements

which needs the application to be distributed across multiple CSPs, or users may

require a service which can be obtained only by combining services from multiple

CSPs. The second category is also known as Cloud Broker Integration.

In [30], the authors propose a distributed resource management scheme based on

repeated non-cooperative and cooperative games in a dynamic federation plat-

form for data intensive applications. In their pricing scheme, the price offered is

based on the revenue obtained. But the model arises convergence issues due to

the usage of repeated games and the utility function can handle only price and

social welfare.

In [31], the authors present an architecture for Cloud aggregation and bursting

for object based sharable environment specifically for IaaS storage Clouds. In

[32], the authors propose a price based Mixed Integer program for splitting the

load among CSPs. In [33], the authors propose a social network based approach

for provisioning and managing Cloud resources using the principles of peer-to-

peer networking and utility computing model. In [34], the authors propose an

architectural strategy for the provisioning and delivery of services in Cloud com-

munities, ecosystems and business networks. All these models only propose the

Broker architecture and lacks in giving a detailed system modeling and perfor-

mance evaluation.

In [35], the authors propose a genetic algorithm for estimating suboptimal sets of

17

resources and an agent-based approach for executing bag-of-tasks (BoT) applica-

tions simultaneously having budget and deadline constraints. But the solutions

found are suboptimal and the model is not capable of preempting tasks when

required. Further, the model does not take into account the cost involved in data

communication and computation. In [36], the authors present a security enhanced

coordinator to establish SLA to ensure QoS. It also monitors the work load and

triggers on demand resource provisioning when required. But the scheme is de-

signed only for real-time online interactive applications such as online games.

In [37], the authors propose a Cloud Brokering architecture which optimizes the

placement of virtual infrastructures across multiple CSPs and also abstracts the

deployment and management of infrastructure components in these CSPs. In [38],

the authors propose a binary integer program problem for multi-provider hybrid

Cloud setting based on deadline and budget constraints. These two schemes con-

sider only IaaS compute Clouds and the problems are shown to be NP-Hard. In

the second case, there are cases wherein the problem solve time exceeded even 5

days without getting an optimal solution for hybrid Cloud setting. In [39], the

authors propose a modular Broker architecture for optimal service deployments

in dynamic pricing multi-Cloud environments. But they do not specify the time

complexity for solving various optimization problems. Moreover, performance

evaluation is restricted to one CSP (Amazon EC2).

In [40], the authors propose a Broker architecture Uni4Cloud to automate de-

ployment and configuration of multi-cloud applications. It handles lock-in using

standards such as OCCI [41] and OVF [42]. This architecture can be used only

with those CSPs who follow OCCI or OVF standards. But this scheme lacks sup-

18

port for various features such as SLA monitoring, strategy to choose appropriate

CSP based on user requirements etc. Moreover, only a case study is presented

which is not sufficient to understand the behavior of the scheme in general cases.

In [43], the authors propose a Cloud architecture called OPTIMIS which has a

Broker model as part of the Cloud delivery architecture. They focus on Broker

integration service for integrating various CSPs and gives a detailed architec-

tural overview. In [44], the authors propose a Broker architecture to support

integration, delivery and management of composite services in a multi-provider

heterogeneous networks environment. In both cases, only a prototype architec-

ture is proposed with some details on different use cases. The do not provide the

required details such as system modeling, implementation and/or performance

evaluation.

A comparison of all the Cloud Aggregation strategies described in this section

are summarized in Table 2.2.

2.2.3 Cloud Service Intermediation

Intermediation Brokers customize and build add-on services on top of Cloud ser-

vices to incorporate additional features on current Cloud services. It may include

services to enhance the user experience with Clouds such as add-on security fea-

tures (e.g. Single Sign-On), integrated billing and monitoring services, financial

services etc.

In [45], the authors propose an identity brokerage and federation model to fa-

cilitate distributed access, Licence management and SLA management for SaaS

19

and IaaS Clouds. In [46], the authors propose a change management approach

for Cloud backed business process models using an intelligent Broker. In [47], the

authors propose a Broker for optimal placement of VMs on Clouds. In [48], the

authors propose an architecture for managing CSPs and users for specifying sys-

tem decisions using rules and policies. But none of these scheme gives a detailed

system model , implementation and/or performance evaluation.

There are few models that are designed for specific Applications. In [49], the au-

thors specify a Broker for finding optimal route between Broker and the Cloud. In

[50], the authors specify a Broker for monitoring and managing SLA between users

and CSPs. In [51], a Broker-based trust model for identity federation (specifi-

cally Single Sign-On) in Cloud is proposed. In [52], coordination of cloud services,

based on a tuple-space architecture is proposed to enable the CSPs to advertise

their capabilities.

In [53], an optimization problem has been formulated to maximize the success-

ful allocation with QoS parameters such as bandwidth, data size and time for

reserving and provisioning resources for data-intensive Cloud applications. But,

the optimization problem formulated is not solved to obtain optimal values for the

problem considered. Further, the problem considered is user-centric and CSPs

can not adapt to market conditions. Finally, a limited application scenario is

described based on IPTV.

In [54], the authors propose an options market for purchasing long-term contracts

based on history and helps CSPs for resource forecasting. But, it does not specify

how to deal with multiple CSPs and only compute resources are considered. In

[55], a CloudBank has been proposed to provide analysis and guidance on price

20

offers by various CSPs to users. The scheme considers only in the formulation of

price based on historical usage of resources and lacks in considering various Cloud

parameters such as trust, security and reputation. Performance evaluation is not

clear and the outcome of the experimental realization is not described clearly.

A comparison of all the Cloud Broker Intermediation strategies described in this

section are summarized in Table 2.3.

2.3 Cloud Service Broker System Architecture

Our model consists of N users {C1, C2, .., CN} andM CSPs {P1, P2, .., PM} which

are connected together through a Broker. Broker maintains few databases about

the current system to aid users and CSPs to make their business decisions. A

detailed architecture for the Broker is illustrated in Figure 2.2. This Broker

architecture consists of three major components as described below.

2.3.1 Job Distribution Manager (JDM)

Job Distribution Manager is responsible for receiving User’s job requirements,

choose appropriate CSP selection strategy, informing appropriate CSPs about

the jobs, and maintaining the job distribution statistics. When a user submits

job requirements, the Job Classification module analyzes the job requirements

and decides the preferred CSP selection strategy (either Cloud Service Arbitrage

or Cloud Aggregation).

In this thesis, we discuss three Cloud Service Arbitrage mechanisms wherein

the users and CSPs behaves according to market situation to maximize their

21

Figure 2.2: Architecture of the Proposed Multiple-Cloud Orchestration Mecha-
nisms

corresponding utilities. If the policy is Auction-based mechanism, then the Auc-

tioneer module will control the auction process and decides the winners. If the

user wants aggregate its application across multiple Clouds, then the Cloud Ag-

gregation unit will perform the necessary action. In all schemes, the Dispatcher

module dispatches the job to corresponding CSPs after the CSP selection process

is completed.

Further, the Distribution Database maintains a database about the job distri-

bution statistics such as the winning CSP. This helps both CSPs and users to

analyze their performance in the past with respect to other competing players in

the market. For choosing appropriate CSPs and consolidating price information,

JDM communicates with other components in the Broker.

22

2.3.2 Operations Monitor (OM)

Operations Monitor (OM) monitors, manages and maintain various information

pertaining to both users and CSPs. The Capability Management module main-

tains databases about different resources and services offered by various CSPs.

It also updates this information periodically when it notices any changes in the

services offered by existing CSPs or when new CSPs enter the market. JDM

makes use of this information to short-list the list of CSPs for participating in

the game whenever a new job request arrives at JDM.

The modules Trust and Reputation and Security Index maintains information

about the Reputation and security values of various CSPs from time to time.

These values are supplied to users when requested. Users, based on their prefer-

ences use these values to choose appropriate CSP. A cumulative credit value is

also derived based on these indices and user feedback which is maintained by the

Credit Rating module.

Moreover a user reliability index is maintained by the User Reliability Index mod-

ule. This is derived based on the trustworthiness of the feedback received from

the users. This value is used by CSPs in making their price offer and by other

users in forming their utility functions.

2.3.3 Price Manager (PM)

The Price Manager (PM) maintains the price offers supplied by CSPs from time

to time. It is also responsible to calculate the current market price for different

resources. This is used by CSPs to adjust their price offers. It also maintains other

23

financial matters such as maintenance of integrated billing information which can

collectively calculate, display and manage the billing information from all the

CSPs for the users.

2.4 Chapter Summary

In this chapter, we proposed the need for a Cloud Broker to solve several chal-

lenges that are persisting in the Cloud environments and conducted a compre-

hensive classification of existing Cloud Broker mechanisms into three categories:

Cloud Broker Arbitrage, Aggregation and Intermediation. We presented the rela-

tive merits/demerits of the existing schemes and proposed a detailed Cloud Broker

Architecture to solve several key issues existing in the current Cloud Computing

environments.

24

Table 2.1: Comparison of various Cloud Broker Arbitrage Mechanisms
Scheme Basic Mechanism Cloud Ser-

vices
Pricing
Model

Extra Fea-
tures

Market
adaptation
for CSP

Applications Limitations

NG [18] Distributed Negotiation Mecha-
nism

IaaS Dynamic
Pricing

No Yes General Only resource negotiation and allocation is
considered, Utility is only based on dead-
line and offer price

SCB [19] Helps users to choose appropriate
CSPs

IaaS No No No General User-centric scheme CSPs are not interact-
ing with the Broker to know the market
conditions

AHPBroker
[20]

A Broker based on Analytic hier-
archy process (AHP)

IaaS No Reliability,
Uptime

No General User-centric scheme, CSPs are not inter-
acting with the Broker to know the market
conditions

RAINBOW
[21]

Deadline and Budget constrained
optimization for Cloud

IaaS No No No Compute
resources

Very limited because CSPs are not mod-
eled to offer dynamic price offers and CSPs
can not adapt to market situation. No sys-
tem modeling or performance evaluation.

BNEA [22] Bayesian learning mechanism for
resource allocation in Cloud

SaaS, PaaS,
IaaS

Auctions for
user bid and
fixed pricing
for CSPs

No No Compete
for same
resources

All users has to compete for same type of
resource (may not be applicable in a prac-
tical sense)

ICRAS [23] An intelligent Cloud resource al-
location scheme

IaaS Dynamic
pricing (But
detailas are
missing)

No Yes Only sin-
gle resource
requests

Details of CSP pricing policies are missing.
Other parameters such as trust, security,
geographical information etc are not con-
sidered

Mandi [24] Market Exchange framework for
Clouds

IaaS Auction based
pricing

No Yes Compute
resources

Lacks details and relative merits/demerits
of different auctions in performance evalu-
ation The model can be used for any dis-
tributed systems such as Grid and failed to
proove the advantages for CSPs to use this
system

TCO [25] Market oriented resource schedul-
ing for IaaS

IaaS No No No Compute
resources

Considers only one IaaS CSP for alloca-
tion, Optimization is not done across mul-
tiple CSPs. CSPs offer fixed pricing. This
scheme is application any distributed envi-
ronments such as Grids and the applicabil-
ity in a Cloud context is not evaluated

MC-QoSMS
[26]

Rough-set theory based QoS man-
agement for IaaS Clouds

IaaS No Security,
Availability

No General Handling of QoS parameters are not mod-
eled realistically. Does not allow CSPs to
adapt to market conditions.

InterCloud
[27]

An architecture and a scheme for
a Cloud Coordinate to improve
the performance of various enti-
ties in a Cloud ecosystem

IaaS No No No Compute
resources

A market competition is not created and
CSPs can not adapt to market conditions
to improve their revenue etc.

CRA [28] A Knowledge-based auction
model for trading resources in
Cloud environments

IaaS Continuous
Double Auc-
tions

No Yes Limited sup-
ply market
for compute
and storage
resources

Very limited model which is restricted to
handle the limited supply (Future Market
and Spot Market). Hence it is applicable to
any other distributed domain such as Grid.
The performance evaluation is restricted to
analyzing the efficiency of the scheme with
no comparative study with respect to other
schemes

CloudAgency
[29]

Cloud resource negotiation SaaS, PaaS,
IaaS

No No No General Only a framework is proposed, lacks mod-
eling and performance evaluation

25

Table 2.2: Comparison of various Cloud Aggregation Models
Scheme Basic Mechanism Cloud Ser-

vices
Pricing
Model

Extra
Features

User/CSP
centric

Applications Limitations

DFP [30] Distributed Resource Manage-
ment

IaaS, PaaS revenue
based
pricing

No Both Data-intensive
Applications

Repeated games requires convergence time,
Utility is formed only based on offer price
and social welfare

CAB [31] An architecture for Cloud Burst-
ing and Aggregation

IaaS (Stor-
age)

No Security Only a basic
architecture is
proposed

Not mentioned Only a basic architecture is proposed. No
analysis and performance evaluation

CRS [32] Price based Mixed Integer pro-
gram for splitting the load among
CSPs

IaaS No No Only a basic
architecture is
proposed

Not mentioned Only basic details of the model are speci-
fied. Optimization problem is not solved.
No performance evaluation is done

GA-based
RE [35]

A genetic algorithm to deploy
BoT applications into multiple
Clouds to satisfy budget and
deadline constraints

IaaS No No User centric BoT applications The solutions found are suboptimal. Not
capable of preempting tasks when required.
Does not take into account the cost in-
volved in data communication and compu-
tation

CBA [37] A Cloud Brokering architecture
which optimizes placement of vir-
tual infrastructures across mul-
tiple clouds and also abstracts
the deployment and management
of infrastructure components in
these clouds.

IaaS (Com-
pute)

No No User centric Compute intensive
applications

Formulated problem is shown to be NP-
hard.

HICCAM
[38]

A binary integer program problem
for multi-provider hybrid Cloud
setting

IaaS (Com-
pute)

No No User centric Compute intensive
applications

In case of hybrid Cloud, there are cases
wherein the problem solve time exceeded
even 5 days without getting an optimal so-
lution

Uni4Cloud
[40]

Facilitating modeling, deploy-
ment and management of applica-
tions in multicloud environments

IaaS No No User centric Applications that
follow the stan-
dards

Needs continuous monitoring, CSPs should
follow OCCI/OVF standards. Lacks sup-
port for various features such as SLA mon-
itoring. Only a case study is presented
which is not sufficient to understand the
general behavior.

SOFCloud
[36]

A model to support the federa-
tion of multiple autonomous in-
frastructure providers to provide
a scalable IT infrastructure for de-
livering ROIA application as QoS-
assured services

SaaS, PaaS,
IaaS

No Security User centric Real time online
interactive appli-
cations

Limited application scope. Suitable for
real-time online interactive applications
such as online games

OPTIMIS
[43]

Cloud brokerage model as part of
a Cloud delivery architecture

SaaS, PaaS,
IaaS

Tiered
pricing

Security,
Risk

Both Not mentioned Only a prototype architecture is proposed
with some details on different use cases.
Lacks fine details such as system modeling
and performance evaluation

OCCS [33] Social network based approach for
provisioning and managing Cloud
resources

SaaS, PaaS,
IaaS

No No User centric Not mentioned Only an architecture is proposed. The
work lacks system modeling and perfor-
mance evaluation

SDF [34] Service Delivery Framework SaaS, IaaS,
PaaS

No No User centric Not mentioned Only a framework is proposed, lacks mod-
eling and performance evaluation

OSD [39] Modular broker architecture for
optimal service deployments in
dynamic pricing multicloud envi-
ronments

IaaS Yes, but
but the
instance
prices are
assumed to
be known
in advance

No Both Compute intensive
applications

They model several optimization con-
straints based on user requirements but
they specified that the optimization prob-
lem is solved using MINOS solver. But
they do not specify the time complexity
for solving for various cases. Performance
evaluation is restricted to one CSP (Ama-
zon EC2)

26

Table 2.3: Comparison of various Cloud Broker Intermediation Mechanisms
Scheme Basic Mechanism Supported

Cloud Ser-
vices

Pricing
Model

Intermediation
Services

Limitations

FinanceCloud
[54]

Financial Markets IaaS (Compute) Monthly
price offers

Finanical man-
agement and
advanced resource
reservation

Does not specify how to deal with multiple
CSPs, Only compute resources are consid-
ered, Only models price

BEinGRID
[45]

Identitiy Brokerage and Federation SaaS, IaaS No Identity manage-
ment

Only a framework is proposed, lacks model-
ing and performance evaluation

BCM [49] Broker Cloud communication
paradigm

IaaS (Compute) No Route Finding A very specific usage of Broker to find opti-
mal communication route

CloudSLA
[50]

Automatic construction of SLAs be-
tween Cloud users and CSP

IaaS No SLA management Only a problem is discussed and its possible
implementation by a Cloud Broker

EventCB
[46]

Change management approach for
Cloud backed business process mod-
els,

Not mentioned No Business change
management

Only a basic model is described. No archi-
tecture and other details provided

CAA [47] A broker for optimal placement of
VM instances on CSPs

IaaS No VM placement Broker is part of a comprehensive Cloud ar-
chitecture. Lacks details such as modeling
and performance evaluation

IFB [51] Broker-based trust model for iden-
tity federation in Cloud

SaaS, PaaS,
IaaS

No Identity manage-
ment

A model which can handle only SSO man-
agement by the Broker and hence has limited
scope

PBMOCSMA
[48]

A policy based Cloud management
architecture

IaaS (Compute) Yes. But
no details
provided

Policy manage-
ment

Only an architecture is proposed. The work
lacks system modeling and performance eval-
uation

DCSC [52] Coordination of cloud services,
based on a tuple-space architecture

IaaS No Coordination
management

Very limited scheme. Does not specify the
parameters considered for the coordination
clearly.

CISF and
SRB [53]

Reserving and provisioning re-
sources for data-intensive Cloud
applications

IaaS No Resource reserva-
tion and manage-
ment

Optimization problem is not solved to obtain
optimal values. The problem considered is
user-centric and CSPs can not adapt to mar-
ket conditions. Limited application scenario
is described based on IPTV

Cloud
Bank [55]

A resource agency to provide anal-
ysis and guidance on price offers by
various CSPs to users

SaaS, PaaS,
IaaS

Based on
historical
resource
usage

Price analyzer The scheme considers only in the formulation
of price based on historical usage of resources
and lacks in considering various Cloud pa-
rameters such as trust, security and reputa-
tion. Performance evaluation is not clear and
the outcome of the experimental realization
is not described clearly.

SBMA
[44]

A Broker architecture to support
integration, delivery and manage-
ment of composite services in a
multi-provider heterogeneous net-
works environment

SaaS, PaaS,
IaaS

No Composite ser-
vices - Integra-
tion, Delivery and
Management

An archiecture is presented. But the work
lacks in providing any modeling or perfor-
mance evaluation details.

27

PART I: MULTIPLE CLOUD

ARBITRAGE MECHANISMS

28

Chapter 3

Broker-based Cloud Service

Arbitrage Mechanisms using

Sealed-bid Double Auctions and

Incentives

3.1 Introduction

Detailed Cloud Broker architecture and various Cloud Broker categories were

described in the last chapter. In this chapter, we propose two Cloud Service Ar-

bitrage mechanisms. The objectives of these mechanisms are to help the Cloud

users choose appropriate CSPs and for the CSPs to give opportunistic choices and

increase the mutual competition to improve their performance. We make use of

some principles of game theory such as Continuous Double Auctions, Incentives

and Belief-based repeated games with imperfect private monitoring to design var-

29

ious aspects of the Broker in terms of formulating the utility function, dynamic

pricing strategies, user reliability etc.

3.2 Important Terms and Definitions

Initially, without any loss of generality, we assume that all CSPs have similar

capabilities and are able to service any incoming job request. Later we show that,

if CSPs offer multiple services, our schemes can handle it seamlessly. Important

terms used in this chapter are described as follows:

User Return Ratio (RRij)

User Return Ratio captures the influence of how often a user Ci gets its job

serviced by a CSP Pj , after evaluating the quotes sent to Ci by all CSPs in the

system. It may be noted that this ratio is actually a function of time as it has a

strong bearing on the number of jobs (eij) from Ci executed by Pj with respect

to the number of job requests (Sij) submitted to Pj by Ci. Thus we define RRij

as:

RRij =
eij
Sij

(3.1)

Expected Return Ratio (ERij)

It denotes the number of times a CSP expects a user to get its job serviced by

it, when all CSPs are treated fairly in the system. If M CSPs are present in the

system, then ERij can be simply computed as the inverse ofM , i.e., ERij = 1
M
.

30

CSP Affinity Index (Yij)

The affinity index (Yij ∈ [0, 1]) is a measure of the goodwill of any CSP Pj with

any user Ci. There can be several contributors to goodwill in a real Cloud envi-

ronment such as trust and reputation [56] for completing jobs without dropping

them, job completion times (without delays), location of the CSP datacenter etc.

Users can obtain this value in the form of Credit Rating from the Operations

Monitor component of the Broker

CSP System Security (Zij)

CSP System Security index (Zij ∈ [0, 1]) is the measure of the security level of a

CSP Pj as perceived by a user Ci. Security is the assurance of secure computing

services provided by system nodes and is calculated according to the brand image

differential equation mechanism described in [57].

User Reliability Factor (χi)

Users submit feedback about CSPs after each transaction is completed. User Re-

liability Factor (χi ∈ [0, 1]) is the measure of the trustworthiness of the feedback

of a user Ci according to the Broker. χi decreases when Ci exhibits behavior that

is not in correlation with the value maintained by the Broker.

3.3 Incentive-based Cloud Arbitrage Mechanism

In this section, we describe the incentive-based Cloud arbitrage mechanism. At

any point of time, a user Ci can submit a job request with a demand Di to a set

of CSPs through the Broker. Each CSP Pj quotes an offer price to the Broker

31

and the Broker informs the collective offers from all CSPs to user Ci. The user,

then calculates its utility as follows:

Uij = α((1−Xij)) + β(Yij) + γ(Zij) ∀j (3.2)

such that α + β + γ = 1; α, β, γ ≥ 0

Then Ci selects the CSP which maximizes its utility. Here, Xij is the normalized

offered price1, Yij is the affinity index and Zij is the security index. Based on

individual requirements, different users may have different weightage for these

factors. The job is submitted to the selected CSP, the corresponding databases

are updated at the Broker and the RRij values are updated at the CSPs. This

complete flow is summarized in Figure 3.1.

Figure 3.1: Flow Diagram for Incentive-based Scheme

1We normalize the price offers by various CSPs to make sure that the values lies between 0
and 1, with 1 being the highest price offered

32

Table 3.1: Incentive Scheme: Dynamic Pricing for CSPs
Condition New Price Offer

RRij > ERij Prtij = Prt−1
ij

RRij < ERij and Lj > ϕ Prtij = Prt−1
ij +∆

RRij < ERij and Lj < ϕ Prtij = Prt−1
ij −∆

3.3.1 Dynamic Pricing strategies for CSPs

In this scheme, CSPs use return ratio (RRij) to alter the price offers. In a

practical scenario, the CSPs can consider any other parameters relevant to them

for altering the price. If RRij > ERij , it implies that user Ci has been getting its

jobs serviced by Pj more often than the expected average number of times and

is a loyal customer. Hence Pj continues to offer the same price per resource Prij

to Ci. The offer price Xij is calculated as (Di × Prij), where Di is the unit cost

per resource for user Ci.

On the other hand, if RRij < ERij , there are two possible scenarios depending

on the current load Lj for Pj at time t. If Lj > ϕ, (ϕ is some threshold value for

the load in a CSP) it implies that Pj is popular with majority of the users and

increases Prij for Ci linearly by a small fixed amount ∆. If Lj < ϕ, it indicates

a low popularity of Pj with the majority of users. So the CSP tries to recover by

lowering its Prij for Ci linearly by a small amount ∆, in an attempt to increase

RRij and attract more users. Note that Prij can not be lowered beyond a floor

value. This is attributed to the fact that CSPs will not offer services which results

in monetary loss for them.

33

3.3.2 Handling Security aspects by CSP

We define the weighted average Hj of the system security of CSP Pj as the

weighted average of independent system security values Zij from all users and

can be calculated as follows:

Hj =

∑N
i=1(χi × Zij)

N
(3.3)

The calculation of Hj takes into account the reliability of each user and their

individual security value for the CSP Pj calculated by the user. It means that

reviews submitted by reliable users are given more consideration compared to the

reviews submitted by unreliable users. Initial value for the security index Zij for

various CSPs can be calculated based on evaluating various security features sup-

ported by the corresponding CSPs. It can be calculated by using an assessment

model to prioritize user’s business systems and services for Cloud adoption [58].

