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Summary

With a plethora of Cloud Service Providers (CSPs) offering various kinds of ser-
vices, it is difficult for a user to choose an appropriate CSP or a set of CSPs
for executing its tasks. Users are also concerned about other parameters such
as security and trustworthiness of the CSPs. Further some of the user applica-
tions have tight requirements such as deadline and budget specifications and they
need to be deployed among multiple CSPs to meet such requirements. On the
other hand, CSPs currently follow fixed price per resource and they need efficient
mechanisms to monitor the market and to develop attractive dynamic pricing
strategies based on several parameters including user demand, competition and

user profile.

In the first part of this thesis, we describe a comprehensive Cloud Broker ar-
chitecture and focus on designing Broker-mediated Multiple-Cloud Orchestra-
tion mechanisms to connect various CSPs and users together. We propose three
Broker-based Cloud service arbitrage mechanisms (Incentive based, Sealed-bid
continuous double auction based and Risk based) for different types of applica-

tions in which the Broker supplies flexibility and opportunistic choices for users

xi



and foster the competition between Clouds. Users can consider various parame-
ters such as trust, reputation and security to choose an appropriate CSP. We also
propose market-oriented dynamic pricing strategies for CSPs to adapt to market

conditions quickly.

In the second part of this thesis, we propose two Cloud Broker aggregation mecha-
nisms for [aaS Clouds where one is based on cooperative bargaining games and the
other one is based on Markovian queues. In the first case, we employ bargaining
solutions propounded in literature to efficiently determine the resource require-
ments for a set of tasks, requesting for one type of resources, so as to maximize
the resource utilization and to handle elastic user requirements. It also introduces
an asymmetric pricing mechanism to consider user’s budget requirements. The
Markovian queue based approach efficiently aggregates user tasks/data among
Clouds with heterogeneous resource capabilities based on user’s deadline and
budget specifications. We further address the task scheduling within a Cloud to
reduce the makespan and to improve the resource usage after the aggregation is
completed. Our Broker can function either as an entity to connect several CSPs
and users or as an entity to connect several users to one CSP and incorporates

several features suitable for various situations and different types of users.

xii
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Chapter 1

Introduction

Cloud Computing has been emerged as an attractive paradigm for small, medium
and large scale business enterprises due to its inherent characteristics. Cloud
Computing can be defined as a model which delivers applications as services
(known as Software as a service or SaaS) over internet and providing hardware
and system software for users to implement, deploy and maintain their custom-

made applications and/or services [6].

There are five essential characteristics for Cloud environments [7]. Firstly, Re-
sources can be provisioned rapidly on-demand and customers can configure the
Cloud resources as needed automatically. Secondly, Cloud allows a broad network
access wherein users can access and use Cloud resources through network using
various heterogeneous client devices such as mobile phones and laptops. Thirdly,
Cloud Service Providers (CSPs) use Virtualization techniques to pool the com-
puting resources to serve multiple consumers based on user demand. Fourthly,
the auto-elasticity of Cloud allows users to configure resources in minutes and

enables them to scale the capacity based on their instant resource requirements



elastically. Finally, Cloud Computing has an attractive utility computing based
pay-as-you-go policy in which a user needs to pay only for the capacity that

he/she actually uses.

Cloud Computing has several key differences with respect to other traditional
distributed computing models such as Grid Computing and Cluster Computing.
A computing Cluster [3] consists of interconnected stand-alone computers which
works cooperatively as a single interconnected computing resource. In Grid Com-
puting, resources from several locations are connected via high-speed network
links and allows close interactions among the applications running. In case of
Cloud Computing, workloads can be quickly scaled out through on-demand re-
source provisioning of virtual and/or physical resources which is characterized by
several key features such as failure handling via VM migration, utility computing
model and resource monitoring. A classification of key characteristics of these

distributed computing systems are summarized in Table 1.1.