Each time, user updates the security index as:

Zij = η(Zij) + (1− η)(Hj) (3.4)

such that η ≥ 0

The value of η indicates the level of importance that the user gives to its own

perception and the weighted average of fellow users’ perceptions in the system.

CSPs can modify their security features anytime by knowing user’s perception of

its security features by using the values of Hj from Broker’s databases.

34

3.4 Auction-basedMultiple-Cloud Orchestration

Mechanism

In this section, we describe a Multiple-Cloud orchestration mechanism based on

auctions. A classification of classic auction types are summarized in Figure 3.2

[2]. (A detailed overview of various auction types can be found in [59].) We

employ sealed-bid Continuous Double Auction (CDA) in our model. In a CDA,

both sellers and buyers submit their bid information to a third-party mediator

(The Broker in our case). Sellers submit their price offers, buyers submit their

bid-values and the mediator decides the winner(s) by matching these two values.

The choice of bids reflect the user’s strategic attempts to manipulate the selling

price.

In our Auction-based Multiple-Cloud Orchestration mechanism, users submit a

Figure 3.2: A classification of classic auction types [2]

user bid price for a resource, number of resources required and the desired CSP id

to the Broker. The desired CSP Pj is selected by user Ci using the user’s utility

35

function:

Uij = αTij + βRij (3.5)

such that α + β = 1; α, β ≥ 0

Here, Tij is the trust value, Rij is the reputation index and α and β are the

weighing factors. The definition and calculation of Tij and Rij are described later

in this section. Users obtain the required CSP information (such as reliability

index) from the Broker prior to the calculation of the utility function. The Broker

also maintains the minimum acceptable price offered by all the CSPs for the same

resource in its price manager module. Using this information, the Broker can

select the user bid which is the smallest value above the minimum value, as the

winning bid for the auction. This complete flow is summarized in Figure 3.3.

Figure 3.3: Flow Diagram for Auction-based Scheme

36

3.4.1 Pricing strategies for CSPs and Users

The CSPs learn market demand using the auctioning process through the Broker

and alter their prices accordingly. The process of deciding prices is carried out

at the beginning of every auction. CSPs keep track of the number of auctions

in which they have not been picked. If this value exceeds a certain number, the

CSPs attempt to put an end to the dry spell by lowering their offer price. If the

CSPs have been picked, they raise their prices in the next auction. In order to

facilitate this process, CSPs keep track of the Average Winning Price. Whenever

the winning price is updated in the Price Manager module in the Broker, the

CSPs modify their Average Winning Price to keep it up to date.

Meanwhile, users use this scheme and locate the vicinity of the minimum bid

price. Users who mistakenly over-bid learn from the process and bid lesser in

the next time (as the immediate previous winning bid is always available in the

Broker). Apart from helping the users to reduce expenditure, this scheme also

ensures that other users are protected from an unreasonable inflation of prices

in the ecosystem. Users who mistakenly under-bid learn from the process and

raise their bids in order to win the next time. Thus, the auction process creates

a win-win situation to both CSPs and users in the system.

3.4.2 Calculation of Reputation by the Broker

Users select the desirable CSP using the Reputation index maintained by the Op-

erations Monitor module of the Broker. Mathematically, the Reputation value is

a combination of the performance reviews submitted by the users at the end of

each auction and the minimum bid values submitted by the CSPs. The Reputa-

37

tion index Rij for a CSP Pj after K auctions can be calculated as:

Rij =

∑K
k=1

∑N
i=1 Y

k
ijχ

k
i

N

k
+

1

minXij
(3.6)

where first term is the average value of the product of the feedback submitted by

the users about a particular CSP under consideration and the reliability index of

those users calculated for the last K auctions. It means that reviews submitted

by reliable users are given more consideration compared to the reviews submitted

by unreliable users. The second parameter is the inverse of the minimum bid

value from K auctions submitted by the corresponding CSP. If a CSP believes

that its performance is rendering its reputation value too low, it can increase its

reputation by lowering the prices upto some extent.

3.4.3 Calculation of Trust by the User

In addition to the reputation index, a Trust value (Tij) is calculated by the users

for each CSP. After each auction, Tij is computed by Ci for Pj using the following

relationship:

Tij =

∑K
k=1 Yij
k

(3.7)

Tij is the average value of Ci’s affinity index to Pj for past k auctions for the same

user. The users do not communicate this value between each other (assuming

sealed-bid double auction). Further, Tij is strictly a function of the feedback by

individual users observed at the end of the auction.

38

3.5 Belief-based Game-theoretic Model for User

Reliability

In order to enforce truthful feedback by the users after each auction, the Opera-

tions Monitor module of the Broker maintains a reliability index χt
i for each user

Ci. Users are not aware of the reliability value assigned to them by the Broker.

In each auction, the average performance of a particular CSP is calculated. If a

user reports a performance value that is different from the average value beyond

a threshold value, that user’s review is viewed as a special case. If this user con-

sistently submits such reviews, that user’s reliability is lowered.

We update the reliability value in the Operations Monitor based on imperfect

private monitoring (using belief-based non-cooperative repeated games) [60]. Let

c be correct feedback1 submitted by the user and d be the defective feedback sub-

mitted by the user at time t. Further assume z ∈ [0, 1] to be a very small value

indicating the noise in the observed feedback. A noise in this case shall be the

number of extra chances that the user gets before the user has been marked as a

completely unreliable user. Small value of noise (closer to 0) indicates more extra

chances given to users to correct themselves and high value of noise (closer to 1)

means Broker gives lesser number of chances to the user when defective feedback

is submitted and marks the user as unreliable quickly. Then, Broker updates the

value of χt
i : [0, 1] → [0, 1] after each iteration [60] based on the feedback received

from the users. When a correct feedback c is received, χt
i can be calculated as

1In a correct feedback, the performance value reported by the user will not deviate from the
average performance value calculated by the Broker above a threshold value θ. Otherwise, the
feedback will be considered as a defective feedback.

39

Figure 3.4: The state transition diagram for calculating the reliability index

[60]:

χt
i =

χt−1
i (1− z)

χt−1
i (1− z) + z(1 − χt−1

i)
(3.8)

and when a defective feedback d is received, χt
i is:

χt
i =

χt−1
i z

χt−1
i z + (1− z)(1 − χt−1

i)
(3.9)

We can observe that, if the initial value of χt
i is 1, then χ

t
i will be close to 1 as

long as a user submits correct feedback (following Eq. 3.8). If the user submits a

defective feedback, his reliability index χt
i will go down based on the calculation of

Eq. 3.9. The calculation of χt
i can be represented using a state transition diagram

as illustrated in Figure 3.4. In the state diagram, χ1 is the reliability value for a

user who always submits correct feedback. When the reliability index goes below

a threshold θ, the user reliability index becomes χm and that user is marked as an

unreliable user. Thus we can observe that χ1 > χ2 > χ3 > ... > χm−1 > θ > χm.

3.6 Performance Evaluation

In this section, we conduct extensive performance evaluation studies to analyze

the Revenue obtained by the CSPs and the Expenditure incurred by the users,

40

in our schemes. We consider the following cases as most important issues to be

validated via performance evaluation studies in the context of our study:

• Comparison of the revenues obtained in various cases

• Effect of user preferences in the utility function

• Effect of CSP preferences in the CSP revenue

• User migration between Auction based and Incentive based models

• Cloud market offering multiple services

The performance evaluation parameters are summarized in Table 3.2.

Table 3.2: General performance evaluation parameters
COMMON PARAMETERS

Number of users 1000
Number of CSPs 10

Number of iterations 50000
Minimum Price 50
Maximum price 70

Plot value iteration Every 10000
Threshold value for load in CSP (ϕ) 0.5

3.6.1 Comparison of the revenues obtained in various cases

Initially, we conduct experiments to study the revenue obtained by the CSPs

in a variety of situations. We consider various budget requirements by users in

Auction-based scheme. We define a metric Hit-ratio as the ratio of the number

of successful auctions (As) to the total number of auctions (At). Mathematically,

Hit Ratio = As

At
. As the users increase their minimum bid value, the hit-ratio also

increase. We also consider the revenue obtained in Incentive-based scheme and

41

the original scheme (A scheme without the presence of a Broker). All parameters

in the utility function are given equal weightage in both schemes and the results

are plotted in Figure 3.5.

We can observe that both Incentive-based and Auction-based schemes result in

a fair revenue for all CSPs offering same resources compared to the traditional

Cloud system without Broker. This is further corroborated by Jain’s fairness

index1 [61] plotted for the revenue obtained by the CSPs, in Figure 3.6. We

calculate Jain’s fairness index as:

F (I1, I2, ..., IN) =
(
∑N

j=1 Ij)
2

N.
∑N

j=1 I
2
j

(3.10)

where, Ij is the gross income for CSP Pj. We can see that fairness index is close

1This index rates the fairness of a set of values. In our model, we calculate this index in
choosing various CSPs by the users. A value close to 1 indicates that the system treats all CSPs
fairly.

Figure 3.5: Comparison of revenue obtained in different cases

42

Figure 3.6: Jain’s Fairness Index

to unity in both models. Further, we can observe that, in the scheme without

Broker, users have limited knowledge about CSPs. They only have their own

perception about CSPs and they make decision. Hence, some CSPs are chosen

more often compared to others. With our model in place, users can choose the

best CSP which matches all their requirements such as budget, security features,

reputation etc. When the minimum budget is set to be the same in all models,

Incentive-based model results in a higher Revenue for CSPs whereas Auction-

based model results in about half of that (Auction-based with hit-ratio=0.5 in

Figure 3.5). This is because, in Auction-based model, some of the auctions are

not successful because of the higher bid price quoted by the CSP as compared

to user’s budget specifications. When users are willing to pay more, the hit ratio

also increases and finally achieves a hit ratio of 1 where, the revenue achieved by

the CSPs are comparable to other models.

43

3.6.2 Effect of user preferences in the utility function

Figure 3.7: Effect of user preferences in Incentive-Based model

Figure 3.8: Effect of user preferences in Auction-Based model

Now, we analyze the effect of user’s preferences in their utility function in

44

choosing the CSPs. For this purpose, we vary various weightage values in Equa-

tions (3.2) and (3.5) for Incentive-based and Auction-based mechanisms respec-

tively and the results are plotted in Figures 3.7 and 3.8 respectively.

We can observe that, when the users give equal weightage to all parameters in

the utility function, the CSPs are treated fairly and they obtain a fair amount

of revenue. Whereas when the users give more importance to only trust and

reputation (in Auction-based scheme) or only security index or affinity index

(in Incentive-based scheme), the total revenue obtained by different CSPs vary.

This is because some CSPs have a higher value for these parameters compared

to others. For example, in Figure 3.8, CSP 1 and CSP 10 obtain a large revenue

compared to other CSPs when α = 0 and β = 1. This is because, these two CSPs

maintain higher reputation values compared to others.

3.6.3 Effect of CSP preferences to participate in the pro-

posed schemes

In this subsection, we analyze the effect of CSP preferences to participate in the

two proposed schemes. Initially all CSPs participate in the proposed schemes

and later after 25000 iterations, 5 CSPs decided to leave the system and function

independently. The revenue obtained by CSPs for Auction-based and Incentive-

based schemes for 50000 iterations are plotted in Figures 3.9 and 3.10 respectively.

Some users based on their individual perception, choose one of these independent

CSPs whereas other users choose one of the CSPs participating in the proposed

Broker-based mechanism based on the utility function. We can observe that those

CSPs who continue to participate in the Broker-based scheme achieves a higher

45

Figure 3.9: Effect of CSP preferences in Auction-Based model

revenue compared to those who leave the system. Further, CSPs participating in

the Broker-based scheme obtain higher revenue as more users started choosing

them based on the collective information obtained through the Broker.

Figure 3.10: Effect of CSP preferences in Incentive-Based model

46

3.6.4 User migration between the proposed schemes

Figure 3.11: Migration from Auction-Based to Incentive-Based

Figure 3.12: Migration from Incentive-Based to Auction-Based

Now we conduct experiments to analyze the average user expenditure when

47

some users migrate from Auction-Based model to Incentive-Based model and

vice-versa. We conduct the performance evaluation for 10, 000 iterations with

100 users, and 50 users are migrated from one scheme to the other after 2500

iterations. These users have the knowledge about the whole system with respect

to their parent scheme and now they choose the required CSP based on this his-

toric information.

The user expenditure for migration from Auction-Based to Incentive-Based scheme

(for one loyal user1 and one not-loyal user chosen randomly) is plotted in Figure

3.11. A loyal user has less expenditure compared to a not-loyal user after few

iterations. This is because, when a user is loyal, the CSP reduces or does not

change its offer price for this user whereas if a user is not loyal, the CSP offers

same or higher price compared to past offer price.

The user expenditure for migration from Incentive-Based to Auction-Based scheme

is plotted in Figure 3.12. Comparing Figures 3.11 and 3.12, we see that initial

expenditure is higher in Incentive-based scheme because the user has no op-

tion to specify a minimum budget requirement. When these users migrate to

Auction-based scheme, both loyal and not-loyal users show similar trend in their

expenditure as evident from Figure 3.12 and their expenditure converge after few

iterations. This is due to the fact that, Auction-Based model treats all users (new

or existing) in the same way. Further, winner of the bid and the winning price

are decided by the Broker. Moreover the loyal-user has higher cumulative expen-

diture after few iterations because the user comes more often and uses resources

for more time compared to non-loyal user and hence incurs higher monitory ex-

1A user is considered as a loyal user if he/she uses the same CSP very often for longer time

48

Table 3.3: Capability Management Database in the Broker
CSP-id Services offered
CSP 1 Compute
CSP 2 Storage
CSP 3 Data
CSP 4 Compute, Storage
CSP 5 Storage, Data
CSP 6 Compute. Data
CSP 7 Compute, Storage, Data
CSP 8 Storage
CSP 9 Storage, Data
CSP 10 Compute

penses.

To summarize, if a user is loyal, and f a user wants to use the Cloud services

more often, then it is better for him to follow Incentive-based scheme. Whereas if

a user uses Cloud services infrequently, then the user may prefer Auction-based

model. Further, in Incentive-based model, users can not specify their minimum

budget and they choose the CSP who maximize his utility function. Whereas in

Auction-based model, the users may reject some auctions, if the offered price is

more than their bid price.

3.6.5 Cloud market offering multiple services

In real-world, CSPs often offer many kinds of services such as SaaS, PaaS and

IaaS as discussed in Chapter 1. In order to demonstrate that our models can

seamlessly incorporate CSPs offering multiple resources and users having diverse

resource requirements, we consider CSPs offering up to three different services,

Compute, Storage and Data1 for the experiments in this section. The services

offered by 10 different CSPs which are maintained by the Capability Management

1These services are chosen based on the services offered by Amazon Web Services (AWS)
[12].

49

module, are summarized in Table 3.3. We also assume that users specify any of

these services based on their requirements (which follows uniform distribution)

when they submit the task. Here, the Broker sends the user requests to a subset

of CSPs based on the type of services they offer.

Further, in the experiments, compute was requested more often compared to

storage and data. So in the experiment, CSP 1 and 10 offers compute and generate

higher revenue with respect to CSP 2 and CSP 8 which offers storage alone or

CSP 3 which offers data alone. Due to the same reason, CSP 1 and 10 gets higher

revenue compared CSP 5 which offers storage and data. Also note that, CSP 4

and CSP 6 generate higher revenue compared to CSP 1 because CSP 4 and CSP

6 offers two types of resources in which one type is compute resource. We conduct

the experiments for 1000 iterations with 100 users and the results are plotted in

Figure 3.13. We can observe that, CSPs offering multiple services obtain more

Figure 3.13: Revenue obtained when CSPs offer different products

50

revenue compared to CSPs offering single service. This is because they get more

opportunities based on user requests. Further, it is interesting to note that CSPs

offering same types of resources are treated fairly by both models. For example,

CSP 5 and 9 (offering Storage and Data) gets similar revenues. This analysis

reveals that our schemes can seamlessly handle CSPs offering multiple types of

services and users with diverse requirements.

3.6.6 Remarks

• If CSPs offer multiple products/services, Broker can selectively handle user

requests with a subset of appropriate CSPs without making any additional

changes in the current schemes

• Our schemes can also seamlessly handle influx of new CSPs and users with-

out affecting the existing market.

• It is interesting to note that users who use the Cloud services for a long time

may prefer Incentive-based mechanism due to lower offered prices for the

loyal customers and guaranteed win in single iteration. Whereas Auction-

based scheme lowers user expenditure at the expense of response-time for

choosing appropriate CSP (refer Figures 3.11 and 3.12).

• We can observe that the current Broker architecture already offers few light

intermediation services such as maintaining security, reliability and reputa-

tion indices and market price information etc. More Cloud Broker Inter-

mediation services can also be added for our schemes through the Broker

very easily.

51

3.7 Chapter Summary

In this chapter, we proposed two schemes using incentives and continuous double

auctions to connect users and CSPs through a Broker. The Broker maintains

necessary information aiding the CSPs to offer attractive dynamic pricing poli-

cies to the users and, aiding users to choose appropriate CSP based on their re-

quirements. Later we showed the effectiveness of our schemes through extensive

performance evaluation studies and proved that our schemes give a fair treatment

to all CSPs under certain conditions and always forces users and CSPs to reveal

truthful information. Further, we showed the effect of user migration from one

scheme to the other. We also showed the suitability of our schemes for different

types of users, i.e. if a user wants to use the Cloud services more often, then it

is better for him to follow Incentive-based scheme. Whereas if a user uses Cloud

services infrequently, then the user may prefer Auction-based model. Finally, we

showed that our schemes can seamlessly handle CSPs offering multiple types of

resources and users having diverse requirements.

52

Chapter 4

Risk-aware Multiple Cloud

Orchestration Mechanism

4.1 Introduction

In the last chapter, we described two Cloud Broker Arbitrage mechanisms one

based on incentives and another one based on sealed-bid double auctions which

can take into account various requirements such as budget requirements, trust,

reputation etc. In this chapter, we model the utility function using the principles

of Von Neumann-Morgenstern utility theorem (VNM-UT) [62] which can effec-

tively handle user’s risk bias towards the selection of appropriate CSPs based

on their trust and reputation values. Similar to the other two Broker arbitrage

mechanisms, this scheme also enables CSPs to adapt to market conditions to offer

dynamic pricing strategies based on their history as well as the current market

situation.

53

4.2 The Proposed Risk-based Cloud Broker Ar-

bitrage Mechanism

Similar to the two models we have described in Chapter 3, users and CSPs are

connected using a Broker (based on the Broker architecture described in Chapter

2) in this scheme as well. Users submit a job request to the Broker and Broker

forwards this request details to all CSPs connected to it. CSPs send back the

price offers to the user through the Broker. User has a utility function which is

based on various parameters such as trust, risk bias and the cost involved. User

chooses one CSP which maximizes its utility. Without any loss of generality,

we assume that all CSPs have similar capabilities and are able to service any

incoming job request. Later we show that, if CSPs offer multiple services, our

scheme can handle it seamlessly. This complete flow is summarized in Figure 4.1.

Figure 4.1: Flow Diagram for Risk-based Scheme

54

4.2.1 Formulation of Trust Function

A user makes use of a trust mechanism in which he/she calculates the trust using

a reference scheme. A particular user uses the trust information from some of

the other users to calculate its updated trust index (also called as Credit Rating)

for each CSP. We propose two ways to calculate this rating. One based on trust

without reference and the other one based on trust with reference.

Trust without Reference or local Trust is an accumulative value of job rating. To

calculate Trust with Reference, user needs to select some users as reference users.

In order to make sure that the selected reference users are not malicious, the

user should have a rating for the reference users, which is referred to as Reference

Credit RC in our system. With Reference Credit and local Trust, we can calculate

Trust with Reference, which is used in the calculation of utility function.

Job Rating

After each transaction, user Ci who sends the request needs to rate the chosen

CSP Pj’s performance. The rating can be ranked according to user’s expectations

and is subjective. Some of the main factors in providing the rating could be,

meeting task deadline, adherence to Service Level Agreement (SLA) specifications

etc. In this chapter, we use JRi,j)
n ∈ [0, 1] to represent user Ci ’s Job Rating to

CSP Pj in the nth transaction.

55

Local Trust

In our system, Local Trust (i.e. Trust without Reference or Job Rating) of user i

to CSP j for all past transactions without reference is given by [63]:

TRi,j =

∑f
n=1 α

nJRn
i,j

∑f
n=1 α

n
∈ [0, 1] (4.1)

where, f is the total number of past iterations considered in calculating the trust.

It totally depends on the job Rating of all the past f transactions between User Ci

itself and CSP Pj. In the above equation, n = 1 denotes the latest transaction and

αn in the equation means that transactions happened recently are given higher

importance compared to transactions in the distant past. α is the decaying factor

(0 < α ≤ 1) and it determines the importance of the most recent transaction to

the local trust.

Reference Credit

If a user Ci has never performed any transactions with CSP Pj in the past, it is

necessary to have some other users’ evaluation results as reference. It also helps

the user to avoid bias judgement and to give more trustworthy evaluation of the

CSP. However, it is necessary to rate the reference user γ so that the user can

find the most appropriate reference user and avoid any malicious reference users.

After nth transaction, user Ci will compare its own job rating JRi,j)
n to the

offered trust TRr,j) of reference user γ and rate the reference user γ accordingly

as:

RCn
i,γ = 1− |JRn

i,j − TRγ,j | (4.2)

56

Here, a value close to 1 means user Ci gives user j a better rating. User Ci’s

Reference Credit (RCn
i,γ) to user γ will be accumulated to calculate an overall

rating RCi,γ and it shows the trustworthiness of reference user γ according to user

Ci. This value will be used in the calculation of Trust with Reference. β ∈ (0, 1]

is a decaying factor and it indicates the importance of most recent transaction

to the credit of reference γ in user Ci’s evaluation. Credit rating of user i to

reference γ for all the reference actions is given by [63]:

RCi,γ =

∑f
n=1 β

nRCn
i,j

∑f
n=1 β

n
(4.3)

Trust with reference

With both the local trust of user Ci to CSP Pj and the total value of f reference

user’s local trust to CSP Pj, we define Trust with Reference as [63]:

TRr
i,j =

TRi,j +
∑f

n=1RC
n
i,γTRγ,j

1 +
∑f

n=1RC
n
i,γ

(4.4)

The local trust TRi,j of user Ci to CSP Pj is completely taken into account in

the definition. The product of local trust TRγ,j of reference user γ to CSP Pj

and the Reference Credit RCi,γ is used in the calculation of utility function

4.2.2 Formulation of User’s Utility Function

We model the expected utility function using the principles of Von Neumann-

Morgenstern utility theorem (VNM-UT) [62]. Let G be the set of all gambles (in

our case, it is the set of CSPs in the market). Then a utility function formulated

based on VNM-UT, satisfies the following axioms ([64], [62]):

57

• Completeness: If g, g′ ∈ G, then either g � g′ or g′ � g.

• Transitivity: For any three gambles g, g′, g′′ ∈ G, if g � g′ and g′ � g′′,

then g � g′′.

• Continuity: For any three gambles g, g′, g′′ ∈ G such that, g � g′ � g′′,

then there exists some ̟ ∈ [0, 1] such that ̟g + (1−̟)g′′ ∼ g′.

• Independence: For any three gambles g, g′, g′′ ∈ G and ̟ ∈ [0, 1], then

g � g′ ⇔ ̟g + (1−̟)g′′ � ̟g′ + (1−̟)g′′.

Below we attempt to explain the physical significance of the above axioms. The

completeness axiom says that, users have preference over all gambles and can

rank them all. The Transitivity axiom says that, if g is preferred (or indifferent)

to g′, and g′ is preferred (or indifferent) to g′′, then g is preferred (or indifferent)

to g′′. An implication of the continuity axiom is that if g is preferred to g′, then

a gamble close to g (a short distance away in the direction of g′′ for instance) is

still preferred to g′. Finally, independence axiom says that, if users are indifferent

between two possible outcomes, then they are indifferent between two gambles

which offer them with equal probabilities, if the gambles are identical in every

other way.

VNM-UT is widely used in literature ([65], [66], [67]) for modeling expected

utility under various situations especially because, it can take into account user’s

risk-bias. In general, we can categorize users into risk-averse, risk-neutral or risk-

seeking [64]. Risk-Averse users are reluctant to accept an offer with an uncertain

payoff compared to an offer with a more certain, but possibly lower payoff. On

the other hand, a risk seeking user prefers to take risk. Users who do not fall into

58

Table 4.1: Different types of users

User type v(TRr
i,j) r(TRr

i,j)

Risk averse Concave r(TRr
i,j) > 0

Risk neutral Linear r(TRr
i,j) = 0

Risk seeking Convex r(TRr
i,j) < 0

either of these categories are risk neutral users.

Let V (TRr
i,j) be a utility function following VNM-UT. A more concave nature of

V (TRr
i,j) implies more risk-aware users [62]. We can measure this mathematically

using Arrow-Pratt measure of risk aversion r(TRr
i,j). Mathematically,

r(TRr
i,j) = −

V ′(TRr
i,j)

V ”(TRr
i,j)

(4.5)

The nature of V (TRr
i,j) and the range of values for r(TRr

i,j) are summarized in

Table 4.1. The utility function [67] can be defined as:

V (TRr
i,j) =

1− e−λTRr
i,j

1− e−λ
;TRr

i,j ∈ [0, 1], λ > 0 (4.6)

Then,

V ′(TRr
i,j) =

λe−λTRr
i,j

1− e−λ
> 0 (4.7)

,

V ′′(TRr
i,j) =

−λ2e−λTRr
i,j

1− e−λ
< 0 (4.8)

and

r(TRr
i,j) = λ > 0 (4.9)

59

The explicit cost by the user with respect to each CSP can be expressed as:

Ec =
Pt

B
(4.10)

where Pt is the price offered at time t and B is the budget specified by the user.

Combining Equations (4.6) and (4.10), we formulate the final utility function for

the user as:

U(TRr
i,j) =

1− e−λTRr
i,j

1− e−λ
.
1

Ec
(4.11)

Substituting the value of TRr
i,j and Ec from Equations (4.4) and (4.10) in (4.12),

we get:

U(TRr
i,j) =

1− e
−λ(

TRi,j+
∑f

n=1 RCn
i,γTRγ,j

1+
∑f

n=1 RCn
i,γ

)

1− e−λ
.
B

Pt
(4.12)

The utility function can take into account risk, trust and cost parameters and

the user chooses the CSP which maximizes the expected utility value.

4.2.3 Dynamic Pricing Strategies

In this section, we describe the formulation of dynamic pricing strategies for

CSPs based on acceptance rate. We formulate the dynamic pricing model based

on several factors such as the price offered in the last transaction, current market

price maintained by the Broker and the acceptance rate of the CSP. Price offered

at time t is given by:

Pt = Pt−1 + (At − Athr)(ξPt−1 + (1− ξ)Qt−1) 0 ≤ ξ ≤ 1 (4.13)

60

where, Pt−1 is the price offered in the last transaction, At is the acceptance rate

of this CSP at time t, Athr is the expected acceptance rate of CSP, Qt−1 is the

market price for this resource (i.e. average price of other CSPs offered this at

time t−1) obtained from the Broker and ξ is the weighing parameter. The actual

acceptance rate for a CSP at time t is given by:

At =

∑t
m=t0

Sm
∑t

m=t0
Om

(4.14)

where, S(m) is the total resources sold from time t0 till time t and O(m) is the

total resources offered from time t0 till time t.

The CSP adjusts its price around the price it offered the last time to this user

and the average price offered by all the CSPs Qt−1 according to the supply and

demand of its offered resources. If At > Athr, it means the CSP’s offerings have

been accepted adequately and it can choose to increase its price. If At < Athr, it

means the CSP’s have been rejected too much and it should consider to reduce

its price to win more users. ξ is the parameter indicating how much the CSP

want to refer to its own price or the average price offered by all the users in last

transaction.

4.3 Performance Evaluation

4.3.1 Simulation Setup

In this section, we conduct extensive performance evaluation studies to analyze

the effectiveness of the proposed multiple Cloud orchestration mechanism. In our

61

simulation setup, there are 10 CSPs and 1000 users. 50, 000 requests are sent

to the broker in each run. Table 4.2 summarizes values for various parameters

used in our first set of performance evaluation experiments. Now, we describe the

initialization of price and credit rating values and explain the rationale behind

this initialization.

Table 4.2: General simulation parameters
Parameter Values

Number of requests 50,000
Number of CSPs 10
Number of Users 1,000

Budget range of Users [38, 140]

Initial values for price offers by various CSPs

In order to perform a realistic performance analysis of our model with a real Cloud

environment, we use initial offered price of 10 CSPs from publicly available data

[5]. We choose 10 CSPs who offer resources with same specifications (Table 4.3

summarizes the resource specifications of various CSPs) and use their price offers

to initialize the price offers in our model. Table 4.4 specifies the initial price

values of these 10 CSPs.

Table 4.3: Resource specifications of CSPs [5]
Resource Specifications
RAM 8 GB
Storage 50 TB

CPU Power 5x
OS Windows

62

Table 4.4: Initial price offers by various CSPs [5]
CSP id CSP Monthly Price (in dollars)

1 Bit refinery 38
2 CloudSigma 49
3 aTLanTIC.ner 45
4 OpSource 78
5 VPS NET 98
6 GoGRID 140
7 terremark 46
8 JoyentCloud 61
9 dediserve 112
10 AWS 123

Choice of values for Initial Credit Rating

Initially, we randomly generate 10 random values as the base credit for each of

the CSP. Then, we generate the credit value of each user to each CSP based on

the base credit. The generated credit value of each user to certain CSP is within

20% of the base credit of the CSP.

4.3.2 Effect of Dynamic Credit with static price

First we analyze the effect of our credit system. Keeping the price static, we

repeat the experiments for static credit and dynamic credit and the results are

plotted in Figure 4.2. In the case of dynamic credit, the trust (or credit rating)

for CSPs by users changes with time based on their interaction and every time

users use updated credit values in calculating the utility function.

Case 1: Static Credit: None of the users change their Credit Rating for the

CSPs. From Figure 4.2, we can observe that, with static credit, only CSP1 and

CSP3 are always chosen by the users.

Case 2: Dynamic Credit: In this case, CSP2 changes its trust features every

63

500 iterations until the credit reaches 0.9 and hence all users provide a higher

credit rating to CSP2 by a small value. We can observe from Figure 4.2 that

CSP2 obtains considerable gain in revenue by improving its credit rating obtained

from the users.

Figure 4.2: Effect of dynamic credit on CSP revenue

4.3.3 Effect of Dynamic Credit with dynamic pricing strate-

gies

In this section, we conduct experiments to analyze the effect of dynamic credit

with dynamic pricing strategies. As defined earlier, the credit rating of various

users to certain CSP is around the base credit of the CSP. To show the effect of

different credit, two credit settings are generated. In the first credit setting, base

credits falls within the set [0.2, 0.9] (case 1) and in the second credit setting, base

credits are generated from the set [0.6, 0.8] (case 2). Further, keeping the values

of other parameters the same, dynamic pricing strategy is applied. In order to

show the effect of credit, we change the price in a relatively large interval (Every

100 interactions). Simulation parameters used for the experiments in this section

64

are summarized in Table 4.5 and individual base credit values for various CSPs

are summarized in Table 4.6. The results obtained in case 1 and case 2 are plotted

in Figures 4.3 and 4.4, respectively.

5 Credit Ratings of CSP 1 is entirely different in two settings and we take this as

Table 4.5: Simulation parameters for Section 4.3.3
Parameter Values

Number of requests 1,000
Number of CSPs 5
Number of Users 10
Minimum Budget 45
Maximum Budget 60
Minimum Price 40
Maximum Price 60

Table 4.6: Credit Setting 1
CSP id Base Credit (case 1) Base Credit (case 2)

1 0.217241 0.751348
2 0.746005 0.68454
3 0.487929 0.659554
4 0.758531 0.730438
5 0.761890 0.677734

a representative example to discuss our observations. In Figure 4.3, CSP1 does

not generate revenue for first 500 interactions while in Figure 4.4, CSP1 begins

to generate revenue immediately after 100 interactions and obtains relatively

constant revenue after that. Further, we can observe that as all CSPs change

their dynamic credit and price with time, they all obtain same cumulative revenue

at the end of the experiments.

This reveals that if some CSPs have less credit rating (i.e. users do not trust them

due to some reasons), by improving their trust features, they can get a higher

rating among the users and hence obtain a higher revenue. In the absence of a

Broker, it is difficult to adapt to market conditions such as changing the price

65

Figure 4.3: Effect of dynamic credit on CSP revenue for Setting 1

offers based on market price and improving the trust features to improve user

credibility.

4.3.4 Analysis of Revenue for static and dynamic pricing

cases

Now we analyze the effect of dynamic pricing strategies on the revenue of CSPs

and compare it with the static pricing scenario. We set the risk parameter λ to

1 for all cases wherever it is applicable. The job rating of each user to each CSP

is set to be varying within 20% of its initial credit. In case of dynamic pricing

mechanism, we consider two cases with ξ = 1 (price offered depends only on the

price offered by the same CSP in past) and ξ = 0 (price offered is changed based

on both its past price and the current market price) and we also set the desired

66

Figure 4.4: Effect of dynamic credit on CSP revenue for setting 2

acceptance rate for all CSPs to 0.1 for comparison purposes. We also compare

the performance of the proposed schemes with current Cloud market wherein the

CSPs are chosen according to user’s own perception without any Broker. We term

it as Random in our experiments. The results for total revenue and acceptance

rate are plotted in Figures 4.5 and 4.6 respectively.

We can observe from the results that when CSPs offer static prices, only two

out of 10 CSPs, which offers the least price are chosen every time and hence only

two CSPs get the revenue. It shows that if a CSP can not respond to the market

quickly, it can be an unfavorable choice and may lead to economic loss. After

applying dynamic pricing strategy (in both cases), we can observe that all the

CSPs generate revenue and they are treated more fairly in the market. Further,

when ξ = 0, most of the CSPs generate higher revenue compared to the case with

67

Figure 4.5: Analysis of revenue in static and dynamic cases

ξ = 1. This reflects that, CSPs are able to effectively make use of the market

price information available in the Broker to increase their revenue and to adapt

to the market conditions.

Further, we use Jain’s fairness index to measure the fairness in revenue for 10

CSPs as done in Chapter 3. We record the total revenue obtained after every

10, 000 transaction for a total of 50, 000 transactions for different cases and the

results are plotted in Figure 4.7. We can observe that, fairness index is close

to 1 for our model with dynamic pricing strategies. In the beginning of the

simulation, the values are smaller, but as the time progresses, CSPs adapt to

market conditions by calculating and offering competitive prices and hence obtain

fair revenue for all CSPs. We can also observe that, our dynamic schemes treat

the CSPs fairly compared to the Random case where the CSPs are chosen by the

users based on their own perception and understanding.

68

Figure 4.6: Acceptance rate for various CSPs

4.3.5 Analysis of various dynamic pricing mechanisms

Our price formulation expressed by Equation 4.13 has a variable parameter ξ

which allows the CSPs to alter their price offer either based on its own past

price, based on the market price or based on both of them. Here, we conduct

experiments with ξ = 0, 0.5 and 1 and the results are plotted in Figures 4.8, 4.9

and 4.10 respectively. We conduct experiments for 50, 000 iterations and values

are plotted after every 5, 000 iterations. The results are plotted for only CSP1

as a representative example.

When ξ = 0, the price adjustment fully rely on the average price of all CSPs.

From Figure 4.8, we can observe that, CSP1’s offer price gets close to average

price of all CSPs very quickly. When ξ = 0.5, the price adjustment depends

on both CSP’s own price and all other CSP’s average price. From Figure 4.9,

we can observe that, CSP1’s offer price still gets close to average price of all

other CSPs but with a relatively low speed compared to the previous case. When

ξ = 1, CSP adjusts its price offers fully according to its own offered price in the

69

Figure 4.7: Analysis of Jain’s Fairness Index for CSPs

last interaction and the CSP does not make use of the market price information

available at the Broker. From Figure 4.10, it can be shown that CSP1’s price

does not get close to the average market price.

Figure 4.8: ξ = 0: Price adjustment only based on market price

70

Figure 4.9: ξ = 0.5: Price adjustment based on both market price as well as price
offered by same CSP in past iterations

Figure 4.10: ξ = 1: Price adjustment based on only the price offered by same
CSP in past iterations

4.3.6 Effect of Different settings of Expected Acceptance

Rate

In this section we analyze the effect of expected acceptance rate on the revenue

of CSPs for five different cases. Our simulation parameters are summarized in

Tables 4.7 and 4.8.

• Scenario 1: All CSPs set their desired job acceptance rate Athr = 0.2

71

Table 4.7: Simulation parameters for Section 4.3.6
Parameter Values

Number of requests 50,000
Number of CSPs 10
Number of Users 1000
Minimum Price 50
Maximum Price 70

Table 4.8: Base Credit, Initial Price and Acceptance Rate for 10 CSPs

CSP Base Credit Initial Acceptance Rate

id Price Scn1 Scn2 Scn3 Scn4 Scn5
1 0.764225 58 0.2 0.1 0.05 0.1 0.01
2 0.648288 64 0.2 0.1 0.05 0.1 0.05
3 0.778135 59 0.2 0.1 0.05 0.1 0.2
4 0.618787 64 0.2 0.1 0.05 0.15 0.2
5 0.639872 60 0.2 0.1 0.05 0.15 0.05
6 0.656864 64 0.2 0.1 0.05 0.15 0.15
7 0.768901 59 0.2 0.1 0.05 0.15 0.1
8 0.615769 62 0.2 0.1 0.05 0.2 0.1
9 0.606409 64 0.2 0.1 0.05 0.2 0.01
10 0.668191 59 0.2 0.1 0.05 0.2 0.15

(high) and the results are plotted in Figure 4.11. This is considered to be

high because when there are 10 CSPs, on average each CSP will be selected

with probability 0.1.

• Scenario 2: All CSPs set Athr = 0.1 (normal) and the results are plotted

in Figure 4.12.

• Scenario 3: All CSPs set Athr = 0.05 (low) and the results are plotted in

Figure 4.13.

• Scenario 4: CSPs have random values for Athr from the set {0.1, 0.15,

0.2} as summarized in Table 4.8 and the results are plotted in Figure 4.14.

• Scenario 5: CSPs have random values for Athr as summarized in Table

4.8 and the results are plotted in Figure 4.15.

72

Figure 4.11: Analysis of revenue for acceptance rate Athr = 0.2

Figure 4.12: Analysis of revenue for acceptance rate Athr = 0.1

When Athr = 0.2, all CSPs set the expected acceptance rate to be high and hence

the revenue obtained by the CSPs are based on the credit rating for the CSPs.

For example, CSP1, CSP3 and CSP7 have the highest credit rating and hence

get the highest revenue compared to other CSPs. Similarly, CSP4, CSP8 and

CSP9 have the least credit rating and hence obtain a lower revenue compared to

other CSPs. When Athr = 0.1, all CSPs set their Athr to be the normal expected

73

Figure 4.13: Analysis of revenue for acceptance rate Athr = 0.05

Figure 4.14: Analysis of revenue when acceptance rate Athr is random; Scenario
4

acceptance rate and hence obtain fair revenue. When Athr = 0.05, CSPs set

their Athr to be much lower compared to their average expected acceptance rate.

Hence, the revenue obtained is unpredictable and we can not expect this case in

a real market.

In reality, different CSPs may maintain different values for the expected accep-

74

Figure 4.15: Analysis of revenue when acceptance rate Athr is random; Scenario
5

tance rate. When Athr is random, those CSPs with higher credit ratings show

similar behavior whereas those CSPs (CSP 8 and CSP 9) with high Athr and low

credit rating show slight deviations in obtaining their revenue (Refer Figure 4.15.

This results from the pricing strategies because when the credit is less and Athr is

high, those CSPs reduce the price offers to attract more users until they get the

expected acceptance rate. We can also observe from Figure 4.15 that, for CSPs

with same high Athr (CSP3 and CSP4 in this example), the CSP with high

credit (CSP3) gets higher revenue compared to the other CSP. Finally, CSPs

with lower Athr obtain very low revenue as expected.

4.3.7 Effect of the frequency in changing the Price offers

In this section, we analyze the effect of the frequency in changing the price offers

on the revenue for different cases. In addition, we compare this values with the

75

Auction-based multiple Cloud Orchestration mechanism described in Chapter 31.

Values used for various simulation parameters are are summarized in Table 4.9.

Table 4.9: Simulation parameters for Section 4.3.7
Parameter Values

Number of requests 1,00,000
Number of CSPs 5
Number of Users 1000
Minimum Price 45
Maximum Price 55

Plot value iteration Every 10000

• Scenario 1: CSPs analyze the market conditions and change the price offer

every 10, 000 iterations. The results are plotted in Figure 4.16.

• Scenario 2: CSPs analyze the market conditions and change the price offer

every 1, 000 iterations. The results are plotted in Figure 4.17.

Figure 4.16: Effect of the frequency in changing the Price offers in revenue sce-
nario 1

1Pricing mechanism in Incentive-based scheme described in Chapter 3 is based on individual
user’s affinity to different CSPs and hence we can not compare that in this case.

76

Figure 4.17: Effect of the frequency in changing the Price offers in revenue sce-
nario 2

Figure 4.18: Revenue for auction based scheme proposed in Chapter 3

By comparing Figures 4.16 and 4.17, we can understand that when price offers

are altered more frequently (Figure 4.17), revenue of different CSPs increase in

a smooth manner and the revenue they generated are more fair compared to the

case when price offers are altered less frequently (Figure 4.16). In real case, it

77

depends on the CSP’s willingness. If the CSP is satisfied with its performance, it

can slow its adjustment with the market and vice versa. An important conclusion

from this study is that CSPs need not monitor and alter the price offer after every

iteration. Even if they alter the price offers periodically, they can still adapt to

the market conditions quickly.

In order to compare the performance of the present scheme with the Auction-

based multiple Cloud Orchestration mechanism described in Chapter 3, we il-

lustrate the relevant results in Figure 4.18. Compared to Figure 4.17, CSPs in

the present model generate more revenue. During the auction, CSPs’ revenues

are more fairly distributed. However, the present model is more flexible. As

discussed earlier, by changing CSPs’ expected acceptance rate, our model can

generate different revenues.

4.3.8 Comparison of different Broker arbitrage mecha-

nisms

In this section, we conduct experiments to compare the performance of the present

scheme to both auction based and incentive based schemes proposed in Chapter

3 using the simulation parameters described there. We also compare the results

with the model without Broker. We conduct experiments for the present model

with two cases one with lower budget requirements and the other one with higher

budget requirements specified by the users. We analyze the revenue obtained as

well as the Jain’s fairness index and the results are plotted in Figures 4.19 and

4.20, respectively.

We can observe that the present scheme generates revenues which is comparable

78

Figure 4.19: Comparison of revenue for various schemes

to the revenues generated by Auction-based and Incentive-based mechanisms for

various budget requirements specified by the user. Further, we can also observe

that, when the user has higher budget specifications, they are willing to pay more

for the resources and hence the CSPs generate higher revenue. CSPs obtain this

higher revenue because of the dynamic pricing strategies based on past transac-

tions as well as the market price obtained from Broker.

We can also observe that our scheme has comparable values for Jain’s fairness

index (close to unity) with respect to the other two cases. Further, even if some

of the CSPs generate lower revenue in the beginning, due to the market-based

dynamic pricing strategies, they are able to get a fair revenue after some time.

79

Figure 4.20: Comparison of Jain’s fairness index for various schemes

4.3.9 Cloud market offering multiple services

Figure 4.21: Revenue obtained when CSPs offer different products

In order to demonstrate that our scheme can seamlessly incorporate CSPs

offering multiple resources and users having diverse resource requirements, we

80

consider CSPs offering three different services, Compute, Storage and Data for the

experiments as described in Section 3.6.5 of Chapter 3. We conduct experiments

in this section for 1000 iterations with 100 users and the results obtained are

plotted in Figure 4.21. We can observe that, CSPs offering multiple services

obtain more revenue compared to CSPs offering a single service. This is because

they get more opportunities based on user requests. Further, it is interesting

to note that CSPs offering the same types of resources are treated fairly by

our scheme. For example, CSP 5 and 9 (offering Storage and Data) get similar

revenues. This analysis reveals that our scheme can seamlessly handle CSPs

offering multiple types of services and users with diverse resource requirements.

4.4 Chapter Summary

In this chapter, we proposed a risk-aware Cloud Broker Arbitrage mechanism to

connect various CSPs and users through a Broker-mediated system. We proposed

a mathematical model for the utility function for the users to choose appropriate

CSP from time to time and considered various user specific parameters such as

user’s risk-bias, trust and reputation of CSP, price offered by the CSP and user’s

budget requirements. Further, we formulated a function for the CSPs to make

dynamic price offers based on the last transactions, CSP’s expected and real

acceptance rates as well as the current market price.

Later we conducted extensive simulation studies and analyzed the effect of various

factors such as the effect of dynamic credit mechanism used in our model, various

dynamic pricing strategies that are supported by our system and the effect of

different system parameters in the CSP’s revenue. Finally, we also compared our

81

model with other models and showed that our scheme is effective under various

cases.

82

PART II: CLOUD

AGGREGATION

MECHANISMS

83

Chapter 5

Cooperative Game-theoretic

Approaches for Cloud

Aggregation

5.1 Introduction

In the first part of this thesis, we have described an architecture for a Cloud Broker

and discussed several Cloud Broker Arbitrage mechanisms to provide opportunis-

tic choices and competition among different CSPs. In the following chapters, we

describe two Cloud Broker Aggregation mechanisms for deploying user applica-

tions among multiple resources to meet certain customer requirements based on

the Broker architecture described in Chapter 3. We devise strategies for deploying

compute and data intensive applications such as Bag-of-Tasks (BoT) applications

and divisible load applications on IaaS Compute Cloud environments based on

user requirements. Note that Broker may be used for task aggregation within

84

one Cloud or across multiple Clouds based on the requirements imposed by the

user. For example, an organization may have a private Cloud within which they

may want to deploy the tasks with the help of a Broker. The Broker can also

aggregate tasks among multiple CSPs offering same or different types of resources

to meet some user objectives.

In this Chapter, we consider task aggregation in a private Compute Cloud (which

is equally applicable for aggregation among multiple CSPs having same types of

resources) running on a particular platform in which all computing resources have

identical characteristics. (eg: standard instances of Amazon EC2 running on IBM

Informix dynamic servers). Based on the requests received for the resource in-

stances, Broker needs to employ efficient strategies to allocate optimal number of

resources to achieve certain goal such as minimizing task execution time or max-

imizing revenue, which is beneficial to both CSPs and users. In our model, users

submit few parameters pertaining to the tasks such as task deadline or budget

requirements and the Broker calculates the optimal resource assignment.

The strategies described in this Chapter are suitable for scheduling both inde-

pendent tasks as well as workflow tasks. We employ bargaining approaches [68]

which are propounded in the literature [69] for devising our task aggregation

strategies. A price based non-cooperative bargaining theoretic model for a mobile

grid environment, has been discussed in [70]. A utility-based resource negotiation

approach for resource management in grid based content distribution network is

proposed in [71]. In [72], noncooperative alternating-offers bargaining game is

used for formulating a pricing strategy in distributed computing systems. All

these proposals emphasize on pricing and they require a few iterations to reach

85

the equilibrium.

In [73], the authors use Nash bargaining solutions for job allocation in a grid

environment. They assume that the grid providers can not handle the requests

themselves and hence different providers cooperate to guarantee Quality of Ser-

vice (QoS). For a Cloud environment, this may not be true. Further, the above

models are not capable of handling real-time task arrivals and fluctuations in user

requirements with time. A CSP has a huge free pool of resources available for

customers and it requires strategies to efficiently allocate the available resources

for tasks arriving to the Cloud. We consider this situation in our framework.

5.2 Cooperative Game-Theory Framework

We assume that the tasks to be executed in the Compute Cloud are known a

priori. This is a reasonable assumption for a Cloud because tasks to be executed

in Cloud are generally submitted well in advance and they usually have large

processing time (of the order of hours or days) [74]. Further, tasks within certain

applications such as compute-intensive workflow applications are known in ad-

vance. However, they may not know the exact amount of resources needed until

the run-time. Later we show that our models can handle task dynamics as well as

real-time task arrivals up to a great extent. We consider computation-intensive

tasks that demand many Virtual CPU Instances (VCIs) and need to meet cer-

tain requirements such as deadline and/or budget. Further, without any loss of

generality, we assume that the scheduling details such as the task distribution

values for different CSPs (if the aggregation is performed on multiple CSPs), the

individual billing information etc are abstracted from the User and the Broker

86

takes care of these information management and Broker maintains the informa-

tion such as integrated billing.