1.1 Cloud Service Delivery Models

Cloud Computing paradigm is characterized by three main service models as

described below:

Software as a Service (SaaS) SaaS delivers software and data as a service
over internet which are accessible from various client devices. Customers
do not need to buy software licences or additional infrastructure equipment,
but they need to pay for what they use. There are both free as well as paid

applications delivered in this way. Examples include Google Apps [8] and



Table 1.1: Classification of Network-Based Computing Systems ([3], [4])

Functionality, [ Cluster Comput- | Grid Computing Cloud Computing
Applications ing
Architecture, Network of com- | Heterogeneous  clusters | Virtualized clusters of servers
Network  Con- | puter Nodes inter- | interconnected by high- | over data centers via SLA
nectivity  and | connected by SAN, | speed network links
Size LAN or WAN hier-

archically
Control and Re- | Homogeneous Centralized control, | Dynamic resource provision-
source Manage- | nodes with dis- | server-oriented with | ing of servers, storage and
ment tributed  control, | authenticated security networks

running UNIX or
LINUX

Security and

Privacy

Traditional
login/password-
based. Medium
level of privacy

Public/private key pair
based authentication and
mapping a user to an ac-
count. Limited support
for privacy.

Each user/application is pro-
vided with a virtual machine.
High security /privacy is guar-
anteed.

Service Negotia- | Limited Yes, SLA based Yes, SLA based
tion
User Manage- | Centralized Decentralized and also | Centralized or can be dele-
ment Virtual Organization | gated to third party
(VO)-based

Resource Man- | Centralized Distributed Centralized /Distributed
agement
Allocation / | Centralized Decentralized Both centralized/ decentral-
Scheduling ized
Standards Virtual Inter- | Some Open Grid Forum | Web Services (SOAP and
/ Inter- | face  Architecture | standards REST)
Operability (VIA)-based
Capacity Stable and guaran- | Varies, but high Provisioned on demand

teed
Failure =~ Man- | Limited (of- | Limited  (often  failed | Strong support for failover
agement  (Self- | ten failed | tasks/applications are | and content replication. VM
healing) tasks/applications | restarted). migration is possible

are restarted).

Pricing of Ser-
vices

Limited, not open
market

Dominated by public good
or privately assigned

Utility pricing, pay-as-you-
go, dynamic strategies like
spot pricing

Internetworking | Multi-clustering Limited adoption, but be- | High potential, third party
within an Organi- | ing explored through re- | providers can loosely tie to-
zation search efforts such as | gether services of different

Gridbus InterGrid Clouds

Potential for | Limited due to rigid | Limited due to strong ori- | High potential can create

building third- | architecture entation for scientific com- | new services by dynamic pro-

party value- puting visioning of different services

added solutions

and offer as their own Cloud
services to users

Application and | High performance | Distributed super com- | utility computing, outsourced
Network-centric | computing, search | puting, global problem | computing services and elas-
services engines, web ser- | solving tic applications

vices etc.
Representative Google search en- | TeraGrid, UK EGEE, D- | Google App Engine, Ama-
operational gine, SunBlade, | grid zon Web Services, IBM Blue-
systems IBM road Runner Cloud




sales management applications by Salesforce.com|9].

Platform as a Service (PaaS) PaaS delivers a development platform as well
as a solution stack on demand. Users can rent virtualized servers and
services to develop, test and run their applications. It allows developers
from different parts of the world to work together on software development
projects. With the PaaS model, the developer needs the knowledge only to
integrate various building blocks of a project such as the hardware, oper-
ating system, database etc, leaving minor details to be taken care by the
CSP. PaasS is also used to enhance the capabilities of the applications devel-
oped as SaaS. Some typical examples include Google App Engine [10] and

Microsoft Azure Platform [11].

Infrastructure as a Service (IaaS) In IaaS, CSPs offer all the tools necessary
for building, deploying and extending their custom-made applications and
services. Offered equipment include storage hardware, servers and network-
ing components owned and maintained by the CSPs. The user pays based
on the actual usage of the resources. It serves as a foundation for PaaS and
SaaS models which is flexible, standard, and virtualized operating environ-
ment. Clients have more options to customize their applications compared
to PaaS and laaS. A typical example is Amazon Elastic Compute Cloud
(EC2) [12]. In Amazon EC2, you can develop and execute your applica-
tions on a virtual computer (also known as Virtual Instance) with a specific
configuration. A typical standard large instance of Amazon is 7.5 GB of
memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units

each), 850 GB of local instance storage and 64-bit platform.