Consider there are N tasks (t1, t2, ...tN) present in the system waiting for execu-

tion. The players or bargainers in this problem are these tasks. Task specifies

two parameters, {AET i, tid}, average execution time and deadline for the task

when deadline1 is the primary criteria and budget requirements when budget is

the primary criteria. The complete model of the system, based on the Broker

architecture described in Chapter 3, is illustrated in Figure 5.1. Note that in the

Figure 5.1: Architecture for the proposed bargaining model. Here, DC stands for
Datacenter and these datacenters may belong to one or more CSPs

proposed aggregation mechanisms, we focus on task scheduling to satisfy user

specifications and ignore other parameters such as handling reliability and trust.

It can be observed that such parameters can be specified by the users when they

submit the tasks and Broker can consider a subset of CSPs satisfying such criteria

for the task scheduling in a seamless manner.

1Deadline is the time on or before which the task should be completed.

87

Let R = {R1, R2, ...RN} be the bargaining domain or the feasible set of all pos-

sible outcomes (VCIs) required for each task. R is assumed to be convex, closed

and bounded sets of ℜN . Each player i has a disagreement point di which is

the minimum number of VCIs required to complete the execution based on cer-

tain requirements. The disagreement point for the game can be represented as

d = (d1, d2, ..dN). The pair (R, d) is the bargaining problem under consideration.

Below we present the required background material on the complete formulation

of optimal solutions for NBS and RBS based strategies.

5.2.1 Nash Bargaining Solution (NBS)

The Nash Bargaining Solution (NBS) allows us to assign fair amount of resources

for various tasks present in the system [68]. Let r = f(R, d) be an NBS which

satisfies the following four axioms [68]:

• A1. Pareto Optimality : If (R, d) is a bargaining problem with r, r′ ∈ R and

r′j > rj, ∀j, then f(R, d) 6= r.

• A2. Independence of Linear Transformations : Let y(.) be any positive affine

linear transformation, y(r) = f(y(R), y(d)).

• A3. Symmetry : If bargaining problem is symmetric, for any two users k

and m where dk = dm, then fk(R, d) = fm(R, d).

• A4. Independence of Irrelevant Alternatives : For every r′ ∈ R′ where r′ =

f(R′, d), if R ⊆ R′, then f(R, d) = r′.

Below we attempt to explain the physical significance of the above axioms. The

linearity axiom A2 says that, the solution is not affected if the performance

88

objectives are affinely scaled. Imposing the axiom of symmetry A3 assumes that

all players have equal bargaining skills. But in reality, the bargaining may be

influenced by other parameters such as the strategies employed by the players for

bargaining. This can be termed as the bargaining power αi for a player i. Such

bargaining games are called as asymmetric bargaining games [68]. The axiom A4

tells that the bargaining point is not affected by enlarging the domain. For the

asymmetric NBS model [68], we can define the utility function for the task i as

R∗
i = (Ri − di)

αi . where R∗
i is the optimal number of resources derived based

on NBS for task i. Now, R∗ = {R∗
1, R

∗
2, ..., R

∗
N} which satisfies the axioms of

generalized NBS are the optimal set of resources for the tasks. The optimization

problem can be defined as (P1):

R∗ = argmax
R

N
∏

i=1

(Ri − di)
αi (5.1)

subject to

(R1, ..., RN) ∈ R, (5.2)

Ri ≥ di ∀i, and (5.3)

∑N
i=1Ri ≤ Rtot (5.4)

Here Rtot is the total amount of resources available. The objective function in

Equation (5.1) captures the proportional fairness. This means that every task

will get resources in proportion to what it has requested. Due to the nature of

Cloud, i.e. number of resources available is far more than the requests, we are

trying to allocate more resources to users than the required number of resources.

89

This will help to finish the task before deadline and free the resources earlier.

The constraint Ri ≥ di ∀i says that each task i should get at least the minimum

number of resources di required to finish the task before deadline. Similarly the

constraint
∑N

i=1Ri ≤ Rtot specifies that the total number of allocated tasks can

not exceed the total number of resources available. To obtain feasible bargaining

outcomes,
∑N

i=1Ri ≤ Rtot must be satisfied. Assuming
∑N

i=1Ri = Rtot, the NBS

for user i is given as1

R∗
i =

αi(Rtot − dtot)

αtot
+ di (5.5)

where αtot is the sum of all bargaining powers of all tasks and dtot is the sum of

the minimum number of resources required for all tasks. The solution offered by

NBS is useful and directly applicable when the set of tasks are known in advance

and the Broker needs to allocate the resources for these tasks in a fair manner.

Moreover, it makes use of all available free resources for allocation which leads to

high resource utilization. In short, NBS results in fair resource allocation which

maximizes the free resource utilization.

On the other hand, although NBS offers an attractive solution, it may be noted

that it only takes care of individual’s gain and does not care about how much

others have given up. In order to take this fact into consideration, we adopt

another solution, which is an extension of NBS as described below.

5.2.2 Raiffa-Kalai-Smorodinsky Bargaining Solution (RBS)

In order to ensure that one’s gain should be proportional to its maximum gain (in

other words, every player should give same weight for individual gain and other

1Readers may refer to the proof in [68].

90

player’s losses), Kalai and Smorodinsky, and Raiffa [68] proposed a new solution.

They retained axioms A1−A3 in Nash’s solution and added a new axiom A4′ as

follows:

• A4′: Monotonicity : For any r′ ∈ R′ where r′ = f(R′, d), if R ⊆ R′ and
∑T

n=1 r
′
k,n ≥

∑T
n=1 r

′
k,n, then fk(R

′, d) ≥ fk(R, d).

Consider the same game we defined before with T players. We can define [75]

the ith player’s preference function with minimum utility di and maximum utility

Rmax
i as follows:

vi(β) = [(Ri − di) +
β

N − 1
(

N
∑

j 6=i

Rmax
j − Rj)]

αi (5.6)

where, β is the weighing factor to measure the trade-off between one’s gain and

another’s loss. When these two factors are given equal weightage, i.e. substitute

β = 1 in equation (5.6), we obtain RBS. So we can write the utility function for

RBS as follows:

vi(β) = [(Ri − di) +
1

N − 1
(

N
∑

j 6=i

Rmax
j − Rj)]

αi (5.7)

Given this utility function, we can write the RBS optimization problem (P2) as

follows:

R̃∗ = argmax
R

N
∏

i=1

[(Ri − di) +
1

N − 1
(

N
∑

j 6=i

Rmax
j − Rj)]

αi (5.8)

91

subject to

(R1, ..., RN) ∈ R, (5.9)

Ri ≥ di ∀i, (5.10)

Ri ≤ Rmax
i ∀i, and (5.11)

∑N
i=1Ri ≤ Rtot (5.12)

where Rmax
i is the maximum resources that can be allocated for task i. To

obtain feasible bargaining outcomes,
∑N

i=1Ri ≤ Rtot must be satisfied. Assuming
∑N

i=1Ri = Rtot, the RBS for user i is given as1 R̃∗
i = min{R̃∗

i , R
max
i } where R̃∗

i

can be expressed as shown in Equation (5.13).

R̃∗
i = αn

i Rtot+

(1−Nαn
i)Rtot + (N − 1)(di − αn

i dtot) +Rmax
i + ((N − 1)αn

i − 1)
∑N

i=1R
max
i

N

(5.13)

In Equation (5.13), αn
i = αi∑T

i=1 αi
is the normalized bargaining power with

∑N
i=1 α

n
i = 1 and dtot is the sum of the minimum resources required for all tasks.

R̃∗
i is the optimal resources derived based on RBS for task i.

The Nash and Raiffa solutions that we derived satisfy the axioms, and we now

show that the results are on Pareto optimal boundary. When Nash solution

maximizes the product of the gain of all players, the Raiffa solution considers

how much other players gave up, in addition to one’s gain. We now demonstrate

1Readers may refer to the proof in [68].

92

the workings and solutions of the above proposed strategies using an illustrative

example with two tasks.

Example 1. Suppose there are 100 virtual CPU instances available, i.e. Rtot =

Figure 5.2: Geometrical Interpretation of Nash and Raiffa solutions

100 and the minimum and maximum requirements for two tasks are d = (20, 30)

and Rmax = (70, 80) respectively. Consider a case with equal bargaining powers

(symmetric) for both tasks. i.e. α = (0.5, 0.5). Using equations (5.5) and (5.13),

we obtain the solution as R∗ = (45, 55) and R̃∗ = (43, 57), for the respective

cases.

Consider another case of asymmetric bargaining power with α = (0.8, 0.2). This

means that player 1 increases his bid. The solution is R∗ = (60, 40) and R̃∗ =

(61, 39). A geometrical interpretation of this solutions are described in Figure

93

5.2. The solid line is the Pareto boundary. From the geometrical interpretation

as described in [75], the symmetric Nash solution lies on the tangent to the

hyperbola (R1 − d1)(R2 − d2) = constant and the symmetric Raiffa solution is

the intersection point between a line from (d1, d2) to (Rmax
1 , Rmax

2) and the Pareto

optimal boundary. For the asymmetric case, player 1 has more bargaining power

and hence got more resources in both cases.

We can make the following observations from this analysis. In both NBS and

RBS, the allocation depends on the bargaining power. So even if two tasks have

same value for disagreement point, depending upon the bargaining power, they

may get a different amount of resources for their task execution. Further, NBS

is a special case of RBS and we can obtain it by substituting β = 0 in equation

(5.6). In this case, the players do not care about other player’s loss. Whereas,

we can observe that RBS takes into account both disagreement point and the

maximum resource requirements to obtain the optimal allocation of resources.

Further, if a CSP offers multiple kinds of resources, it can use this algorithm on

each resource type separately to arrive at the optimal solution.

5.3 Performance Evaluation and Discussions

In this section, we perform rigorous simulation experiments to demonstrate how

the above presented approaches are applied in handling the resource allocation

problem in a variety of situations. To demonstrate this, we consider a general

case with 300 tasks and we derive the bargaining power in three different ways:

• Deadline: Bargaining power is derived based on deadline. This means

94

critical tasks with short deadlines have higher bargaining power and tasks

with longer deadline have lower bargaining power.

• Budget Requirements: Bargaining power is derived based on the budget

constraints proposed by the tasks. This means, tasks which can afford to

pay more, will get more resources still satisfying the disagreement point.

• Deadline and Budget: Bargaining power is derived based on both dead-

line requirements as well as the budget requirements. This means short

deadline tasks which can afford to pay more, will get more resources.

5.3.1 Resource allocation based on Deadline

We derive the bargaining power based on the deadline as follows. AET i values

are randomly chosen within the range [51, 100] and tid values are within the range

[10, 50] for any task i. Then bargaining power αi can be calculated as 100− tid for

any task i. This αi for all tasks are normalized such that it lies between 0 and 1.

Then we consider a Compute Cloud with 3000 virtual instances of CPUs available

for allocation. We obtain the disagreement point for a task i as di =
AET i

ti
d

∀i. For

simplicity, we calculate Rmax
i as Rmax

i = 2 ∗ di for RBS. In practical situations,

the Brokers can obtain user requirements and make use of different approaches

to derive di and R
max
i .

Figure 5.3 plots the percentage of available resources allocated in both schemes.

In this graph, we can observe that if we allocate only based on di, there are

many resources not being allocated. In this example, only around 40% of the

total resources are used. We can observe that NBS efficiently allocates more than

95

Figure 5.3: Percentage of Resources allocated/Free with Rtot = 3000 and T = 300

95% of the resources and hence resource utilization is high. On the other hand,

for RBS, we note that approximately 78% of resources are allocated. Further, it

allocates resources more evenly considering the maximum resource requirements

and hence it is more efficient to finish the overall task execution in shorter time,

especially for longer deadline tasks.

Handling Auto-Elastic property of Cloud

For various tasks in compute-intensive applications (such as workflow applica-

tions), especially for data analytic applications, the resource demand varies with

time. Cloud environments have abundant computational resources and resources

are assigned as and when demand exists which is referred to as auto-elasticity. To

96

Figure 5.4: Number of resources allocated in 6 iterations with dynamic change
in demand

97

Figure 5.5: Auto-elasticity of Cloud when the demand varies with time with
Rtot = 300 and T = 35

understand the efficiency of RBS in handling this property, we have conducted

a set of experiments wherein the requirements of tasks vary with time. In the

first set of experiments, we considered Rtot = 300 and T = 35. We have varied

the demand of at most k = 5 randomly chosen tasks in each iteration. Figure

5.4 shows the individual resource allocation for 35 jobs in 6 different iterations.

A summary of the total resources allocated in these 6 iterations are plotted in

Figure 5.5. From these figures, we can observe that, RBS can handle variations

in resource requirements efficiently. In these experiments, resources are allocated

to tasks having more demand. Meanwhile, the algorithm does not change any

other task’s existing allocations even though the new calculation may demand a

resource reallocation for these tasks (for example, refer to tasks A and B pointed

98

in Figure 5.4). This means that without changing any existing allocations, RBS

is able to take care of the auto-elastic property of Cloud up to a great extent.

To understand this effect on NBS and RBS in a large scale situation, we have

Figure 5.6: Auto-elasticity of Cloud when the demand varies with time with
Rtot = 3000 and T = 300

repeated this experiments with Rtot = 3000 and T = 300. Here up to 50 ran-

domly selected jobs change their demand in every iteration and the results are

plotted in Figure 5.6. As we can observe from this figure, NBS allocate maximum

number of resources to the existing tasks and hence it may need to re-allocate

when the task demand changes with time. Among them, asymmetric NBS per-

99

forms slightly better than symmetric NBS due to the influence of α in making the

optimal allocation. Whereas, as RBS consider maximum resource requirements,

it can efficiently handle the auto-elastic property without affecting the existing

allocations. So we can see that when the task requirements are stable, NBS is

a better choice and when the task requirements change dynamically, then RBS

could be a better choice. For a set of tasks with mixed task requirements, Broker

can choose an appropriate value for β in Equation (5.6) in order to arrive at the

optimal allocation.

Effect of real-time task arrival on RBS

Figure 5.7: Resource allocation on RBS in two cases

100

Figure 5.8: Percentage of Resources allocated/Free on RBS in two cases with
Rtot = 300 and T = 30

In order to demonstrate the real-time task handling capability of RBS, we con-

sider 30 tasks and the resource allocator derives the optimal resource allocation

using RBS. Now consider 5 new tasks arriving at the Cloud. The aggregation

unit in the Broker’s Job Distribution Manager (JDM) run the RBS algorithm

and derives the optimal number of resources for all the 35 tasks. The minimum

number of resources required and the optimal number of resources derived are

plotted in Figure 5.7. Figure 5.8 shows the percentage of resources allocated and

freed in both cases. From Figure 5.8, we note that 65% (approx. 200 out of 300)

of resources were used for allocation in first case. Later when 5 new tasks arrive,

we observe that RBS consumes 77% resources (approx. 230 resources) and hence

101

Figure 5.9: Analysis of pricing effects with change in number of tasks present

the allocator can allocate resources for these new tasks without affecting any of

the existing allocation. Thus RBS has the ability to handle real-time task arrivals

in a Cloud environment.

5.3.2 Budget requirements based resource allocation: Asym-

metric pricing schemes

In a Cloud environment, a CSP is most often interested in a pricing analysis. In

this section, we conduct experiments for analyzing the pricing aspects for both

symmetric (equal bargaining power for all tasks in the system) and asymmetric

(Users can specify how much they can afford to pay for the resources) cases of

NBS and RBS. In case of asymmetric schemes, we allow the tasks to specify a

price per resource in a range [Kmin, Kmax] with Kmin = 50 cents and Kmax = 1

102

dollar. These prices are generated randomly for all tasks present in the system.

In case of symmetric schemes, we set price per resource as 75 cents1. The tasks

specify a Quality of Service (QoS) parameter to tell how much maximum they

can afford to pay for each task. Note that this QoS parameter can be directly

captured in RBS as Ri
max while this can not be done so by NBS.

We calculate the total revenue to the CSP when the number of tasks present

in the system is varied from 200 to 450. As NBS can not handle the maximum

requirement, we calculate the price based on the resources allocated to each task2.

We propose to solve this issue by choosing the number of resources R̂∗
i given

by R̂∗
i = min{R∗

i , R
max
i }, where R∗

i is the result of NBS optimization problem

described earlier and R̂∗
i is the new solution for NBS.

The results for both symmetric and asymmetric cases (using the notations NBS

modified Sym and NBS modified Asym respectively) are plotted in Figure 5.9. The

graph also shows the pricing scheme for original NBS and RBS solutions. We can

observe that, when the number of tasks present in the system are very less, original

NBS allocated resources more aggressively and hence the revenue generated is

more for both symmetric and asymmetric NBS schemes. If we take the modified

NBS for symmetric and asymmetric bargaining, the results are similar to the RBS

counterparts.

We can also observe that asymmetric scheme performs better than symmetric

scheme in both cases and asymmetric scheme is more efficient when the number

1For an extra large standard or high-CPU on-demand instance of linux/unix, Amazon EC2
charge 0.76 cents per hour [12]

2In this case we can view as the users do not have any restriction to pay for all the resources
allocated as it reduces task execution time

103

of tasks present in the system is more. This is because, when more tasks are

present, the allocator has an option to allocate more resources for tasks who can

afford to pay more. For example, when the number of tasks present in the system

is 450, both asymmetric schemes generates a better revenue compared to their

symmetric counterparts. As current CSPs follow symmetric pricing schemes,

the results on asymmetric pricing approach would give adequate flexibility in

managing the resources as well as generating more revenue.

5.3.3 Combined effect of deadline and pricing on resource

allocation

Figure 5.10: Analysis of the combined effect of pricing and deadline on resource
allocation

In this subsection, we study the combined effect of deadline and pricing on

104

resource allocation using NBS and RBS by capturing bargaining power as a func-

tion of deadline and pricing. We generate random values for deadline and user

budget for all the tasks present in the system and calculate the bargaining power

using deadline, user budget and combined deadline and budget requirements and

the results are plotted in 5.10.

We can observe that, in all cases, NBS aggressively allocates most of the resources

and maximizes the resource utilization whereas RBS also considers the maximum

resource requirements in the allocation. Calculating bargaining power using both

deadline and pricing results in a resource allocation which is favorable to short

deadline tasks that have higher budget the most, at the same time satisfying

the requirements for all tasks. The resource utilization in RBS is highest (92%)

when bargaining power is purely based on deadline and lowest when bargaining

power is calculated based on price (80%). We can observe that when bargaining

power is calculated based on both price and deadline, the resource utilization is

around 90%. To summarize, a CSP can consider any parameter or a combination

of parameters in deriving the bargaining power.

5.4 Chapter Summary

For scheduling large-scale compute-intensive applications such as workflow schedul-

ing, often times the strategies need to be adaptable to the resource demands. In

this Chapter, we precisely attempt to capture this requirement and proposed two

viable solutions based on axiomatic bargaining theory (NBS and RBS) that are

practically realizable. NBS maximizes the utilization of resources and guarantees

proportional fairness whereas, RBS considers maximum requirement of resources

105

for allocation, which is useful when we want to consider the Cloud wherein tasks

that are either as independent tasks or from workflow schemes arrive in a dynamic

fashion. In our simulation study, we had shown how RBS effectively handles fluc-

tuations in the resource requirements (auto-elasticity property) and real-time task

arrivals up to some extent. One important observation to make is on the choice

between NBS and RBS which our simulation study reveals. NBS is shown to

be suitable for shorter deadline tasks whereas RBS is shown to be applicable for

handling tasks of longer deadline. We also demonstrated that our schemes are

adaptable to the CSPs’ requirements (choice of bargaining power α and minimum

and maximum resource requirements for each task) and that these schemes are

shown to offer a win-win situation to CSPs and Cloud customers.

An important contribution of this work is in introducing asymmetric pricing

scheme wherein a user is given a complete flexibility to specify his budget con-

straints and CSPs can attempt to maximize the revenue without sacrificing the

performance. Finally we show the combined effect of task deadline and budget

requirements in allocation of resources for both NBS and RBS. NBS efficiently

utilizes maximum number of resources in the Cloud whereas RBS indirectly maps

to an energy efficient solution by meeting the deadline with less number of re-

sources.

106

Chapter 6

Design and Analysis of

Broker-Mediated Cloud

Aggregation and Task Scheduling

Mechanisms Using Markovian

Queues for Bag-of-Tasks

6.1 Introduction

While we discussed about task aggregation among Clouds offering similar types

of resources in the last Chapter, we address aggregation of BoT applications

among multiple Clouds having heterogeneous compute capabilities in this Chap-

ter. Scheduling of data-intensive BoT applications from several fields including

bioinformatics [76], [77], quantum optics [78] and factoring large numbers for ad-

107

vanced cryptography [79] on various distributed systems received huge attention

in the recent past. BoT applications can be structured as a set of independent

computational tasks and a task may have some instructions or data of arbitrary

size and complexity. A typical example is the matching of DNA to independent

known sequences [80]. Based on the results obtained from the execution of some

of the tasks, other tasks may be canceled or modified.

In this Chapter, we address the aggregation of data-intensive BoT applications

across multiple CSPs offering resources with different capabilities and price offers

to meet some objectives such as task-deadline and/or budget requirements. Based

on the number of tasks present or the amount of data to be processed, resource

requirements may change with time. Further, we address the task scheduling

and its effect on a particular Cloud after the task aggregation is completed. We

employ the principles of Markovian queues for the problem under consideration.

Figure 6.1: Proposed architecture for the Broker-mediated Cloud-aggregation
mechanism

108

6.2 Proposed Multiple-Cloud Aggregation and

Task Scheduling Mechanism

First we describe the markovian queue based optimization problem and derive

optimal load fractions for task distribution in order to minimize task execution

time. Later we also describe a heuristic algorithm to take into account the user’s

budget constraints. At any point of time, a user Ci can submit a BoT applica-

tion request having X tasks to the Broker. Using the databases maintained by

the Broker, it makes a task schedule and distributes the tasks to various CSPs.

The system model is similar to the architecture discussed in Chapter 5 and is

illustrated in Fig. 6.1.

6.2.1 Task distribution to minimize application comple-

tion time

Now, we derive optimal fraction of tasks to be sent out to various CSPs in order

to minimize the time spent by various tasks of a BoT application in the system.

If pj is the fraction of job to be send to CSP j, then λj = pjµ0. Further, if Nj is

the number of tasks in CSP j, then,

Nj = pjX (6.1)

Further, considering each queue as an independent M/M/1 queue, it follows [81]

that,

tj =
1

µj − pjµ0
(6.2)

109

Further, we can calculate total time all Nj tasks spent in the system as,

Tj = Njtj =
pjX

µj − pjµ0
(6.3)

So we formulate the optimization problem as

Minimize
M
∑

j=1

pjX

µj − pjµ0
(6.4)

subject to
M
∑

j=1

pj = 1 (6.5)

pj ≥ 0∀j = 1, 2, . . . ,M (6.6)

Temporarily relaxing the constraint (6.6) and applying Lagrange Multiplier K

for the optimization problem, the augmented cost function could be written as

L =
M
∑

j=1

pjX

µj − pjµ0
−K(

M
∑

j=1

pj − 1) (6.7)

Now, taking the partial derivative of L with respect to each pj and setting the

derivative to zero, we can obtain,

∂L

∂pi
= 0 ⇒ K =

Xµj

(µj − pjµ0)2
(6.8)

Further simplifying, we obtain,

pj =
µj

µ0

− 1

µ0

√

Xµj

K
(6.9)

110

Since,
∑

pj = 1, it follows that

∑

(
µj

µ0
− 1

µ0

√

Xµj

K
) = 1 (6.10)

and we obtain the value of K as,

K =
X(

∑√
µj)

2

(
∑

µj − µ0)2
(6.11)

Substituting the value of K from Equation (6.11) in Equation (6.9), we obtain a

closed form solution for the individual load fractions pj for each CSP Pj as,

pj =
µj

µ0
−

√
µj(

∑

µj − µ0)

µ0

∑√
µj

(6.12)

Thus we can calculate the number of tasks to be send out to each CSP Nj using

Eq. (6.1). Note that, the values of Nj obtained need not be integer quantities.

In reality, the assigned load fraction will be in terms of integer quantums. Thus,

without loss of generality, we can assume that the minimum possible granularity

for any Nj that can be assigned to a CSP as 1. We use integer approximation

technique [82] which runs in O(M) to ensure that each processor gets an integer

load quantum .