1.2 Key Challenges in Cloud Computing

There are several key challenges for both users and providers to enter and establish
in this new distributed computing paradigm. Key challenges faced by the users

in moving their data/services to Cloud platforms include the following:

e Choosing the right provider: With the variety of services offered by
several CSPs, users may find it difficult to choose the right provider which
matches their requirements. At present, there is no platform which provides

information about the capabilities of all the CSPs.

e Security and Privacy issues: As several users may share the same phys-
ical infrastructure in a virtualized manner simultaneously, users are often
concerned about the security and privacy of their data in the Cloud plat-
form. This is an important issue because, the data/service storage/running
location specific information is abstracted from the users in Cloud environ-

ments.

e Trustworthiness of CSPs: Users are concerned about the trustworthiness
of the CSPs. This aspect is different from security because, trustworthiness
conveys information pertaining to the task execution such as adhering to
Service-Level Agreements (SLA adherence) and reliability of task execution

(such as handling node failure, meeting task deadline etc).

e Dealing with lock-in: In economics, vendor lock-in makes a customer
dependent on a vendor for specific products and/or services making it dif-
ficult for users to choose another CSP without substantial switching costs.

The switching cost includes possible end-of-contract penalties, charges for



format conversion and data/application switching and possible additional

charges for bandwidth usage.

From the providers’s perspective, there are many challenges to be addressed for

exploiting various features of Cloud platforms. It include:

e Understanding the market: New Cloud providers may need to under-
stand the current market status in terms of the competitors in the domain,
the user preferences in terms of the products/services they prefer most of
the time, user preferences for various features such as security and trust

requirements etc.

e Adapting to the market: Current Cloud platforms follow a fixed price
per resource for their products and services with some small exceptions
like Amazon spot pricing [13]. Dynamic pricing strategies are required to
improve their performance and to attract more customers based on the

market situation.

e Monitoring user profile: With competition among different providers,
CSPs may be required to monitor the reliability of users in terms of the
feedback given by them to decide user acceptance criteria. It also helps to

avoid any unhealthy competition among the providers and users.



1.3 Objectives and organization of the thesis

1.3.1 General focus, Contributions and Scope

This thesis focuses on developing a comprehensive architecture for a Cloud Bro-
ker and devising strategies for various Cloud Broker service models for multiple
Cloud orchestration mechanisms. Our Broker architecture helps both users and
CSPs to make their business decisions and addresses services for a variety of user
applications. Our architecture also gives flexibility to add new services in the

future based on future requirements.

We divide the thesis into two parts. First part proposes three strategies for
Multiple-Cloud arbitrage mechanisms. These are based on incentives, sealed-bid
double auction and Von Neumann-Morgenstern utility theory. All these strategies
help users to choose an appropriate CSP based on their preferences. CSPs can
make attractive dynamic price offers based on the market conditions. Through
extensive performance evaluation, we study the effectiveness of these schemes un-
der various cases and compare the performance with the current Cloud market

without Cloud Broker for Cloud Service Arbitrage.

Second part of the thesis specifically focuses on Cloud Aggregation mechanisms
for compute and data intensive IaaS applications such as BoT applications and
large-scale divisible load applications. First, we propose two bargaining mod-
els based on cooperative game theoretic approaches propounded in literature for
Cloud Aggregation which decide the task distribution for a set of tasks arriving
at the Broker based on various parameters such as deadline and budget require-

ments. We then propose a Cloud aggregation based on Markovian queues which



can deploy user tasks into CSPs with heterogeneous resource capabilities to sat-
isfy user requirements. Further, we address the task scheduling and its effect on

a particular Cloud after the task aggregation is completed.

The scope of this thesis is to develop a comprehensive architecture model for
a Cloud Broker and is to devise strategies for addressing various Cloud Broker
service models to address different categories of users. We also propose demand-
based dynamic pricing strategies for the CSPs to adapt to market situations
quickly. We further show the effectiveness of our proposed models through ex-

tensive performance evaluation studies.

1.3.2 Outline of the thesis

In Chapter 2, we first describe the problem addressed by this work and the moti-
vation. Then we provide a comprehensive survey of various various Cloud Broker
mechanisms existing in the literature and classify them into three based on the
services offered. Then the broker-based system architecture for multiple-Cloud

orchestration is described in detail.

In Chapter 3, we propose two Cloud Service Arbitrage mechanisms that enable
users to choose the right CSP and the CSPs to offer competitive price offers
based on market conditions. One scheme is based on incentives whereas the
other scheme is based on sealed-bid continuous double auctions. Incentive-based
strategy is shown to be suitable for loyal users who use Cloud for their applica-
tions very often. The applications that fall under this include SaaS applications
such as B2B and ERP applications and PaaS applications such as web hosting.

The auction-based scheme is suitable for users who use Cloud on an ad-hoc basis



and for users with tighter budget requirements who can afford to wait for longer

time to deploy and complete the execution of their applications.

In Chapter 4, we propose a Cloud Arbitrage mechanism based on risk and trust
wherein users choose the right CSP based on various system parameters. This
scheme is suitable for users who are more risk-averse in making their business
decisions and higher flexibility is given to users to choose various parameters in
calculating the Von Neumann-Morgenstern utility function. We also propose a
dynamic pricing strategy based on acceptance rate and compare our scheme with

the other proposed schemes as well as static pricing cases.

In Chapter 5, we propose a Cloud aggregation model for distributing tasks among
compute resources (with similar characteristics) based on Cooperative game-
theoretic approaches. We use two bargaining solutions propounded in the lit-
erature - Nash Bargaining Solution (NBS) and Raiffa Bargaining Solution (RBS)

for Cloud aggregation and intermediation.

In Chapter 6, we propose a Broker mediated Cloud aggregation mechanism us-
ing Markovian Queues which can effectively deploy customer applications over
multiple CSPs for Bag-of-Tasks (BoT) applications. We then analyze the task
distribution and resource allocation within a datacenter using queueing theory

and analyze the effectiveness of our model in various cases.

In Chapter 7, we conclude this thesis by providing a summary of all our works.

We also describe possible/interesting future works based on this thesis.



Chapter 2

Problem Statement, Background

and System Architecture

2.1 Problem Formulation and Motivation

We propose a comprehensive Cloud Broker architecture and strategies for Multiple-
Cloud Orchestration based on the Broker architecture to solve several key issues

faced by users and CSPs in Cloud Computing environments.

2.1.1 Need for Broker-based Cloud Orchestration mecha-

nisms

As Cloud emerges as a competitive sourcing strategy, a demand is clearly arising
for the integration of Cloud environments to create an end-to-end managed land-
scape of Cloud-based functions. A Broker-based multiple Cloud orchestration

mechanism can solve most of the issues faced by both users as well as the CSPs.
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Cloud orchestration relates to the connectivity of I'T and business process levels

between Cloud environments. Major benefits of Cloud Orchestration are:
e Helps users to choose the best service they are looking for

e Helps providers to offer better services and adapt to market conditions

quickly

e Ability to create a best of breed service-based environment in which tasks
can be dynamically deployed among multiple CSPs to reduce task execution

time and to meet budget requirements

e Helps users and providers to make their business decisions based on sev-
eral collective parameters such as trust, reputation, security and reliability

which are difficult to handle in the absence of a Broker.

e Helps users to designate Broker to make some decisions on behalf of them
so that users can focus on their core business rather than focusing on task

deployment strategies and other system administration jobs.

2.1.2 Cloud Broker Service Models

Cloud Broker plays an intermediary role to help customers locate the best and
the most cost-effective CSP for the customer needs. Cloud Broker is by far the
best solution for Multiple Cloud Orchestration (includes aggregating, integrating,
customizing and governing Cloud services) for SMEs and large enterprises. Major
advantages are cost savings, information availability and market adaptation. As
the number of CSPs continues to grow, a single interface (Broker) for information,

combined with service, could be compelling to companies who prefer to spend
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. . Brokers supply flexibility and “opportunistic choices” - and foster
CIOUd SENICO Arbltrage < competition between clouds.

Aggmgation < Deploying customer services over multiple cloud platforms. )

Cloud Broker Categories

2 Cp Building services atop an existing cloud platform, such as additional
Cloud Service Intermediation { secirity or managament capabiitles: j

Figure 2.1: An overview of various Cloud Broker Mechanisms [1]

more time with their Clouds than devising their own strategies for finding the

suitable CSP to meet their needs.