We illustrate this through an example. Assume X = 500, M = 5 and µ0 = 70,

then various values obtained based on our results are summarized in Table 6.1. We

can observe that, the constraints specified by Equations (6.5) and (6.6). Further,

values of pj‘s are in proportion to the service rates of various CSPs.

111

Table 6.1: Example to illustrate the mathematical model
CSP
(j)

Service
Rate (µj)

Job frac-
tion (pj)

No. of
Tasks (Nj)

Unit cost
(Dj)

Total task exe-
cution time (Tj)

Total Cost
(NjDi)

1 75 0.21 107 0.5 1.79 53.50
2 65 0.13 66 0.4 1.17 26.40
3 77 0.23 116 0.7 1.91 81.20
4 70 0.17 86 0.6 1.49 51.60
5 79 0.25 125 0.5 2.03 62.50
Total task execution time (max(Tj))
and total expenditure (

∑

NjDi)
2.03 275.20

Eliminating CSPs with lower resource capabilities

Note that, when we derived the optimal values for pj‘s, we relaxed the constraint

specified by Eq. (6.6). This means that, values of all pj ’s need not be always

greater than zero. For example, consider the above example with µ2 = 35 instead

of 65. Then the values of pj ’s obtained are summarized in Table 6.2. From Table

Table 6.2: Example to illustrate Drop-out condition
CSP (j) Service Rate (µj) Job fraction (pj)
1 75 0.26
2 35 -0.05
3 77 0.28
4 70 0.22
5 79 0.30

6.2, we can see that for a CSP which has resources with lower specifications such

as low service rate, the value of pj becomes negative. In such cases, we propose

to avoid such slow CSPs and recalculate the values of pj. Avoiding CSP 2 in the

above example, we obtain various values as given in Table 6.3. In this case, we

obtain the values such that
∑M

j=1 pj = 1 and that pj ≥ 0∀j = 1, 2, . . . ,M . We

can also observe that, as tasks are distributed among fewer CSPs, the total task

execution time increases.

112

Table 6.3: Example Drop-out condition: Avoiding slow CSPs
CSP
(j)

Service
Rate (µj)

Job frac-
tion (pj)

No. of
Tasks (Nj)

Unit cost
(Dj)

Total task exe-
cution time (Tj)

Total Cost
(NjDi)

1 75 0.25 124 0.5 2.15 62.00
2 35 0 0 0.4 0 0
3 77 0.27 133 0.7 2.27 93.10
4 70 0.20 102 0.6 1.83 61.20
5 79 0.28 142 0.5 2.39 71.00
Total task execution time (max(Tj))
and total expenditure (

∑

NjDi)
2.03 287.30

Table 6.4: Heuristic algorithm for task distribution based on budget requirements

1) Input user budget B
2) Calculate Nj ‘s based on the derivations in Section 6.2.1
3) Calculate total expenditure Dtot
4) WHILE Dtot > B THEN
5) Eliminate the CSP which correspond to max(Dj)
6) Calculate all Nj‘s excluding this CSP
7) Apply integer approximations to Nj
8) Recalculate total expenditure Dtot
9) END
10)Output the task distribution obtained at present

6.2.2 Task distribution based on budget requirements

Now we describe a simple, but effective heuristic to find a task distribution which

can also handle the user’s budget requirements in addition to the application

execution time. When the optimal allocation obtained in Section 6.2.1 exceeds

the user budget, we opt out the CSP which has the highest cost per resource

and recalculate the optimal allocation for the minimization problem described in

Section 6.2.1. We repeat this process until the total expenditure is less than or

equal to the budget requirements specified by the user. The pseudo-code for this

algorithm is summarized in Table 6.4.

For example, consider the example problem described in Table 6.1. The total

cost for that allocation is $275.20. Now, suppose the user budget requirements

113

specifies that the total expenditure shall not exceed $240.00. So following the

algorithm, we avoid CSP P3 in first iteration and CSP (P4) in the text iteration,

we obtain the values as shown in Table 6.5.

Note that, now the total expenditure satisfies the budget requirements and hence

Table 6.5: Recomputed optimal values without P3 and P4 in Example1
CSP
(j)

Service
Rate (µj)

Job frac-
tion (pj)

No. of
Tasks (Nj)

Unit cost
(Dj)

Total task exe-
cution time (Tj)

Total Cost
(NjDi)

1 75 0.35 176 0.5 3.49 88.00
2 65 0.26 129 0.4 2.76 51.60
3 77 0 0 0.7 0 0
4 70 0 0 0.6 0 0
5 79 0.39 195 0.5 3.77 97.50
Total task execution time (max(Tj))
and total expenditure (

∑

NjDi)
3.77 237.10

the algorithm stops here. Further we can observe that, as we reduce the number

of CSPs required for the task distribution, the total application execution time

increases.

6.3 Task scheduling within a Cloud environment

So far, we have described a model to aggregate a set of BoTs among multi-

ple Clouds with different types of resources. Now, we take a closer look at the

scheduling of tasks among datacenters within a Cloud after the aggregation is

performed. The novelty of the scheduler lies in segregating tasks into two dif-

ferent priority queues based on whether a task is uncertain1 or certain, assigns

higher priority to certain tasks and employs a novel scheduling mechanism to

minimize the task computation time, resource usage as well as the monetary cost

for the task execution.

1An uncertain task may be canceled or modified at a later point of time whereas a certain

task will not be modified once submitted for execution.

114

The Cloud C under consideration consists of a number of datacenters (DCs) with

C = {DC1,DC2, · · · ,DCi, · · · }, where datacenter DCi = Hi ∪Si ∪Li
LAN ∪Li

WAN .

DCi is the ith datacenter participating in C. Each datacenter, contains a set

Hi of physical hosts, a set of Si of storages for storing data, a set L
i
LAN of lo-

cal area network (LAN) links used for communicating among the hosts in Hi,

and a set Li
WAN of wide area network (WAN) link with other datacenters. For

modeling purposes, specific network topologies or technologies are not considered,

and we ignore the impact of the internal network topology on the speed of both

inter-physical host or inter-VM data transfers. This is because, we focus on task

scheduling and designing a datacenter network to improve the data transmission

efficiency for data-intensive communication in datacenters itself is a hot research

area ([83] and [84] to quote few). Communication links between physical hosts

are assumed to be contention free to accommodate the deterministic nature of

scheduling, and communication between them is via I/O channels thereby allow-

ing concurrent computation and communication.

It is interesting to note that the above model can handle not only the subset of

tasks dispatched by the Broker, but also tasks submitted directly by independent

BoT applications. Thus the dispatcher itself can be a Broker within one Cloud

to perform the task scheduling among multiple datacenters. Hence, without any

loss of generality, we consider task scheduling of independent BoT applications1

in the remaining Chapter.

A virtual cluster (VC) consists of multiple VMs (combined together based on

user requirements), that are logically connected together over one or more phys-

1Tasks submitted by the Broker can be considered as a set of tasks within a BoT application

115

(b)

(a)

Input

di1

di2

diM

dt1

dt2

dtM

do1

do2

doM

Output

VM 1

VM 2

VM M

read computation write send receive write

read computation write send receive write

read computation write send receive write

input data (di) output data (do)temp data (dt)

Figure 6.2: The system model. (a) Data from a BoT application arriving at the
Cloud system can be assigned toM VMs with input data di, where, di1, di2, and
diM are belong to task n1, n2, and nM , respectively. This is, task n1, n2, and
nM are assigned to VM VM1, VM2, and VMM , respectively. In the same way,
dt is the temp data created by Cloud system, and do is the output data of Cloud
system. (b) A map-reduce example.

ical servers. The communication overhead between two tasks scheduled on the

same VM is assumed to be zero. Each VC is an administrative domain that has

its own master and slaves.

Our system model (Fig. 6.2) assumes that input data is distributed across

all participating VMs in a VC, and that each VM retrieves its initial input from

local storage. The model also accounts for output data replication, assuming the

common strategy of storing the first replica on the local disks and sending the

others over the network to other physical hosts.

We denote the amount of input data for VMj as dij and output data for VMj

as doj. The amount of temporary data produced or consumed by computation

for VMj is denoted as dtj . For many map-reduce applications, the mapper will

116

implement some form of selection or filtering, and the reducer will perform ag-

gregation. A communication cost is only required when two tasks are assigned to

different VMs. In other words, the communication cost when tasks are assigned

to the same VM can be ignored.

Different BoT applications may have different requirements in categorizing

their tasks into certain or uncertain tasks. Hence, without any loss of generality,

we assume that the users or the Broker indicate whether each task is certain

or uncertain upon submission based on their prior knowledge about the tasks.

We also assume that, uncertain tasks may be canceled or modified, but certain

tasks will never be canceled. This is done to make sure that, our scheduler can

seamlessly work for a wide variety of applications.

The scheduler decides the order in which the tasks need to be executed. The

scheduler communicates decisions to the operating systems running on the VC

resources which handles the details of running tasks on the VMs and provides

task statistics to the scheduler. If a certain task is executed, then the task

output is supplied to the requesting user. If an uncertain task is executed, then

the task output is stored in a location isolated from the rest of the system until it

becomes certain or canceled. A task could be marked uncertain by its submitter

and assigned a real number between 0 and 1 indicating the probability of eventual

need at the time of submission. We also assume that the system does not allow

to promote an uncertain task to a certain task, or to cancel a certain task. We

define three parameters for evaluating the performance of our proposed scheduling

strategy— Makespan, Monetary cost and Resource Usage Index.

117

6.3.1 Makespan

The makespan of an application is the time elapsed once the application is submit-

ted until its execution is completed [85]. It is a natural metric for the application

performance due to its ability to reflect a users view of how long an application

takes to complete its execution.

As users are generally more interested in the certain task’s execution time,

we define a new metric, Mc as the makespan of certain tasks. It denotes the time

duration since a task has been submitted till the necessary outputs are obtained.

Mc accrues only after a user asks for output from some certain tasks that may

have been submitted much earlier and thus measures the time that a user actually

waits for output. Mc differs from the actual makespan in the sense that Mc is

calculated only based on certain tasks whereas actual makespan computation

includes all tasks including uncertain tasks [86]. We define the Mc for N BoT

applications asMc = max{T 0
1 , T

0
2 , . . . , T

0
K} where, K is the number of VCs. Note

that, the execution time of uncertain tasks are not considered in this case.

6.3.2 Monetary Cost

Our computation cost model assumes that computation time unit, expressed in

hours, are identical for all VMs. Each VM, however, has its own cost per hour,

expressed in dollars. CSPs compute the time for which the VCs are used by the

tasks. The billing starts when the VC is ready and is allocated to the requested

application’s first task and ends when the last task completes its execution. In

practice, if a VC is not released to CSPs then the user will be charged even if the

VC is idle. Thus, the total computational monetary cost of all BoT applications

118

Costtotal for all K VCs can be calculated as:

Costtotal =

K
∑

k=1

max{T 0
k , T

1
k } · ck · nk (6.13)

where T 0
k and T 1

k are the task execution time for certain and uncertain tasks

respectively and ck is the price per VM. In other words, ck is the monetary

cost/computation time unit of VMk expressed in dollars. For example, let let

max{T 0
k , T

1
k } be 30000 seconds and there are 64 VMs. If the CSP charges

$0.1/hour for one VM in the V Ck, the actual monetary cost is ⌈30000/3600⌉ ×

64× 0.1 = $57.6.

6.3.3 Resource Usage Index (RUI)

The goal of the proposed elastic scheduling scheme is to improve the usage of

the resources in the Cloud and performance of submitted bag-of-tasks. In order

to calculate the resource usage, we define another metric RUI, ψ as the ratio of

the used resource capacity of the VC to the total resource capacity of that VC

and is used to show the utilization of Cloud resources. For the same value of mk,

higher value for RUI means higher resource utilization for certain tasks, for the

same percentage of uncertain tasks and higher RUI means more uncertain tasks

are scheduled.

6.3.4 The Queuing Model for Task Scheduling

We assume there are N BoTs (t1, t2, . . ., tN) and each BoT tj has it own data

dij . Further there are K VCs containing M VMs that store a total of D different

data di1, di2, . . ., diD, where D ≫M . We use DI to denote the set of input data

119

VM

1

VM

2

VM

m

Uncertain tasks

Virtual cluster of resources:

CPU, Memory, Disk

Scheduler

Certain tasks

Use of idle

Prio
rit

y Task queues

BoT

application

dispatcher

BoT

applications

Figure 6.3: The scheduling model dispatches BoTs to a virtual cluster for parallel
execution in a Cloud platform. This model can handle not only the subset of tasks
dispatched by the Broker, but also tasks submitted directly by independent BoT
applications. Thus the dispatcher itself can be a Broker within one Cloud (private
or public Cloud) to perform the task scheduling among multiple datacenters.

in the system. Since each data dij may have one or more replicas in practice,

each object may have one or more replicas that are stored in different VMs and

we use Vdij to denote the set of VMs that store the same data dij. Clearly, if

there is no replica for dij, |Vdij | = 1 holds for each dij in Vdij. We define VMp
j

as the primary VM for dij, which stores one replica of data dij and takes charge

of the scheduling on the data dij.

BoT applications are assigned to the Cloud system C and let λ be the total

task arrival rate in the entire Cloud system. If V Ck is scheduled with probabil-

ity pk, then,
∑K

k=1 pk = 1. Our method attempt to minimize user expenditure,

resource usage and task execution time by appropriate scheduling of the BoTs.

Uncertain and certain tasks are segregated into two queues by the BoT applica-

tion dispatcher and certain tasks are assigned higher priority, resulting in better

makespan. Uncertain tasks are scheduled whenever VMs are idle. The queuing

model of the BoT scheduling is shown in Fig. 6.3. If a task is canceled, it may

120

affect other tasks in the queue. Further, efforts in transferring the input data to

respective VM as well as the computation time involved till the task gets canceled

are wasted. Hence, we should postpone or avoid to schedule such tasks and give

higher priority to certain tasks.

We assume that in a virtual cluster V Ck, the arrival rate of certain task and

uncertain task are λ0k and λ1k, respectively. As shown in Fig. 6.3, V Ck has one

queue to store certain tasks and another one to store uncertain tasks. When

a task arrives at the VC, it waits at the corresponding queue which follows a

non-preemptive First Come First Serve (FCFS) queuing discipline. Note that, in

a VC, there may be several VMs and each VM may have different computation

and I/O capacity.

For ease of simplicity, we assume that the aggregate computation and I/O

bandwidth capacity on V Ck are Ccomk and Ciok, respectively. The scheduling

can be done based on the available compute and I/O bandwidth capacity. Due

to the similarity in disk bandwidth and network resource considerations, we only

consider disk bandwidth for scheduling and we assume that there is sufficient

network bandwidth available between VMs.

For a BoT application, the task arrival rate for V Ck is λk = pk · λ. When a

task ti is assigned to a VC, Ccomi and Cioi should be assigned to this task to

guarantee the task execution. We can obtain the expected computation and I/O

bandwidth capacity to execute a task ti in the system as:

E[Ccomi] =

∑K
j=1 pj · Ccomj

K
(6.14)

121

E[Cioi] =

∑K
j=1 pj · Cioj

K
(6.15)

When a task is arriving at V Ck, scheduler determines appropriate VM, VMi

for its execution if that task can be scheduled. The task is then forwarded to

the local queue of VMi. From Eq.(6.14) and Eq.(6.15), we can calculate the

expected number of tasks which can be served in a service round on V Ck as

ek=min{⌊ Ccomk

E[Ccomi]
⌋,⌊ Ciok

E[Cioi]
⌋}. We use µk to denote the service rate of V Ck and

model a V C as M/M/m queueing system. Besides the uncertain tasks, V Ck

needs to accept those certain tasks that have higher priorities.

In order to guarantee shorter makespan (Tmakespan) for BoT applications, we

adopt priority-based scheduling policy in our system. The basic idea is that

certain tasks can use all of the VMs and uncertain tasks can use only up to mk

VMs, where 0 < mk ≤ nk, where nk is the number of VMs present in k-th VC.

We assume that when tasks are assigned to V Ck, if there is no available VM at

that moment, scheduler will block uncertain tasks in the uncertain queue, but

schedule certain tasks in the certain queue and/or let them wait until some VMs

are released. Here, we assume that the length of both queues are infinity.

Given a state space of the system based on the above scheduling policy, we

can identify those states where a certain task will wait in the certain queue or an

uncertain task will wait (or be blocked) because of the capacity constraints or the

priority. According to this information, we can compute the execution time of

tasks. Let Φk be the state space of V Ck that is defined by Φk = {(l0, l1) | l0, l1 ≥

0}, where l0 and l1 are the expected number of certain and uncertain tasks

respectively. We can divide Φk into four sub-space as shown in Table 6.6 with

Φk = Φi
k∪Φii

k∪Φiii
k ∪Φiv

k . For example, for a V Ck with nk = 128 andmk = 32, V Ck

122

can allocate only up to 32 VMs for uncertain tasks and up to 128 VMs for certain

tasks. We can observe that waiting states for certain tasks and uncertain tasks

will be, Φk = {(l0, l1) |(128−l1) < l0, l1 ≤ 32 }. This is the case when Φk = Φiii
k in

Table 6.6. Using Little’s Theorem [81], we can obtain the equilibrium probability

Table 6.6: Sub-space of Φk.
Symbol Meaning
Φi

k = {(l0, l1) | l0 ≤ nk −mk, l1 ≤ mk} No tasks are waiting in
both queues

Φii
k = {(l0, l1) | l0 ≤ nk −mk, l1 > mk} Some uncertain tasks are

blocking in the uncertain
queue and no task is wait-
ing in the certain queue

Φiii
k = {(l0, l1) | l0 > nk−mk, l1 ≤ mk} No tasks are waiting in the

uncertain queue
Φiv

k = {(l0, l1) | l0 > nk −mk, l1 > mk} Some tasks waiting (block-
ing) in both queues

of l0 certain tasks and l1 uncertain tasks in the system in the state (l0, l1) of Φ
i
k,

pk(l0, l1) as:

pk(l0, l1) = pk(0, 0)
((nk −mk)ρ0)

l0

l0!

(mkρ1)
l1

l1!
(6.16)

where, ρ0 =
λ0
k

(nk−mk)µk
, ρ1 =

λ1
k

mkµk
, and pk(0, 0) is the probability that there is

neither certain nor uncertain tasks under service in V Ck.

Similarly, the system in the state (l0, l1) of Φ
ii
k has the following product form:

pk(l0, l1) = pk(0, 0)
((nk −mk)ρ0)

l0

l0!

mmk

k ρl11
mk!

(6.17)

123

The system in the state (l0, l1) of Φ
iii
k has the following product form:

pk(l0, l1) = pk(0, 0)
(nk −mk)

(nk−mk)ρl00
(nk −mk)!

(mkρ1)
l1

l1!
(6.18)

The system in the state (l0, l1) of Φ
iv
k has the following product form:

pk(l0, l1) = pk(0, 0)
(nk −mk)

(nk−mk)ρl00
(nk −mk)!

mmk

k ρl11
mk!

(6.19)

We can calculate pk(0, 0) using Eq.(6.16) to Eq.(6.19) and the condition

∑∞

l0+l1=0 pk(l0, l1) = 1 as,

pk(0, 0) = [
∑nk−mk−1

l0=0
((nk−mk)ρ0)

l0

l0!
+ ((nk−mk)ρ0)

nk−mk

(nk−mk)!(1−ρ0)
]−1·

[
∑mk−1

l1=0
(mkρ1)

l1

l1!
+ (mkρ1)

mk

mk !(1−ρ1)
]−1

(6.20)

In our proposed policy, when the system is busy, a newly-arriving uncertain

task may be blocked in the uncertain queue, however, a certain task will wait in

the certain queue. Since certain tasks have higher priority than uncertain tasks,

certain tasks will be serviced by all the VMs whenever VMs are available in V Ck.

In order to analyze the state in Φii
k , Φ

iii
k and Φiv

k , we shall focus on the boundary

states of Φi
k. Here, we use pk(φ) to denote the probability that all VMs in the

V Ck are in use but there is neither certain nor uncertain tasks are waiting in

both queues. Then pk(φ) can be calculated as:

pk(φ) =
∑mk

l1=0 pk(nk − l1, l1)

124

substituting Eq.(6.16), we obtain,

pk(φ) =
∑mk

l1=0 pk(0, 0)
((nk−l1)ρ0)nk−l1

(nk−l1)!
(mkρ1)

l1

l1!
(6.21)

Let pk(Q) denote the probability that a newly arrived certain task will find

all VMs busy and will be forced to wait in certain queue. Then,

pk(Q) =
∑∞

l=nk−mk

p(φ)(nk−mk)
nk−mkρl0

(nk−mk)!
= p(φ)((nk−mk)ρ0)

nk−mk

(nk−mk)!(1−ρ0) (6.22)

From Eq.(6.22), we can obtain that the expected number of tasks waiting in

the certain queue is:

Q0
k = pk(Q)

ρ0
1−ρ0

In the same way, we can find out the probability pk(B) that a newly arrived

uncertain task will find all VMs, reserved for uncertain task, busy and will be

blocked/forced to wait in the uncertain queue:

pk(B) =
∑∞

l=mk

p(φ)m
mk
k

ρl1
mk !

= p(φ)(mkρ1)
mk

mk !(1−ρ1) (6.23)

and the expected number of uncertain tasks waiting in the uncertain queue is:

Q1
k = pk(B) ρ1

1−ρ1

Now, we discuss the task execution time in the system. If µk is the service rate

for cluster V Ck, using Little’s Theorem [81], Eq.(6.23) and Eq.(6.24), we obtain

125

the execution time T 0
k and T 1

k for certain and uncertain tasks respectively as,

T 0
k =

Q0
k

(nk −mk)µk
(6.24)

T 1
k =

Q1
k

mkµk
(6.25)

This implies that, task execution time of certain(uncertain) tasks depends on the

number of VMs available for execution, the expected number of tasks waiting in

the certain(uncertain) queues and the service rate of the Virtual Cluster V Ck.

Task execution time of certain tasks also depends on the number of VMs that

can be allocated to uncertain tasks at any point of time.

6.4 Performance Evaluation and Discussions

6.4.1 Performance analysis of multiple-Cloud aggregation

mechanism

In this section, we perform rigorous simulation experiments to evaluate the per-

formance of the proposed task aggregation scheme. We conduct experiments

to evaluate the task execution time, total expenditure and the task distribution

pattern for large scale Broker-mediated multiple Cloud environments. The simu-

lation parameters are summarized in Table 6.7. We analyze the task execution

time for various user budget requirements and the results are plotted in Figure

6.4. We can observe that, when no budget requirements are specified, all the

10 CSPs are used and the total tasks execution time is 2.79 units. As the user

126

Figure 6.4: Task Execution Time

imposes higher budget restrictions, the total task execution time increases. This

is because, when higher budget restrictions are imposed, tasks are distributed to

fewer CSPs and hence takes more time to complete the same tasks. Now, we

compare the total user expenditure for various budget requirements imposed by

the user. From Fig. 6.5, we can observe that, in all cases, the expenditure is

lower than the user budget requirements. We can also observe that, a minimum

cost is involved when all the tasks are submitted to only one CSP which offers

Table 6.7: Major simulation parameters
Parameter Value Parameter Value
M 10 X 1000
B [450,600] µ0 100
µ1 61 D1 0.5
µ2 67 D2 0.4
µ3 77 D3 0.7
µ4 60 D4 0.6
µ5 79 D5 0.5
µ6 54 D6 0.75
µ7 74 D7 0.55
µ8 58 D8 0.6
µ9 72 D9 0.65
µ10 64 D10 0.7

127

Figure 6.5: Expenditure

the least price for the resource and the maximum expenditure can be determined

based on the task distribution derived from our optimization problem. In this

Figure 6.6: Task distribution

section, we analyze the distribution of tasks to different CSPs based on various

128

user budget requirements and results are plotted in Figure 6.6. In this figure,

for example CSP1(0.5,61) means that CSP1 has a price offer 0.5 and a service

rate 61. From Figure 6.6, we can understand that, when a user is flexible with

his/her budget, tasks are distributed evenly among the CSPs available for the

task execution. But as the user imposes more budget restrictions, the tasks are

distributed among fewer CSPs and hence more resources are used from these

CSPs to complete the same number of tasks.

6.4.2 Performance analysis of the task scheduling strategy

within a Cloud environment

Now we evaluate the performance of the task scheduling within a Cloud. Our

simulator models a number of BoT applications which are submitted to a number

of VCs in the Cloud. The number of applications is varied across simulations.