This is further corroborated by various research statistics. According to Gartner
[14], “By 2015, at least 20 percent of all Cloud services will be handled via brokers,
rather than directly, up from less than 5 percent today.” Another research by
Gartner states that, “Through 2014, Cloud service brokerage will generate more
than $5 billion in sales, up from less than $50 million this year, making it the

fastest growing area of Cloud Computing”.

We can broadly classify Cloud Brokers into three based on the services offered

12



by them as illustrated in Figure 2.1. First one is Cloud Service Intermediation,
wherein Broker can build services on top of the services offered by the CSPs,
such as additional security features and/or management capabilities. Second
one is Aggregation in which the Broker deploys customer services over multiple
CSPs. Finally Cloud Service Arbitrage where the Brokers supply flexibility and

opportunistic choices for users and foster the competition between Clouds.

2.2 Literature Review

In this section, we provide a comprehensive survey on the current literature on
various Cloud Broker models. Our studies reveal that, most of the proposals on
Cloud Broker architecture and mechanisms are found in the literature from the
year 2009. In this literature review, we specifically focus on Cloud Brokers and
hence Broker mechanisms in other related fields such as Grid Brokers are not
discussed here. Taxonomy and classification of Grid Brokers can be found in [15],
[16] and [17]. We have categorized the Cloud Broker models according to the

services offered by them.

2.2.1 Cloud Service Arbitrage Models

Different from traditional arbitrage mechanisms which involves in simultaneous
purchase and sale of an asset to make profit, a Cloud Service Arbitrage aims
to enhance the flexibility and choices available for users with different require-
ments and to foster competition between CSPs. For example, a user may want to
choose the best secure email provider whereas another user may want to choose

the cheapest email service provider.
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In [18], the authors propose a distributed negotiation mechanism wherein mul-
tiple buyers and sellers are allowed to negotiate with each other concurrently
and an agent is allowed to decommit from an agreement at the cost of paying
a penalty. This scheme is designed specifically for IaaS Clouds and proposes
a dynamic pricing scheme. But the utility function can take into account only

deadline and price.

In [19], the authors propose a Broker model to help the users to choose an ap-
propriate TaaS CSP. Broker helps prospective Cloud consumers to compare and
contrast different CSPs according to their specific requirements. It also helps
them to test benchmark applications on different CSPs to get a better estimate
of the cost and the performance. In [20], the authors propose a Broker based on
Analytic hierarchy process (AHP) in which users can specify their requirements
such as reliability and Broker displays a catalogue. Users choose appropriate [aaS
CSP based on the catalogue. A basic implementation is done on Eucalyptus. But
these schemes are user-centric and do not allow the CSPs to interact with Broker

to adapt to market conditions.

In [21], the authors propose a scheme called as RAINBOW for choosing appro-
priate CSP based on deadline and budget constraints. The scheme has several
limitations. It is designed for handling only compute resource requirements. Fur-
ther CSPs are not allowed to use any dynamic pricing strategies and they can not
adapt to market conditions using Broker. In [29], the authors propose a Cloud
resource negotiation scheme to choose appropriate CSPs for Cloud users. Both
schemes do not describe any system modeling or performance evaluation. In [22],

the authors propose a Bayesian learning mechanism for resource allocation in
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Cloud. Users submit their bid and auctioneer selects appropriate CSP after a set
of auctions. Users use Bayesian learning mechanisms to update their bid prices
whereas CSPs offer a fixed pricing mechanism. Main drawback is the assumption
that several users compete for same resources which may not be the case in real-
ity.

In [23], the authors propose an intelligent Cloud resource allocation scheme which
helps in discovering all available resource configurations, choosing the desired con-
figuration, negotiating an SLA, monitoring the SLA and assisting in the migra-
tion of services between CSPs. But only single resource requests are considered.
Further, details of the pricing policies of CSPs are not presented. No other pa-
rameters (such as trust, security, geographical information etc) are considered in

their modeling.