Refer Table 6.8 for various simulation parameters used in our experiments in this

section. A uniform distribution (uni.) is described by ‘lower bound to upper

bound’, where the bound is specified by a range varied across runs. An exponen-

tial distribution (exp.) is described by its mean, where the mean is specified by a

range varied across runs. A step determines the distance between each sample in

the range of its parameter. Important parameters considered in the experiments

are:

1. Uncertain task proportion: It indicates the ratio of uncertain tasks with

respect to the total number of tasks in a BoT application. Each application

has an uncertain task proportion randomly chosen following a continuous

uniform distribution. For example, if the uncertain task proportion is set

129

to 0.2, then 20% of the tasks are uncertain in the applications.

2. Write back time: It indicates the time required by the tasks to write the

output back to the external device such as disk. The write-back time values

are also generated randomly following exponential distribution. Note that,

the task runtime is the sum of computation time and write back time.

Table 6.8: Parameters used in the experiments in Section 6.4.2
Parameter Setting Step Sample
number of app. 1 - -
number of BoTs per app. 1000 - -
number of tasks per BoT 1 to 5 (uni.) 1 5
uncertain task proportion 30% - 1
computation time (s) 15 to 180 (exp.) 15 13
write back time (s) 15 to 90 (exp.) 15 7
number of VMs 64 - 1
number of app. 5 to 20 5 4
number of BoTs per app. 20 to 80 (uni.) 20 4
number of tasks per BoT 1 to 5 (uni.) 1 5
uncertain task proportion 10% to 30% 10% 3
computation time (s) 15 to 180 (exp.) 15 13
write back time (s) 15 to 90 (exp.) 15 7
number of VMs 64 - 1
number of app. 100,1000,2000,

3000,4000,5000 - -
number of BoTs per app. 2000 to 10000 (uni.) 1000 9
number of tasks per BoT 1 to 5 (uni.) 1 5
uncertain task proportion 10% to 30% 10% 3
computation time (s) 30 to 360 (exp.) 30 13
write back time (s) 30 to 180 (exp.) 30 7
number of VMs 64, 1024 - 2

Comparison between simulation and theoretical analysis

We simulate our model in a realistic way in order to reflect the uncertain behav-

ior of tasks in BoT applications. We made several runs of our simulation with

the same parameters but different random number seeds for generating random

variables to confirm that the variability was sufficiently small to make the results

dependable. Here, we compare the values of Mc and RUI obtained based on our

theoretical analysis as well as based on our simulation results. For that purpose,

130

Table 6.9: Comparison between simulation and theoretical analysis.
Items Theoretical analysis Simulation
Mc 10237.079 9970.914
RUI 0.923813 0.922058

we consider a BoT application with 1000 BoTs and we set the uncertain task

proportion to be 30%. Further, we set the task computation time and write back

time to be exponentially distributed with mean 360s with he number of VMs set

to 64 and the maximum number of VMs allocated to uncertain tasks mk is set

to 13. The values obtained for our theoretical analysis described in Section 6.3.4

and simulated metrics are summarized in Table 6.9. We can observe that, the

values are very close to each other with only less than 3% difference for Mc and

less than 0.2% difference for RUI.

Experimental Results for task scheduling within a Cloud

We conduct experiments to analyze various metrics such as makespan, monetary

cost and resource usage for our elastic scheduling scheme and compare the values

with traditional batch scheduling scheme which follows FCFS scheduling. In our

experiments, we vary the number of VMs kept aside for the uncertain tasks. For

example, ‘elastic(6/58)’ means, there are 64 VMs, with a maximum of 13 VMs

for uncertain tasks. Certain tasks can use up to 64 VMs because all the VMs

can be used by certain tasks if there are tasks in the certain queue.

Our workload model is similar to the workload described in [87]. In our

system model, we assume that the VMs are grouped into clusters. The VMs may

have different performance across clusters, but within the same cluster they are

homogeneous. The workload of the system consists of applications submitted by

user(s); each of the applications consists of a number of Bag-of-Tasks which is a

131

bag of unordered tasks (possibly only one). Upon their arrival into the system,

the BoTs are queued in certain queue or uncertain queue respectively, waiting for

available VM on which to be executed. Once started, BoTs run to completion, so

we do not consider BoT preemption or BoT migration during execution. Instead,

tasks can be canceled when all certain BoTs are finished. Please note that, in

our application model, the ranges used in simulating BoT applications and tasks

were motivated by the scenarios, such as computer animated scenes in computer-

animated film [88].

In [87], the user patterns and the user submissions are considered as Zipf

distribution and, the BoT arrival patterns are modeled in two steps: first the

inter-arrival time (IAT) between consecutive BoT arrivals during peak hours,

and then the IAT variations caused by the daily submission cycle. We have given

more importance to the scale of applications and do not consider the submission

pattern by the user. So we consider the user submission to follow as a more generic

uniform distribution. Currently, we consider a BoT, either all are certain tasks or

all are uncertain tasks. So the certain tasks queue includes some BoTs any one of

which may consist of a number of certain tasks. Also, the uncertain tasks queue

includes some BoTs any one of which may consist of a number of uncertain tasks.

In our model, the tasks in a BoT are unordered, which is different [87], which

assumes that the tasks in a BoT are processed in a sequential manner. So, in our

model, we do not consider the intra-BoT characteristics defined by reference [87].

Performance evaluation for an application with 1000 BoTs

To show the difference between batch and elastic schedule strategies, we consider

batch and elastic execution process of a BoT application with 1000 BoTs as illus-

132

trated in Fig.6.7. In Fig.6.7(a) and Fig.6.7(b), the x-axis represents the elapsed

time in seconds, and each horizontal lines in the chart represents different tasks

in a BoT application. Within each line, Before scheduled, Running uncertain,

Running certain and Finished represent the period before the BoT is scheduled,

when the uncertain BoT is running, when the certain BoT is running and the

period after the BoT is complete respectively. Similarly, Canceled uncertain and

Blocked uncertain represent the point when the uncertain BoT is canceled, and

when it is blocked and is not scheduled. Fig.6.7(c) shows that, for elastic strategy,

19% uncertain BoTs complete their execution, 2% uncertain BoTs are canceled

and 9% uncertain BoTs are blocked. This means, our scheduling strategy is able

to prioritize and avoid execution of those blocked and canceled tasks which is the

root cause of the large makespan gap between batch and elastic.

In order to analyze the effect of the number of mk on the performance of BoT

application with certain and uncertain tasks, we plot Mc for various values of mk

for three different proportions of uncertain tasks. Fig. 6.8 shows the execution

of a BoT application with 1000 BoTs on batch scheme, and elastic scheme for

0 2000 4000 6000 8000 10000

B
oT

s

Before scheduling

Runing

Finished

Elapse of wall clock time (sec)

Batch

Before scheduled
Running uncertain
Running certain
Finished

(a)

0 2000 4000 6000 8000 10000

B
oT

s

Before scheduling

Runing

Finished

Elapse of wall clock time (sec)

Elastic

Before scheduled
Running uncertain
Running certain
Finished
Canceled uncertain
Blocked uncertain

(b)

70%
19%

2%

9% 30%

Certain and uncertain BoTs

Certain BoTs Uncertain BoTs (finished)

Uncertain BoTs (canceled) Uncertain BoTs (blocked)

(c)

Figure 6.7: The execution of a BoT application with 1000 BoTs (number of VMs
is 64, mk is 13, uncertain task proportion is 30%). (a) Batch strategy; (b) Elastic
strategy; (c) Pie chart of certain and uncertain BoTs for elastic execution (as
shown in (b)).

133

0 10 20 30 40 50 60
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 10

4

m
k

M
c (s

ec
)

elastic (10% uncertain)
elastic (20% uncertain)
elastic (30% uncertain)
batch

(a)

0 10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m
k

Re
so

ur
ce

 u
sa

ge
 in

de
x

elastic (10% uncertain)
elastic (20% uncertain)
elastic (30% uncertain)
batch

(b)

Figure 6.8: The effect of the number of mk for makespan Mc and resource usage
index ψ (number of VMs is 64). (a) makespan Mc; (b) resource usage index ψ.

different Mc. We can observe that, higher proportion of uncertain tasks gives a

better makespan Mc with the same mk. Further, it is interesting to observe that

the proportion of uncertain tasks associates with mk for Mc and RUI metrics:

There exists a turning point in the growth curve and turn up when the proportion

of uncertain tasks and the value of mk/nk are approximately equal.

Performance evaluation with 20 BoT Applications and 64 VMs

Fig. 6.9 shows the effect of the number of applications on elastic scheme, and

batch scheme forMc. We plot the makespan of certain tasksMc for various values

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(a)

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(b)

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(c)

Figure 6.9: The effect of the number of applications for makespan Mc (num-
ber of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain task
proportion; (c) 30% uncertain task proportion.

134

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

R
e
s
o

u
r
c
e
 u

s
a

g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

R
e
s
o
u

r
c
e
 u

s
a
g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

R
e
s
o
u

r
c
e
 u

s
a
g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(c)

Figure 6.10: The effect of the number of applications for resource usage index ψ
(number of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain
task proportion; (c) 30% uncertain task proportion.

ofmk (i.e. the maximum number of VMs that can be allocated for uncertain tasks,

mk = 3, 6, 13) for three different proportions of uncertain tasks present in the

applications. We can observe that our scheme always gives a better makespanMc

compared to the batch scheme. Further, it is interesting to observe that amount

of uncertain tasks has no influence on Mc in case of batch scheme. However, as

the amount of uncertain tasks increase, our scheme improves Mc.

We can observe an improvement of 25.2% for Mc compared to the traditional

scheme when the amount of uncertain tasks present is 30%. It means that users

having higher amount of uncertain task proportion will be able to benefit more

from our scheme in order to reduce their overall task execution time. In most

cases, our scheme performs better compared to the batch scheduling scheme. This

is because, waiting time for certain tasks have been reduced considerably with the

prioritization of tasks. At the busiest part or low uncertain task proportion, both

schemes begin to converge because the certain task queue of the elastic scheduler

is never empty.

Fig. 6.10 plots the resource usage index, ψ for various number of BoT ap-

plications in the Cloud. When the value of ψ is large, more resources are used

135

for completing the execution of BoT applications. Further, as the uncertain task

proportion increases, the values of ψ is better for our scheme, whereas its value

remains the same for batch scheme in all cases. It is also interesting to note that,

our scheme shows an average improvement of 28.13% for ψ compared to batch

scheme when 30% of the tasks present are uncertain. We obtain the best case

improvement of 52.55% and minimum improvement of 22.25% for ψ when there

are 5 and 20 applications respectively. The higher value of ψ in case of traditional

scheme is because, it does not distinguish between certain and uncertain tasks

and uses the resources for uncertain tasks which are later modified or canceled.

Large scale Performance Analysis with 5000 BoT Applications

Now we conduct experiments to validate our findings for large-scale BoT appli-

cations. The results obtained for Mc and ψ for up to 5000 BoT applications, are

plotted in Figures 6.11 and 6.12 respectively. We can observe that, our scheme

outperforms the traditional batch scheme even when we scale up the number of

BoT applications in the system to 5000. Further, it is evident from the figures

that, when lesser number of VMs are reserved for uncertain tasks, our scheme

0

500000

1000000

1500000

2000000

2500000

100 1000 2000 3000 4000 5000

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(a)

0

500000

1000000

1500000

2000000

2500000

100 1000 2000 3000 4000 5000

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(b)

0

500000

1000000

1500000

2000000

2500000

100 1000 2000 3000 4000 5000

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(c)

Figure 6.11: The effect of large-scale BoT applications for makespan Mc (num-
ber of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain task
proportion; (c) 30% uncertain task proportion.

136

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 2000 3000 4000 5000

R
e
s
o
u

r
c
e
 u

s
a
g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(a)

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 2000 3000 4000 5000 R
e
s
o

u
r
c
e
 u

s
a

g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(b)

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 2000 3000 4000 5000 R
e
s
o
u

r
c
e
 u

s
a
g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(3/61) elastic(6/58) elastic(13/51)

(c)

Figure 6.12: The effect of large-scale BoT applications on resource usage index
ψ (number of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain
task proportion; (c) 30% uncertain task proportion.

shows better Mc and ψ values. This is because when certain task queue is empty,

uncertain tasks can use lesser number of VMs and hence a newly arrived certain

task can obtain more resources to complete its execution earlier.

Further, one needs to determine the optimal number of VMs required to al-

locate for uncertain tasks, to minimize the values of Mc and ψ. This is evident

from Fig. 6.10 and Fig. 6.12. We can notice that values of ψ is increased as

more number of VMs are reserved for uncertain tasks or higher number of BoT

applications are present in the system. So the CSPs need to fine-tune the values

of various parameters based on the characteristics of the tasks coming to the

system.

Figures 6.13 and 6.14 plot the value of Mc and ψ respectively when there

are 1024 VMs in the virtual cluster. Having more VMs for the same number of

applications results in betterMc and ψ in our scheme compared to the traditional

scheme. For example, when there are 100 BoT applications, the shortest possible

Mc and ψ values are obtained. But, note that this also means higher monetary

cost for using larger number of VMs. This means that there is a trade-off between

improving the value of Mc and lowering the monetary cost for using the VMs to

137

Table 6.10: Monetary costs (64 VMs).

Number batch elastic scheme
of BoT scheme 10% uncertain task (l1/l0) 20% uncertain task (l1/l0) 30% uncertain task (l1/l0)
applications 3/61

(a1)
6/58
(a2)

13/51
(a3)

3/61
(a4)

6/58
(a5)

13/51
(a6)

3/61
(a7)

6/58
(a8)

13/51
(a9)

100 96 96 96 96 96 96 96 89.6 89.6 96
1000 921.6 857.6 870.4 889.6 857.6 857.6 876.8 800 806.4 870.4
2000 1760 1638.4 1708.8 1734.4 1587.2 1625.6 1670.4 1472 1612.8 1606.4
3000 2508.8 2323.2 2457.6 2464 2233.6 2304 2419.2 2150.4 2272 2329.6
4000 3187.2 2700.8 2867.2 3052.8 2598.4 2758.4 2892.8 2496 2649.6 2694.4
5000 3782.4 3276.8 3347.2 3475.2 3040 3110.4 3264 2700.8 2835.2 2886.4

run BoT applications.

Tables 6.10 and 6.11 summarize the monetary cost Costtotal for all the BoT

applications when the number of VMs are 64 and 1024 respectively. In this case,

we use ck = 0.10 (i.e. cost for resource/hour=0.10$/hour). It can be observed

that, elastic scheme successfully reduces the overall monetary cost of the BoT

0

20000

40000

60000

80000

100000

120000

140000

160000

100 1000 2000 3000 4000 5000

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(48/976) elastic(96/928) elastic(208/816)

(a)

0

20000

40000

60000

80000

100000

120000

140000

160000

100 1000 2000 3000 4000 5000

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(48/976) elastic(96/928) elastic(208/816)

(b)

0

20000

40000

60000

80000

100000

120000

140000

160000

100 1000 2000 3000 4000 5000

M
c
 (

s
e
c
)

Number of BoT applications

batch elastic(48/976) elastic(96/928) elastic(208/816)

(c)

Figure 6.13: The effect of large-scale BoT applications for makespan Mc (number
of VMs is 1024). (a) 10% uncertain task proportion; (b) 20% uncertain task
proportion; (c) 30% uncertain task proportion.

Table 6.11: Monetary costs (1024 VMs).

Number batch elastic scheme
of BoT scheme 10% uncertain task (l1/l0) 20% uncertain task (l1/l0) 30% uncertain task (l1/l0)
applications 48/976

(b1)
96/928
(b2)

208/816
(b3)

48/976
(b4)

96/928
(b5)

208/816
(b6)

48/976
(b7)

96/928
(b8)

208/816
(b9)

100 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4
1000 921.6 819.2 921.6 921.6 819.2 819.2 921.6 716.8 819.2 819.2
2000 1843.2 1536 1536 1638.4 1433.6 1433.6 1536 1331.2 1433.6 1433.6
3000 2560 2048 2150.4 2150.4 1843.2 1945.6 2048 1740.8 1945.6 1843.2
4000 3276.8 2355.2 2457.6 2560 2150.4 2252.8 2355.2 2048 2150.4 2252.8
5000 4198.4 2662.4 2867.2 2969.6 2560 2662.4 2764.8 2355.2 2560 2560

138

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 2000 3000 4000 5000

R
e
s
o

u
r
c
e
 u

s
a

g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(48/976) elastic(96/928) elastic(208/816)

(a)

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 2000 3000 4000 5000

R
e
s
o

u
r
c
e
 u

s
a

g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(48/976) elastic(96/928) elastic(208/816)

(b)

0.75

0.80

0.85

0.90

0.95

1.00

100 1000 2000 3000 4000 5000

R
e
s
o

u
r
c
e
 u

s
a

g
e
 i

n
d

e
x

Number of BoT applications

batch elastic(48/976) elastic(96/928) elastic(208/816)

(c)

Figure 6.14: The effect of large-scale BoT applications for resource usage index ψ
(number of VMs is 1024). (a) 10% uncertain task proportion; (b) 20% uncertain
task proportion; (c) 30% uncertain task proportion.

Table 6.12: Relative monetary costs of using 1024 VMs vs. 64 VMs

Number Monetary cost of 64 VMs - Monetary cost of 1024 VMs
of BoT 10% uncertain task (l1/l0) 20% uncertain task (l1/l0) 30% uncertain task (l1/l0)
applications a1−b1 a2−b2 a3−b3 a4−b4 a5−b5 a6−b6 a7−b7 a8−b8 a9−b9
100 -6.4 -6.4 -6.4 -6.4 -6.4 -6.4 -12.8 -12.8 -6.4
1000 38.4 -51.2 -32 38.4 38.4 -44.8 83.2 -12.8 51.2
2000 102.4 172.8 96 153.6 192 134.4 140.8 179.2 172.8
3000 275.2 307.2 313.6 390.4 358.4 371.2 409.6 326.4 486.4
4000 345.6 409.6 492.8 448 505.6 537.6 448 499.2 441.6
5000 614.4 480 505.6 480 448 499.2 345.6 275.2 326.4

applications under various situations by carefully scheduling the tasks based on

priority. It can also be noted that, reserving more VMs (mk) for uncertain tasks

results in higher monetary cost. So one need to carefully choose the value of mk

based on his requirements.

We also compare the relative monetary cost for using 1024 VMs as compared to

64 VMs (Refer Table 6.12). When large number of BoT applications are present

in the system, large number of resources helps in reducing the cost of execution.

This also helps users to decide the number of VMs required to execute their tasks

based on the application requirements and size.

139

6.5 Chapter Summary

In this chapter, we first proposed a model for aggregating BoT applications among

multiple IaaS Compute CSPs with different resource capabilities. We modeled

the CSPs as independent M/M/1 queues, formulated an optimization problem to

minimize the task execution time and derived optimal solutions for task distri-

bution. We further proposed a heuristic algorithm which considers not only the

task execution time, but also the user’s budget requirements in order to derive

the task distribution.

We can observe that large scale data-intensive divisible load applications1 such

as image processing [89], [90] and biological computing [91], [92] applications, can

also use our model for execution, to satisfy various constraints such as budget

constraints and application execution time. In case of divisible load applications,

we calculate the optimal amount of data to be distributed to each CSP instead

of determining the number of tasks to be distributed. An exampel for data

aggregation on Cloud environments is described in Appendix A. In addition to

application execution time and budget constraints, users have many other consid-

erations such as security, trust and reputation of CSP [93]. Using the Operations

Monitor in our Broker, we can seamlessly integrate these features. Broker can

consider a subset of all the CSPs satisfying such user criteria to derive the optimal

task distribution.

Later, a strategy for the task scheduling of BoT applications within a Cloud has

been proposed to minimize task execution time, resource usage and monetary

cost. Tasks may be either a subset of tasks dispatched by the Broker or a set

1Divisible Load scheduling theory is referred to as Divisible Load Theory (DLT) in literature.

140

of BoTs submitted directly by users or both. These tasks are segregated in to

two queues by assigning higher priority to certain tasks and lower priority to

uncertain tasks. We model the Cloud as an M/M/m system and formulate the

mathematical model to find out the makespan of the tasks in the system.

We conducted rigorous performance evaluation studies to evaluate our model

and compared our scheme with traditional FCFS batch scheduling scheme. We

specifically analyzed the influence on the amount of uncertain tasks present in

the system, number of resources available for each task and the number of BoT

applications present in the system and proved that our scheme considerably im-

proves the makespan, reduces the resource usage and lowers the monetary cost

incurred under all cases compared to batch scheme. One of the key findings

from our studies is in demonstrating the trade-off relationship between improv-

ing makespan and lowering the monetary cost for using the resources to run BoT

applications.

141

Chapter 7

Conclusions and Future Remarks

7.1 Conclusions

In this thesis, we have presented a Cloud-Broker architecture and Broker-mediated

Cloud Orchestration mechanisms to connect users and CSPs through the Broker.

Cloud users have several concerns for deploying their tasks/data into Cloud such

as choosing the right CSP, security concerns, trustworthiness of CSPs etc. On

the other hand, CSPs face several issues to enter and establish their business

in this new distributed computing platform such as understanding and adapting

to the market conditions, adapting to user requirements developing strategies to

increase the revenue etc. In this thesis, we developed a comprehensive architec-

ture for Cloud Broker and devised strategies for helping users and CSPs to make

appropriate business decisions from time to time.

We have described a comprehensive survey on the state-of-the-art Cloud Bro-

ker mechanisms existing in the literature and categorized them into three based

on the services offered by the Brokers. However the current Broker models are

not capable of addressing various concerns by users as well as CSPs. From the

142

user perspective, Cloud Broker arbitrage strategies lack in efficient modeling of

trust, reputation, security and user’s risk bias. From the CSP’s perspective, these

Broker models lacks in efficient mechanisms to understand and adapt to market

conditions in terms of devising market-oriented dynamic pricing strategies and

modeling user reliability.

In the first part of this thesis, we proposed three Cloud Broker arbitrage mecha-

nisms to address the above issues based on incentives, auction theory and VNM

utility theory. We proposed dynamic pricing strategies for CSPs based on the

market conditions, non-cooperative repeated game theoretic model for measuring

the reliability of users and mathematical formulations for calculating and main-

taining various parameters such as trust, reputation etc. We have conducted

extensive performance evaluation studies to understand the effect of various sys-

tem parameters under different market conditions. We found that incentive based

scheme is suitable for loyal users who use the Cloud for long time whereas sealed-

bid continuous double auction based model is suitable for users who use Cloud

in an ad-hoc manner. The scheme based on VNM utility theory is particularly

useful for users who are risk-averse in nature.

In the second part of this thesis, we proposed two Cloud Broker aggregation

mechanisms for IaaS Clouds one based on cooperative games and the other one

based on Markovian queues. We employed bargaining solutions propounded in

literature to efficiently determine the resource requirements for a set of tasks re-

questing for one type of resources so as to maximize the resource utilization and

to handle elastic user requirements. An important contribution of this work is in

introducing an asymmetric pricing scheme which takes into account user’s budget

143

requirements for resource allocation.

Further, we proposed a Cloud Broker aggregation mechanism for deploying tasks

in BoT applications and applications following divisible load theory, among mul-

tiple Clouds with different resource capabilities. We modeled the problem using

Markovian queues and formulated an optimization problem. We considered dif-

ferent user requirements such as deadline and budget specifications for determin-

ing the task aggregation. We further modeled task aggregation among a single

CSP with different datacenters using queueing theory and discussed efficient task

scheduling strategies to minimize makespan and improve resource usage. We

compared the results with existing strategies and showed that our scheduling

mechanism is effective under different situations.

Thus, our Broker can incorporate several features suitable for various situations.

It enables different arbitrage mechanisms for various kinds of users such as loyal

customers, risk-averse users etc. It also incorporates several intermediation fea-

tures such as trust, reputation and security indices about CSPs for users. Further,

the Broker enables aggregation of a set of tasks/data among multiple CSPs to

satisfy certain user requirements such as budget and/or deadline. Our Broker

can function either as an entity to connect several CSPs and users or as an entity

to connect several users to one CSP. It also helps CSPs to monitor the market

and develop market-oriented pricing strategies and understand user behavior in

order to adapt to the market situations.

144

7.2 Future Work

The Broker architecture discussed in this thesis has solved various issues pertain-

ing to users and CSPs in using Cloud environments efficiently. However, there

are still many issues left to be addressed. In this section, we briefly discuss some

of these issues.

1. The Broker arbitrage mechanisms described in first part of the thesis can

effectively handle several issues such as trust, risk etc. However, vendor

lock-in is not discussed in this thesis. In order to handle vendor lock-in

issues, we need to know the exact profile of all the CSPs participating

in the market and efficient mathematical models are required to form the

switching cost model. The switching cost includes possible end-of-contract

penalties, charges for format conversion and data/application switching and

possible additional charges for bandwidth usage.

2. The Broker can create a spot market where the CSPs can participate in

an auction market to offer their unused resources temporarily for short

duration of time. This could be achieved by creating a market place wherein

CSPs can inform Brokers about the amount and type of resources available

and users can bid for such limited resources. Special mathematical models

are required to formulate the spot pricing strategies based on supply and

demand of resources in a competitive environment.

3. The Broker architecture can also be extended to support few Broker inter-

mediation services such as Singel Sign-On (SSO). SSO can help users to

log-in only once to access all Cloud services available through the Broker.

145

It will also help users to access unified billing information and payment op-

tions. A SSO mechanism allows users to change their security information

such as password and billing details in a single place (at the Broker) for all

providers.

146

Appendix: Example for Data

Aggregation on Cloud -

Large-scale Polynomial

Multiplication

A.1 Introduction

As mentioned in Chapter 6, we can deploy large-scale divisible load applications

among multiple resources (belonging to one or more CSPs) to minimize the appli-

cation execution time. Now, we describe the deterministic modeling of one such

application considering various system parameters. Users can submit such appli-

cations to Broker and Broker can determine the fraction of data to be distributed

to different resources based on different system parameters and the amount of

input data.

Large scale polynomial product computations often used in applications such

as image processing and sensor networks data processing always pose consider-

147

able challenge when processed on networked computing systems. With non-zero

communication and computation time delays of the links and processors, the

computation becomes all the more challenging. We use Divisible Load Theory

(DLT) [94] to design efficient strategies to minimize the overall processing time for

performing large scale polynomial product computations in Cloud environments.

We consider a Cloud system (It can also be a set of CSPs among which the data

is distributed) with the Broker distributing the entire load to a set of virtual

CPU instances (VCI) and the VCIs propagating back the processed results to

Broker for post-processing. Thus Broker offers intermediation features such as

determining the optimal number of resources required and final post-processing

of the results in addition to data aggregation.

We use Point Value Representation (PVR) method for polynomial product com-

putation. It primarily involves four phases - Selection, Evaluation, Multiplication,

and Interpolation respectively [90]. With very large degree-bound n for the poly-

nomials, the time taken for product computations become prohibitively large and

hence, inputs to the VCIs are the point values selected in the Selection phase.

Also, it may be noted that the product computations are independent and hence

they can be divided arbitrarily among different VCIs.

As the problem setting demands a post-processing phase, we also consider so-

lution back propagation in our modeling. We consider only the case where each

main VCI for computation has an associated front-end VCI for the communi-

cation and hence a pair of VCIs can perform both computation (by main VCI)

and communication (by front-end VCI) operations concurrently. We also assume

that the polynomials to be used are available at the Broker. For simplicity, we

148

denote the term main VCI as processor in the remainder of the paper. We shall

now define the following terms:

1.Load Distribution: It is denoted as α and is defined as an m-tuple (α1, . .

. ,αm) such that 0 ≤ αi ≤ m and
∑m

i=0 αi = 1. This is called as a normalization

equation.

2. Processing Time: This is the total computation time taken by the resource

allocator VCI for a Compute Cloud system.

3. Availability of Link (Link availability) - The term availability of a link is

defined as the percentage of the link capacity that is available to transfer the load

from the resource allocator VCI to other processors.

4. Availability of VCI (VCI availability) - The term availability of a VCI is

defined as the percentage of the VCI capacity that is available for computation

of the load fractions assigned to that VCI.

5. Optimal Sequence: This is defined as the sequence of optimal load distri-

bution for a given arrangement such that the processing time is minimum.

6. Optimal Sequence Theorem (OST): In order to achieve minimum process-

ing time in a single-level tree network, the sequence of load distribution by the

root processor p0 should follow the order in which the link speed decrease.

A.2 Analysis For the Load Fractions

The Cloud consists of m + 1 processors/VCIs (p0, p1, p2,, pm) with p0 as the

Broker and m communication links (l1, l2, ...lm). Each of these VCIs has an asso-

ciated front-end VCI for the communication of the load (The aggregation module

in case of Broker). The VCIs and links are considered to be heterogeneous i.e.,

149

Figure A.1: Timing Diagram for Compute Cloud with solution-back propagation

they have different processing and communication speeds, respectively. The load

for the processors are the 2n points (for the Evaluation phase) which are selected

by the Broker p0. Initially, it is assumed that the load is available/submitted at

p0. The availabilities of the links and the processors, denoted as Al
i and A

p
i . re-

spectively, are also considered. We assume that the Broker p0 is always available,

i.e., Ap
0=1.

We now derive a closed form solution for the optimal load fraction for each pro-

cessor. It is assumed that the load distribution is from p1 to pm. The fraction

of the total load assigned to a processor pi is denoted as αi. The process of load

distribution is represented in the form of a timing diagram shown in Figure A.1 as

described in the literature [94]. From the timing diagram, we obtain the following

150

recursive equations for the load fractions to the processors1.

αiEi

Ap
i

+ θcp =
αi+1Ci+1

Al
i+1A

p
i+1

+
αi+1Ei+1

Ap
i+1

+ θcm + θcp − (
αiCi

Al
iA

p
i

+ θcm) (A.1)

for i = 1, 2, ..., m− 1.

It can be noted that, the overheads will have their influence only when a link

and/or a processor, is available and largely comes as additive parameters [95] (as

followed and demonstrated in DLT literature so far).

We can express αi as:

αi =
αi+1ai+1

ai
(A.2)

where ai =
Ei

Ap
i
+ Ci

Al
iA

p
i

. Expressing each of the load fractions in terms

of αm, we obtain,

αi =
αmMi

Ni
(A.3)

where Mi =
∏m

j=i+1 aj and Ni =
∏m−1

g=i ag. From Figure A.1, we obtain

the total processing time as follows.

α0E0 + θcp =
m
∑

i=1

(
αiCi

Al
iA

p
i

+ θcm) +
αmEm

Ap
m

+ θcp +
αmCm

Al
mA

p
m
+ θcm (A.4)

α0 = α1d1 + α2d2 + ... + αmdm + αmh+ αmdm +
(m+ 1)θcm

E0
(A.5)

1In this definition, without loss of generality, we assume θ
(i)
cm = θcm and θ

(i)
cp = θcp∀i for the

sake of analytical ease

151

where di =
Ci/Al

iA
p
i

E0
and h = Em/Ap

m

E0
Now we will derive an expression for

obtaining the load fraction αm assigned to the mth processor. The normalization

equation is given by
∑m

i=0 αi = 1

Expanding the normalization equation and substituting the value of α0 from

(A.5), we have,

α1(1 + d1) + α2(1 + d2) + ... + αm(1 + dm + h+ dm) = 1− (m+ 1)θcm
E0

(A.6)

Expressing each αi in terms of αm from (A.3) and further simplifying we

obtain αm as,

αm =
1− (m+1)θcm

E0

(1 + 2dm + h+
∑m−1

i=1 (
(1+di)(

∏m
j=i+1 aj)∏m−1

g=1 ag
))

(A.7)

Let

Xm =
(m+ 1)θcm

E0
(A.8)

and

Ym = (1 + 2dm + h+

m−1
∑

i=1

(
(1 + di)(

∏m
j=i+1 aj)

∏m−1
g=1 ag

)) (A.9)

then (A.7) can be rewritten as,

αm =
1−X(m)

Y (m)
(A.10)

From the expression for overhead factor (A.8), we can obviously infer that as

the number of processors (m) increases, the overhead factor also increases and

this overhead factor is also directly proportional to θcm. For a given load size,

152

we may not require all (m + 1) available processors (and hence the front-end

VCIs). The maximum number of processors that can be used for a given load

size can be calculated easily by knowing the overhead factor. We can see that

when X(m) is greater than or equal to 1, then the load fraction for processor

m becomes negative i.e., the overhead factor dominates. So a necessary and

sufficient condition to obtain a maximal number of processors that can be used

for a given load size is given by,

X(m) =
(m+ 1)θcm

E0
< 1 (A.11)

Thus in a given network of sufficiently large number of VCIs, say M, we need to

choose only k∗ ≤M processors that need to be assigned load fractions, where k∗

satisfies (A.11). This maximal set of processors k∗ can be determined recursively

using the recursive equations derived above. Obviously this consumes O(m) time.

We also verify these findings via our simulation experiments.

A.3 Performance Evaluation and Discussions of

the Results

In our simulation experiments, we generate random values for processor speeds,

link speeds, and processor and link availabilities. We use two polynomials of de-

gree 10, 000 each for our simulation experiments. The coefficients of all the points

are randomly generated following a uniform distribution at the resource allocator

p0. Then we derive the load fractions to be assigned to each processor available in

the Cloud and then we apply integer approximation technique. Polynomials are

153

Table A.1: Simulation parameters
L C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
20,000 1 0.2 0.9 0.6 0.8 0.5 0.7 0.4 1.2 1.3 0.8 1 0.9 0.9 0.5 0.8 0.7 0.6 0.9
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19
0.9 1 0.7 0.9 0.5 0.8 0.6 0.4 1 1.2 1.2 0.9 1.1 0.3 0.6 0.9 0.7 0.8 0.5 1.1
Ap

0 Ap
1 Ap

2 Ap
3 Ap

4 Ap
5 Ap

6 Ap
7 Ap

8 Ap
9 Ap

10 Ap
11 Ap

12 Ap
13 Ap

14 Ap
15 Ap

16 Ap
17 Ap

18 Ap
19

1 0.7 0.4 0.9 0.5 0.8 0.6 0.7 0.85 1 1 0.7 0.9 1 0.8 0.4 0.6 0.5 0.9 0.6
Al

0 Al
1 Al

2 Al
3 Al

4 Al
5 Al

6 Al
7 Al

8 Al
9 Al

10 Al
11 Al

12 Al
13 Al

14 Al
15 Al

16 Al
17 Al

18 Al
19

– 0.8 1 0.6 0.7 0.8 0.9 0.8 0.75 0.5 0.9 1 1 0.8 0.7 0.9 0.6 0.4 0.6 0.5

evaluated using the PVR method and multiplied and the resulting polynomial

is obtained using interpolation as described earlier. Values of different parame-

ters used for simulation are given in Table A.11. We carried out the simulation

experiments for polynomial multiplication for the following cases:

• Homogeneous networks with and without overheads (i.e. θcp and θcm) with

Al
i = Ap

j = 1, ∀i, j

• Homogeneous networks in an ideal case where we consider the scenario with

highly available links and VCIs are connected together (In the other cases,

highly available links may not be connected to highly available VCIs.)

• Heterogeneous networks using Optimal Sequence Theorem (OST)

• Heterogeneous networks with processor and link availability

We consider processing time as performance metric. It is studied for different

values of communication overheads θcm, as it has direct influence in deciding a

maximal set of VCIs to be used and hence on the performance too. This also

influences the number of VCIs needs to be requested from the Cloud Service

Provider and determines the economic factors.

1Note that the values of Ei and Ci are set to 1 for homogeneous experiments.

154

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

No. Of Processors (m)

P
ro

ce
ss

in
g

 T
im

e

Processing Time vs Number of processors

Homogeneous − With Overheads

Heterogeneous − OST

Heterogeneous − Availability

Homogeneous − Ideal

Homogeneous − Without Overheads

(a)

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

No. Of Processors (m)

P
ro

ce
ss

in
g

 T
im

e

Processing Time vs Number of processors

Homogeneous − With Overheads

Heterogeneous − OST

Heterogeneous − Availability

Homogeneous − Ideal

Homogeneous − Without Overheads

(b)

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

No. Of Processors (m)

P
ro

ce
ss

in
g

 T
im

e

Processing Time vs Number of processors

Homogeneous − With Overheads

Heterogeneous − OST

Heterogeneous − Availability

Homogeneous − Ideal

Homogeneous − Without Overheads

(c)

Figure A.2: Processing Time vs Number of processors (a) θcm = 0.01 (b)θcm =
0.05 (c) θcm = 0.1

A.3.1 Processing time

The performance of the system in terms of processing time with respect to number

of processors for different values of θcm are plotted in Figures 2(a), 2(b) and

2(c). When a homogeneous Compute Cloud with no overheads is considered, the

processing time decreases with the increase in the number of processors. But

for all other cases, the processing time decreases initially with more number of

processors up to some extent and then the processing time increases if we increase

the number of processors. This is due to the effect of X(m) in equation (A.10).

That is, as the communication overhead increases, the system takes more time

to transfer the load to leaf nodes. As the value of θcm increases, X(m) increases

155

and hence αm, the load to processor m decreases. From equation (A.3), it is

clear that as the value of αm decreases, the load fractions for leaf nodes αiś also

decreases linearly. This leads to an increased load in resource allocator and hence

the processing time increases. This effect is more evident in Figures 2(b) and 2(c)

for the cases with and without overheads.

For example, when the value of θcm is 0.01, it uses all processors and the processing

time is least when the number of processors is m = 9 in case of heterogeneous

Compute Cloud system, between 8-12 for homogeneous Compute Cloud with

overheads and m = 6 for homogeneous Compute Cloud under an ideal condition.

The ideal condition is that, we physically connect highly available links to highly

available processors in a decreasing order and distribute the load. In case of

homogeneous Compute Cloud with no overheads, we can observe that beyond

m = 12, the rate at which the processing time decreases is minimum. Hence one

can utilize 12 processors without having to utilize all 20 processors to achieve

high performance.

When the value of θcm is 0.05, the maximum number of processors required to

process the entire load is less than the number of available processors in some

cases. For example, the maximum number of processors required to process the

entire load in case of a heterogeneous Compute Cloud using OST is 19 even

though 20 processors are available to do the operation. This is because, if the

number of processors are increased beyond this value, then the overhead outweighs

the processing time. Also the processing time is minimum when the number of

processors is 3 for a heterogeneous Compute Cloud using OST and 4 for all other

cases.

156

0 2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

No. Of Processors (m)

P
ro

ce
ss

in
g

 T
im

e

Processor Speed

Processor Availability

Link Speed

Link Availability

(a)

0 5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

No. Of Processors (m)

P
ro

ce
ss

in
g

 T
im

e

Processor Speed

Processor Availability

Link Speed

Link Availability

(b)

0 5 10 15 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

No. Of Processors (m)

P
ro

ce
ss

in
g

 T
im

e

Processor Speed

Processor Availability

Link Speed

Link Availability

(c)

Figure A.3: Processing Time: Influence of system characteristics in selecting the
required VCIs when the number of processors required is less than the available
number of processors (a) θcm = 0.01 (b)θcm = 0.05 (c) θcm = 0.1

When we further increase the value of θcm to 0.1, then the optimal number of

processors is further reduced. In all cases except the case when the overhead is not

considered for a homogeneous Compute Cloud, the optimal number of processors

required to process the entire load is only 3.

A.3.2 Strategies for eliminating redundant processors

In all above cases, when the number of processors required is less than the actual

number of available processors, we selected the required number of processors

in sequence. In the Figures 3(a), 3(b) and 3(c), we show the influence of sys-

tem characteristics - link speed, processor speed, link availability and processor

availability - in selecting the required processors when the number of processors

157

required is less than the available number of processors. The figures contain plots

for four different cases - (1) Eliminate the slowest links; (2) Eliminate the slow-

est processors; (3) Eliminate the least available links and 4) Eliminate the least

available processors.

Processing time is the least in case when we eliminate the slower links for all

values of θcm. The optimal processing time obtained by eliminating slower links

is less compared to that obtained by eliminating slower processors. This is be-

cause a faster processor can have a slow (or poorly available) link which will take

more time to communicate. Similarly, the optimal processing time obtained by

selecting processors with higher link availability compared to the processing time

obtained by selecting processors with higher processor availability.

A.4 Summary

Thus we can observe that for a given load and application, Broker can derive

optimal number of processors required for processing as well as the fraction of

data for each processor based on network heterogeneity. In this way, Broker

can incorporate some important intermediation services which can help users to

reduce their application execution time and the total monetary cost. Further, the

application described here is a representative example and any user application

which comes under DLT and needs a post processing can use this model to derive

the load fractions and optimal number of resources required.

158

References

[1] Jackie Fenn, Pete Basiliere, Kathy Harris, and Daryl C. Plummer. After the

next big thing: The consequences of a cloud computing scenario. Technical

report, Gartner Inc., May 2009. xiii, 12

[2] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. A

parametrization of the auction design space. Games and Economic Behavior,

35(1-2):304–338, April 2001. xiii, 35

[3] Kai Hwang, Geoffrey Fox, and Jack Dongarra. Distributed and Cloud Com-

puting: From Parallel Processing to the Internet of Things. Morgan Kauf-

mann, 10/2011 2011. xix, 2, 3

[4] Buyya Rajkumar, Yeo Chee Shin, Venugopal Srikumar, Broberg James, and

Brandic Ivona. Cloud computing and emerging it platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Gener. Com-

put. Syst., 25(6):599–616, June 2009. xix, 3

[5] Cloudorado. Cloud computing price comparison engine, March 2012.

http://www.cloudorado.com/. xix, 62, 63

[6] Armbrust Michael, Fox Armando, Griffith Rean, Joseph Anthony D.,

159

http://www.cloudorado.com/

REFERENCES

Katz Randy H., Konwinski Andrew, Lee Gunho, Patterson David A., Rabkin

Ariel, Stoica Ion, and Zaharia Matei. Above the clouds: A berkeley view

of cloud computing. Technical Report UCB/EECS-2009-28, EECS Depart-

ment, University of California, Berkeley, Feb 2009. 1

[7] Mell; Peter and Timothy Grance. The nist definition of cloud computing,

2011. 1

[8] Mdric Morel, Manuel Alves, and Pascal Cadet. Google Apps: Mastering

Integration and Customization. Packt Publishing, Limited, 2011. 2

[9] Sitaram D. and Manjunath G. Moving To The Cloud: Developing Apps in

the New World of Cloud Computing. Elsevier Science, 2011. 4

[10] Charles Severance. Using Google App Engine. O’Reilly Series. O’Reilly, 2009.

4

[11] Tom Rizzo, Razi bin Rais, Michiel van Otegem, Darrin Bishop, George Durzi,

Zoiner Tejada, and David Mann. Programming Microsoft’s Clouds: Azure

and Office 365. John Wiley and Sons, 2012. 4

[12] Murty J. Programming Amazon Web Services: S3, EC2, SQS, FPS, and

SimpleDB. O’Reilly Series. O’Reilly, 2008. 4, 49, 103

[13] J. Van Vliet and F. Paganelli. Programming Amazon Ec2. Head First Series.

O’Reilly Media, 2011. 6

[14] David W. Cearley and David Mitchell Smith. Five cloud computing trends

that will affect your cloud strategy through 2015. Technical report, Gartner

Inc., Feb 2012. 12

160

REFERENCES

[15] Attila Kertesz and Peter Kacsuk. A taxonomy of grid resource brokers. In

Pter Kacsuk, Thomas Fahringer, and Zsolt Nmeth, editors, Distributed and

Parallel Systems, pages 201–210. Springer US, 2007. 13

[16] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger.

Economic models for resource management and scheduling in grid com-

puting. Concurrency and Computation: Practice and Experience, 14(13-

15):1507–1542, 2002. 13

[17] A. Kertesz and T. Prokosch. The anatomy of grid resource management.

In Franco Davoli, Norbert Meyer, Roberto Pugliese, and Sandro Zappatore,

editors, Remote Instrumentation and Virtual Laboratories, pages 123–132.

Springer US, 2010. 13

[18] Bo An, Victor Lesser, David Irwin, and Michael Zink. Automated negotia-

tion with decommitment for dynamic resource allocation in cloud computing.

In Proceedings of the 9th International Conference on Autonomous Agents

and Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 981–988,

Richland, SC, 2010. International Foundation for Autonomous Agents and

Multiagent Systems. 14, 25

[19] Mohan Baruwal Chhetri, Quoc Bao Vo, Ryszard Kowalczyk, and Cam Lan

Do. Cloud broker: helping you buy better. In Proceedings of the 12th in-

ternational conference on Web information system engineering, WISE-2011,

pages 341–342, Berlin, Heidelberg, 2011. Springer-Verlag. 14, 25

[20] Y Sundeep, Saurabh Kumar Jain, Saranya H V, Sai Manoj P D, and

Kailash Chandra Raythour. Cloud broker. Technical Report IIITB-OS-2011-

161

REFERENCES

5D, International Institute of Information Technology, Bangalore, April 2011.

14, 25

[21] Venkatarami Reddy Chintapalli. A deadline and budget constrained cost

and time optimization algorithm for cloud computing. In Ajith Abraham,

Jaime Lloret Mauri, John F. Buford, Junichi Suzuki, and Sabu M. Thampi,

editors, Advances in Computing and Communications, volume 193 of Com-

munications in Computer and Information Science, pages 455–462. Springer

Berlin Heidelberg, 2011. 14, 25

[22] Fei Teng and Frederic Magoules. A new game theoretical resource allocation

algorithm for cloud computing. In Paolo Bellavista, Ruay-Shiung Chang,

Han-Chieh Chao, Shin-Feng Lin, and Peter Sloot, editors, Advances in Grid

and Pervasive Computing, volume 6104 of Lecture Notes in Computer Sci-

ence, pages 321–330. Springer Berlin, Heidelberg, 2010. 14, 25

[23] Kassidy P. Clark, Martijn Warnier, and Frances M. T. Brazier. An intelli-

gent cloud resource allocation service - agent-based automated cloud resource

allocation using micro-agreements. In In the proceedings of the 2nd Inter-

national Conference on Cloud Computing and Services Science (CLOSER

2012), page ??, 2012. 15, 25

[24] Saurabh Kumar Garg, Christian Vecchiola, and Rajkumar Buyya. Mandi: a

market exchange for trading utility and cloud computing services. Accepted

for publication in The Journal of Supercomputing, 2011. 15, 25

[25] Mohsen Amini Salehi and Rajkumar Buyya. Adapting market-oriented

scheduling policies for cloud computing. In Proceedings of the 10th inter-

162

REFERENCES

national conference on Algorithms and Architectures for Parallel Process-

ing - Volume Part I, ICA3PP’10, pages 351–362, Berlin, Heidelberg, 2010.

Springer-Verlag. 15, 25

[26] Praveen Ganghishetti, Rajeev Wankar, Rafah M. Almuttairi, and

C. Raghavendra Rao. Rough set based quality of service design for service

provisioning in clouds. In Proceedings of the 6th international conference

on Rough sets and knowledge technology, RSKT’11, pages 268–273, Berlin,

Heidelberg, 2011. Springer-Verlag. 16, 25

[27] Rodrigo N. Calheiros, Adel Nadjaran Toosi, Christian Vecchiola, and Ra-

jkumar Buyya. A coordinator for scaling elastic applications across multiple

clouds. Future Generation Computer Systems, (0):–, 2012. 16, 25

[28] Shifeng Shang, Jinlei Jiang, Yongwei Wu, Guangwen Yang, and Weimin

Zheng. A knowledge-based continuous double auction model for cloud mar-

ket. In Proceedings of the 2010 Sixth International Conference on Semantics,

Knowledge and Grids, SKG ’10, pages 129–134, Washington, DC, USA, 2010.

IEEE Computer Society. 16, 25

[29] Salvatore Venticinque, Rocco Aversa, Beniamino Di Martino, Massimilano

Rak, and Dana Petcu. A cloud agency for sla negotiation and management.

In Proceedings of the 2010 conference on Parallel processing, Euro-Par 2010,

pages 587–594, Berlin, Heidelberg, 2011. Springer-Verlag. 14, 25

[30] Mohammad Mehedi Hassan and Eui-Nam Huh. Resource management for

data intensive clouds through dynamic federation: A game theoretic ap-

163

REFERENCES

proach. In Borko Furht and Armando Escalante, editors, Handbook of Data

Intensive Computing, pages 169–188. Springer New York, 2011. 17, 26

[31] Pradeep Kumar Tripathi, Surendra Mishra, and Pankaj Kawadkar. Cloud

aggregation and bursting for object based sharable environment. Interna-

tional Journal of Advanced Computer Research (IJACR), 1(3):5, 2011. 17,

26

[32] Ines Houidi, Marouen Mechtri, Wajdi Louati, and Djamal Zeghlache. Cloud

service delivery across multiple cloud platforms. In Proceedings of the 2011

IEEE International Conference on Services Computing, SCC ’11, pages 741–

742, Washington, DC, USA, 2011. IEEE Computer Society. 17, 26

[33] Eric Kuada and Henning Olesen. A social network approach to provision-

ing and management of cloud computing services for enterprises. In The

Second International Conference on Cloud Computing, GRIDs, and Virtu-

alizationThe Second International Conference on Cloud Computing, GRIDs,

and Virtualization, Rome, Italy, CLOUD COMPUTING 2011, pages 98–104,

2011. 17, 26

[34] Alistair Barros and Uwe Kylau. Service delivery framework - an architec-

tural strategy for next-generation service delivery in business network. In

Proceedings of the 2011 Annual SRII Global Conference, SRII ’11, pages

47–58, Washington, DC, USA, 2011. IEEE Computer Society. 17, 26

[35] J. Gutierrez-Garcia and Kwang Sim. Ga-based cloud resource estimation

for agent-based execution of bag-of-tasks applications. Information Systems

Frontiers, pages 1–27. 10.1007/s10796-011-9327-8. 17, 26

164

REFERENCES

[36] Xiaoyu Yang, Bassem Nasser, Mike Surridge, and Stuart Middleton. A

business-oriented cloud federation model for real-time applications. Future

Generation Computer Systems, (0):–, 2012. 18, 26

[37] Johan Tordsson, Rubn S. Montero, Rafael Moreno-Vozmediano, and Igna-

cio M. Llorente. Cloud brokering mechanisms for optimized placement of

virtual machines across multiple providers. Future Generation Computer

Systems, 28(2):358 – 367, 2012. 18, 26

[38] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-

optimal scheduling in hybrid iaas clouds for deadline constrained workloads.

In Proceedings of the 2010 IEEE 3rd International Conference on Cloud

Computing, CLOUD ’10, pages 228–235, Washington, DC, USA, 2010. IEEE

Computer Society. 18, 26

[39] Jose Luis Lucas-Simarro, Rafael Moreno-Vozmediano, Ruben S. Montero,

and Ignacio M. Llorente. Scheduling strategies for optimal service deploy-

ment across multiple clouds. Future Generation Computer Systems, (0):–,

2012. 18, 26

[40] Americo Sampaio and Nabor Mendonca. Uni4cloud: an approach based on

open standards for deployment and management of multi-cloud applications.

In Proceedings of the 2nd International Workshop on Software Engineering

for Cloud Computing, SECLOUD ’11, pages 15–21, New York, NY, USA,

2011. ACM. 18, 26

[41] OCCI. Open cloud computing interface (occi), 2012. http://occi-wg.org/.

18

165

http://occi-wg.org/

REFERENCES

[42] OVF. Open virtualization format (ovf), 2012.

http://www.dmtf.org/standards/ovf. 18

[43] Srijith K. Nair, Sakshi Porwal, Theo Dimitrakos, Ana Juan Ferrer, Johan

Tordsson, Tabassum Sharif, Craig Sheridan, Muttukrishnan Rajarajan, and

Afnan Ullah Khan. Towards secure cloud bursting, brokerage and aggrega-

tion. In Proceedings of the 2010 Eighth IEEE European Conference on Web

Services, ECOWS ’10, pages 189–196, Washington, DC, USA, 2010. IEEE

Computer Society. 19, 26

[44] Kong E. Cheng, Yitzchak M. Gottlieb, Gary M. Levin, and Fuchun Joe

Lin. Service brokering and mediation: Enabling next generation market and

customer driven service delivery. In Proceedings of the 2011 Tenth Interna-

tional Symposium on Autonomous Decentralized Systems, ISADS ’11, pages

525–530, Washington, DC, USA, 2011. IEEE Computer Society. 19, 27

[45] Theo Dimitrakos. Common capabilities for service oriented infrastructures

and platforms: An overview. In Proceedings of the 2010 Eighth IEEE Euro-

pean Conference on Web Services, ECOWS ’10, pages 181–188, Washington,

DC, USA, 2010. IEEE Computer Society. 19, 27

[46] Stella Gatziu Grivas, Tripathi Uttam Kumar, and Holger Wache. Cloud

broker: Bringing intelligence into the cloud. In Proceedings of the 2010 IEEE

3rd International Conference on Cloud Computing, CLOUD ’10, pages 544–

545, Washington, DC, USA, 2010. IEEE Computer Society. 20, 27

[47] Huaglory Tianfield. Cloud computing architectures. In Proceedings of the

166

http://www.dmtf.org/standards/ovf

REFERENCES

IEEE International Conference on Systems, Man and Cybernetics, Anchor-

age, Alaska, USA, October 9-12, pages 1394–1399, 2011. 20, 27

[48] Zhiyun Guo, Meina Song, and Qian Wang. Policy-based market-oriented

cloud service management architecture. In Yanwen Wu, editor, Computing

and Intelligent Systems, volume 233 of Communications in Computer and

Information Science, pages 284–291. Springer Berlin Heidelberg, 2011. 20,

27

[49] Gaurav Raj. An efficient broker cloud management system. In Proceedings

of the International Conference on Advances in Computing and Artificial

Intelligence, ACAI ’11, pages 72–76, New York, NY, USA, 2011. ACM. 20,

27

[50] Lee Gillam, Bin Li, and John O.Loughlin. Adding cloud performance to

service level agreements. 2nd International Conference on Cloud Computing

and Services Science, CLOSER 2012, 2011. 20, 27

[51] He Yuan Huang, Bin Wang, Xiao Xi Liu, and Jing Min Xu. Identity fed-

eration broker for service cloud. In Proceedings of the 2010 International

Conference on Service Sciences, ICSS ’10, pages 115–120, Washington, DC,

USA, 2010. IEEE Computer Society. 20, 27

[52] C. Pahl, V. Gacitua-Decar, M.X. Wang, and K.Y. Bandara. Flexible coor-

dination techniques for dynamic cloud service collaboration. In Guadalupe

Ortiz and Javier Cubo, editors, Adaptive Web Services for Modular and

Reusable Software Development: Tactics and Solution, page 411. IGI Global,

2012. 20, 27

167

REFERENCES

[53] Yichao Yang, Yanbo Zhou, Lei Liang, Dan He, and Zhili Sun. A sevice-

oriented broker for bulk data transfer in cloud computing. In Grid and

Cooperative Computing (GCC), 2010 9th International Conference on, pages

264 –269, nov. 2010. 20, 27

[54] Owen Rogers and Dave Cliff. A financial brokerage model for cloud com-

puting. Journal of Cloud Computing: Advances, Systems and Applications,

1(1):2, 2012. 20, 27

[55] Hao Li, Jianhui Liu, and Guo Tang. A pricing algorithm for cloud computing

resources. In Proceedings of the 2011 International Conference on Network

Computing and Information Security - Volume 01, NCIS ’11, pages 69–73,

Washington, DC, USA, 2011. IEEE Computer Society. 20, 27

[56] Elizabeth Chang, Tharam Dillon, and Farookh K. Hussain. Trust and Se-

curity in Service-Oriented Environments. John Wiley & Sons, Ltd, 2006.

31

[57] Xiaoyong Tang, Kenli Li, Zeng Zeng, and Bharadwaj Veeravalli. A

novel security-driven scheduling algorithm for precedence constrained tasks

in heterogeneous distributed systems. IEEE Transactions on computers,

60(17):1017–1029, 2011. 31

[58] John Alcock Ian Mitchell. Cloud security: The definitive guide to managing

risk in the new ict landscape. White paper, Fugistu Services Ltd, 2011. 34

[59] R Preston McAfee and John McMillan. Auctions and bidding. Journal of

Economic Literature, 25(2):699–738, June 1987. 35

168

REFERENCES

[60] V. Bhaskar and Ichiro Obara. Belief-based equilibria in the repeated pris-

oners’ dilemma with private monitoring. Journal of Economic Theory,

102(1):40 – 69, 2002. 39, 40

[61] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems, 1998.

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/9809099. 42

[62] A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic Theory.

Oxford University Press, 1995. 53, 57, 59

[63] William Sears, Zhen Yu, and Yong Guan. An adaptive reputation-based trust

framework for peer-to-peer applications. In Proceedings of the Fourth IEEE

International Symposium on Network Computing and Applications, NCA ’05,

pages 13–20, Washington, DC, USA, 2005. IEEE Computer Society. 56, 57

[64] C. Aliprantis and S. Chakrabarti. Games and Decision Making. Oxford

University Press, 2010. 57, 58

[65] Wenjing Wang, M. Chatterjee, and K. Kwiat. Attacker detection game in

wireless networks with channel uncertainty. In Communications (ICC), 2010

IEEE International Conference on, pages 1 –5, may 2010. 58

[66] S. Sengupta, M. Chatterjee, and K.A. Kwiat. A game theoretic framework

for power control in wireless sensor networks. Computers, IEEE Transactions

on, 59(2):231 –242, feb. 2010. 58

[67] Kai Shen, Shoubao Yang, Wei Chen, Xiaoqian Liu, and Bin Wu. Balancing

risk and price: An opportunity-cost approach for job scheduling in the grid

169

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/9809099

REFERENCES

market. In Proceedings of the Sixth International Conference on Grid and

Cooperative Computing, GCC ’07, pages 521–527, Washington, DC, USA,

2007. IEEE Computer Society. 58, 59

[68] Abhinay Muthoo. Bargaining theory with applications. Cambridge University

Press, New York, NY, USA, 1999. 85, 88, 89, 90, 91, 92

[69] Zhangyu Guan, Dongfeng Yuan, and Haixia Zhang. Novel coopetition

paradigm based on bargaining theory or collaborative multimedia resource

management. In PIMRC, pages 1–5. IEEE, 2008. 85

[70] Xiaodong Yan, Zhijuan Wang, Weijun Cheng, and Liping Zhu. A pricing

strategy model based on economy theory in mobile grids. In Wireless Com-

munications, Networking and Mobile Computing, 4th International Confer-

ence on, WiCOM ’08, pages 1–4, 2008. 85

[71] Antonella Di Stefano and Corrado Santoro. An economic model for resource

management in a grid-based content distribution network. Future Gener.

Comput. Syst., 24(3):202–212, March 2008. 85

[72] Preetam Ghosh, Kalyan Basu, and Sajal K. Das. A game theory-based

pricing strategy to support single/multiclass job allocation schemes for

bandwidth-constrained distributed computing systems. IEEE Trans. Par-

allel Distrib. Syst., 18(3):289–306, March 2007. 85

[73] Riky Subrata, Albert Y. Zomaya, and Bjorn Landfeldt. A cooperative game

framework for qos guided job allocation schemes in grids. IEEE Trans.

Comput., 57(10):1413–1422, October 2008. 86

170

REFERENCES

[74] B.J.S. Chee and J. Curtis Franklin. Cloud Computing: Technologies and

Strategies of the Ubiquitous Data Center. An Auerbach book. Taylor &

Francis, 2009. 86

[75] Xiren Cao. Preference functions and bargaining solutions. In Decision and

Control, 1982 21st IEEE Conference on, volume 21, pages 164–171, 1982.

91, 94

[76] Francois Berenger, Camille Coti, and Kam Y. J. Zhang. Par: a parallel and

distributed job crusher. Bioinformatics, 26(22):2918–2919, 2010. 107

[77] E. N. Cáceres, H. Mongelli, L. Loureiro, C. Nishibe, and S. W. Song. Per-

formance results of running parallel applications on the integrade. Concurr.

Comput. : Pract. Exper., 22(3):375–393, March 2010. 107

[78] Santos E. L. Neto, L. E. F. Tenrio, E. J. S. Fonseca, S. B. Cavalcanti, and

J. M. Hickmann. Parallel visualization of the optical pulse through a doped

optical fiber. In In Proceedings of Annual Meeting of the Division of Com-

putational Physics (abstract), 2001. 107

[79] James Cowie, Bruce Dodson, R. Marije Elkenbracht-Huizing, Arjen K.

Lenstra, Peter L. Montgomery, and Jörg Zayer. A world wide number field

sieve factoring record: On to 512 bits. In Proceedings of the International

Conference on the Theory and Applications of Cryptology and Information

Security: Advances in Cryptology, ASIACRYPT ’96, pages 382–394, London,

UK, UK, 1996. Springer-Verlag. 108

[80] Doruk Bozdag, Catalin C. Barbacioru, and Umit V. Catalyurek. Parallel

short sequence mapping for high throughput genome sequencing. In Pro-

171

REFERENCES

ceedings of the 2009 IEEE International Symposium on Parallel&Distributed

Processing, IPDPS ’09, pages 1–10, Washington, DC, USA, 2009. IEEE Com-

puter Society. 108

[81] Dimitri Bertsekas and Robert Gallager. Data networks. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1987. 109, 123, 125

[82] Bharadwaj Veeravalli and Nukala Viswanadham. Suboptimal solutions using

integer approximation techniques for scheduling divisible loads on distributed

bus networks. IEEE Transactions on Systems, Man, and Cybernetics, Part

A, 30(6):680–691, 2000. 111

[83] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and

Sudipta Sengupta. Vl2: A scalable and flexible data center network. In Proc.

of the ACM SIGCOMM 2009 conference on Data communication (SIG-

COMM’09), Barcelona, Spain, August 2009. 115

[84] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,

commodity data center network architecture. In Proc. of the ACM SIG-

COMM 2008 conference on Data communication (SIGCOMM’08), pages

63–74, Seattle, Washington, USA, August 2008. 115

[85] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar, A. M. Mehta,

R. Pichel, A. Horiuchi, V. Shestak, M. Al-Otaibi, Y. G. Krishnamurthy,

S. A. Ali, J. Zhang, M. Aydin, K. Guru P. Lee, M. Raskey, and A. J. Pippin.

Robust static allocation of resources for independent tasks under makespan

172

REFERENCES

and dollar cost constraints. Journal of Parallel and Distributed Computing,

67(4):400–416, 2007. 118

[86] S. T. McCormick and M. L. Pinedo. Scheduling n independent jobs on m uni-

form machines with both flowtime and makespan objectives: A parametric

analysis. ORSA Journal on Computing, 7(1):63–77, 1995. 118

[87] Alexandru Iosup, Ozan Sonmez, Shanny Anoep, and Dick Epema. The per-

formance of bags-of-tasks in large-scale distributed systems. In Proceedings

of the 17th international symposium on High performance distributed com-

puting, HPDC ’08, pages 97–108, New York, NY, USA, 2008. ACM. 131,

132

[88] Cosimo Anglano, Massimo Canonico, Marco Guazzone, Marco Botta, Ser-

gio Rabellino, Simone Arena, and Guglielmo Girardi. Peer-to-peer desktop

grids in the real world: The sharegrid project. In Proceedings of the 2008

Eighth IEEE International Symposium on Cluster Computing and the Grid,

CCGRID ’08, pages 609–614, Washington, DC, USA, 2008. IEEE Computer

Society. 132

[89] D. Turgay Altilar and Yakup Paker. An optimal scheduling algorithm for

parallel video processing. In In IEEE Int. Conference on Multimedia Com-

puting and Systems. IEEE Computer. Society Press, 1998. 140

[90] Ganesh Neelakanta Iyer, Bharadwaj Veeravalli, and Sakthi Ganesh Krish-

namoorthy. On handling large-scale polynomial multiplications in compute

cloud environments using divisible load paradigm. Aerospace and Electronic

Systems, IEEE Transactions on, 48(1):820 –831, jan. 2012. 140, 148

173

REFERENCES

[91] Y. Ji, D.C. Marinescu, W. Zhang, X. Zhang, X. Yan, and T.S Baker. A

model-based parallel origin and orientation refinement algorithm for cryotem

and its application to the study of virus structures. Journal of Structural

Biology, 154(1):1–19, 2006. 140

[92] Arnaud Legrand, Alan Su, and Frédéric Vivien. Minimizing the stretch when

scheduling flows of biological requests. In Proceedings of the eighteenth an-

nual ACM symposium on Parallelism in algorithms and architectures, SPAA

’06, pages 103–112, New York, NY, USA, 2006. ACM. 140

[93] Siani Pearson and Azzedine Benameur. Privacy, security and trust issues

arising from cloud computing. In Proceedings of the 2010 IEEE Second Inter-

national Conference on Cloud Computing Technology and Science, CLOUD-

COM ’10, pages 693–702, Washington, DC, USA, 2010. IEEE Computer

Society. 140

[94] Veeravalli Bharadwaj, Thomas G. Robertazzi, and Debasish Ghose. Schedul-

ing Divisible Loads in Parallel and Distributed Systems. IEEE Computer

Society Press, Los Alamitos, CA, USA, 1996. 148, 150

[95] Bharadwaj Veeravalli, Xiaolin Li, and Chi Chung Ko. On the influence of

start-up costs in scheduling divisible loads on bus networks. IEEE Trans.

Parallel Distrib. Syst., 11(12):1288–1305, December 2000. 151

174

Author’s Publications

[Book Chapter] Ganesh Neelakanta Iyer and Bharadwaj Veeravalli, “Design

and Analysis of Broker-Mediated Cloud Aggregation Mechanisms Using Marko-

vian Queues for Scheduling Bag-of-Tasks” To Appear as a Book Chapter in Large

Scale Network-centric Computing Systems, A. Y. Zomaya and H. Sarbazi-Azad,

Eds., John Wiley & Sons, Hoboken, NJ, USA 2012.

[Journal] Ganesh Neelakanta Iyer, Bharadwaj Veeravalli and Sakthi Ganesh

Krishnamoorthy, “On Handling Large Scale Polynomial Multiplications in Com-

pute Cloud Environments using Divisible Load Paradigm.”, IEEE Transactions

on Aerospace and Electronic Systems, vol.48, no.1, pp.820-831, January 2012.

[Conference] Ganesh Neelakanta Iyer, Ramkumar Chandrasekaran and Bharad-

waj Veeravalli, “Auction-based vs. Incentive-based Multiple-Cloud Orchestration

Mechanisms”, IEEE International Conference on Communication, Networks and

Satellite (COMNETSAT 2012), July 2012 (Accepted).

[Conference] Ganesh Neelakanta Iyer and Bharadwaj Veeravalli, “On the

Resource Allocation and Pricing Strategies in Compute Clouds Using Bargaining

Approaches”, IEEE International Conference on Networks (ICON 2011), Singa-

pore, December 2011.

175

[Journal] Lingfang Zeng, Ganesh Neelakanta Iyer and Bharadwaj Veeravalli,

“Priority Based Task Scheduling for Bag-of-Tasks Applications in Cloud Com-

puting Environments”, Journal of Parallel and Distributed Computing (JPDC),

Elsevier 2012 (Pending Decision Status).

[Journal] Ganesh Neelakanta Iyer, Bharadwaj Veeravalli and Ramkumar

Chandrasekaran, “Broker based Cloud Service Arbitrage Mechanisms using Sealed-

bid Double Auctions and Incentives”, IEEE Transactions on Network and Service

Management, IEEE 2012 (Under Review).

[Journal] Ganesh Neelakanta Iyer, Li Xiao and Bharadwaj Veeravalli, “Risk

Aware Cloud Broker Arbitrage Mechanism Based on Trust and Dynamic Pricing

Strategies”, IEEE Transactions on Parallel and Distributed Systems, IEEE 2012

(Under Review).

[Journal] Ganesh Neelakanta Iyer and Bharadwaj Veeravalli, “Taxonomy of

Broker Mediated Cloud Services Architectures”, IEEE Transactions on Comput-

ers, IEEE 2012 (Under Review).

176

	Acknowledgements
	Contents
	Summary
	List of Figures
	List of Tables
	Acronyms
	Notations
	1 Introduction
	1.1 Cloud Service Delivery Models
	1.2 Key Challenges in Cloud Computing
	1.3 Objectives and organization of the thesis
	1.3.1 General focus, Contributions and Scope
	1.3.2 Outline of the thesis

	2 Problem Statement, Background and System Architecture
	2.1 Problem Formulation and Motivation
	2.1.1 Need for Broker-based Cloud Orchestration mechanisms
	2.1.2 Cloud Broker Service Models

	2.2 Literature Review
	2.2.1 Cloud Service Arbitrage Models
	2.2.2 Cloud Service Aggregation Models
	2.2.3 Cloud Service Intermediation

	2.3 Cloud Service Broker System Architecture
	2.3.1 Job Distribution Manager (JDM)
	2.3.2 Operations Monitor (OM)
	2.3.3 Price Manager (PM)

	2.4 Chapter Summary

	PART I: MULTIPLE CLOUD ARBITRAGE MECHANISMS
	3 Broker-based Cloud Service Arbitrage Mechanisms using Sealed-bid Double Auctions and Incentives
	3.1 Introduction
	3.2 Important Terms and Definitions
	3.3 Incentive-based Cloud Arbitrage Mechanism
	3.3.1 Dynamic Pricing strategies for CSPs
	3.3.2 Handling Security aspects by CSP

	3.4 Auction-based Multiple-Cloud Orchestration Mechanism
	3.4.1 Pricing strategies for CSPs and Users
	3.4.2 Calculation of Reputation by the Broker
	3.4.3 Calculation of Trust by the User

	3.5 Belief-based Game-theoretic Model for User Reliability
	3.6 Performance Evaluation
	3.6.1 Comparison of the revenues obtained in various cases
	3.6.2 Effect of user preferences in the utility function
	3.6.3 Effect of CSP preferences to participate in the proposed schemes
	3.6.4 User migration between the proposed schemes
	3.6.5 Cloud market offering multiple services
	3.6.6 Remarks

	3.7 Chapter Summary

	4 Risk-aware Multiple Cloud Orchestration Mechanism
	4.1 Introduction
	4.2 The Proposed Risk-based Cloud Broker Arbitrage Mechanism
	4.2.1 Formulation of Trust Function
	4.2.2 Formulation of User's Utility Function
	4.2.3 Dynamic Pricing Strategies

	4.3 Performance Evaluation
	4.3.1 Simulation Setup
	4.3.2 Effect of Dynamic Credit with static price
	4.3.3 Effect of Dynamic Credit with dynamic pricing strategies
	4.3.4 Analysis of Revenue for static and dynamic pricing cases
	4.3.5 Analysis of various dynamic pricing mechanisms
	4.3.6 Effect of Different settings of Expected Acceptance Rate
	4.3.7 Effect of the frequency in changing the Price offers
	4.3.8 Comparison of different Broker arbitrage mechanisms
	4.3.9 Cloud market offering multiple services

	4.4 Chapter Summary

	PART II: CLOUD AGGREGATION MECHANISMS
	5 Cooperative Game-theoretic Approaches for Cloud Aggregation
	5.1 Introduction
	5.2 Cooperative Game-Theory Framework
	5.2.1 Nash Bargaining Solution (NBS)
	5.2.2 Raiffa-Kalai-Smorodinsky Bargaining Solution (RBS)

	5.3 Performance Evaluation and Discussions
	5.3.1 Resource allocation based on Deadline
	5.3.2 Budget requirements based resource allocation: Asymmetric pricing schemes
	5.3.3 Combined effect of deadline and pricing on resource allocation

	5.4 Chapter Summary

	6 Design and Analysis of Broker-Mediated Cloud Aggregation and Task Scheduling Mechanisms Using Markovian Queues for Bag-of-Tasks
	6.1 Introduction
	6.2 Proposed Multiple-Cloud Aggregation and Task Scheduling Mechanism
	6.2.1 Task distribution to minimize application completion time
	6.2.2 Task distribution based on budget requirements

	6.3 Task scheduling within a Cloud environment
	6.3.1 Makespan
	6.3.2 Monetary Cost
	6.3.3 Resource Usage Index (RUI)
	6.3.4 The Queuing Model for Task Scheduling

	6.4 Performance Evaluation and Discussions
	6.4.1 Performance analysis of multiple-Cloud aggregation mechanism
	6.4.2 Performance analysis of the task scheduling strategy within a Cloud environment

	6.5 Chapter Summary

	7 Conclusions and Future Remarks
	7.1 Conclusions
	7.2 Future Work

	Appendix: Example for Data Aggregation on Cloud - Large-scale Polynomial Multiplication
	A.1 Introduction
	A.2 Analysis For the Load Fractions
	A.3 Performance Evaluation and Discussions of the Results
	A.3.1 Processing time
	A.3.2 Strategies for eliminating redundant processors

	A.4 Summary

	References
	Author's Publications