In [24], the authors present a market exchange framework based on auctions for
resource negotiation in Cloud environments. But the model is restricted for bid-
ding compute resources. They specify that it supports multiple types of auction
mechanisms, but do not specify the one used in their performance evaluation. Fur-
ther, their performance evaluation does not specify the relative merits/demerits
of different auctions in their model for users and CSPs. The model considers only
compute resources and seems to be applicable to any distributed systems such as

Grid and failed to prove the advantages for CSPs to use this system.

In [25], the authors propose a market-oriented time optimization and cost op-
timization resource scheduling strategies for IaaS Clouds (offering compute re-
sources) using budget and deadline constraints. But, the optimization is not

done across multiple CSPs and CSPs offer fixed pricing. Further, this scheme
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can be applied to any distributed environments such as Grids and the applicabil-

ity in a Cloud context is not specified.

In [26], the authors present a scheme called as MC-QoSMS which collects QoS
specifications from CSPs and QoS requirements from users and finds a suitable
match based on reduct in rough set theory. The model considers various QoS
parameters such as availability, security etc. But handling of QoS parameters are
not modeled realistically. Further, this model does not allow CSPs to adapt to

market conditions.

In [27], the authors propose an architecture and a scheme for a Cloud Coordinate
to improve the performance of various entities in a Cloud ecosystem. They model
a market which trades VMs. Cloud Exchange is presented to help in negotiation
services and a Cloud Coordinator is available for SOA implementation. But, a
market competition is not created and CSPs can not adapt to market conditions
to improve their revenue. Further this scheme is designed to handle only compute

resources.

In [28], the authors propose a knowledge-based auction model for trading re-
sources in Cloud environments particularly for futures market and spot market.
The intersection of demand curve and supply curve is considered as the market
clearing price at which all resources are sold. The model is very limited as it is
restricted to handle the limited supply resources (Future Market and Spot Mar-

ket). Hence it is applicable to any other distributed domain such as Grid.

A comparison of all the Cloud Arbitrage mechanisms described in this section

are summarized in Table 2.1.
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2.2.2 Cloud Service Aggregation Models

Cloud Aggregation Brokers help to deploy customer applications across multiple
CSPs for various reasons. Users may have some deadline and budget requirements
which needs the application to be distributed across multiple CSPs, or users may
require a service which can be obtained only by combining services from multiple

CSPs. The second category is also known as Cloud Broker Integration.

In [30], the authors propose a distributed resource management scheme based on
repeated non-cooperative and cooperative games in a dynamic federation plat-
form for data intensive applications. In their pricing scheme, the price offered is
based on the revenue obtained. But the model arises convergence issues due to
the usage of repeated games and the utility function can handle only price and

social welfare.

In [31], the authors present an architecture for Cloud aggregation and bursting
for object based sharable environment specifically for IaaS storage Clouds. In
[32], the authors propose a price based Mixed Integer program for splitting the
load among CSPs. In [33], the authors propose a social network based approach
for provisioning and managing Cloud resources using the principles of peer-to-
peer networking and utility computing model. In [34], the authors propose an
architectural strategy for the provisioning and delivery of services in Cloud com-
munities, ecosystems and business networks. All these models only propose the
Broker architecture and lacks in giving a detailed system modeling and perfor-

mance evaluation.

In [35], the authors propose a genetic algorithm for estimating suboptimal sets of
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resources and an agent-based approach for executing bag-of-tasks (BoT) applica-
tions simultaneously having budget and deadline constraints. But the solutions
found are suboptimal and the model is not capable of preempting tasks when
required. Further, the model does not take into account the cost involved in data
communication and computation. In [36], the authors present a security enhanced
coordinator to establish SLA to ensure QoS. It also monitors the work load and
triggers on demand resource provisioning when required. But the scheme is de-

signed only for real-time online interactive applications such as online games.

In [37], the authors propose a Cloud Brokering architecture which optimizes the
placement of virtual infrastructures across multiple CSPs and also abstracts the
deployment and management of infrastructure components in these CSPs. In [38],
the authors propose a binary integer program problem for multi-provider hybrid
Cloud setting based on deadline and budget constraints. These two schemes con-
sider only IaaS compute Clouds and the problems are shown to be NP-Hard. In
the second case, there are cases wherein the problem solve time exceeded even 5
days without getting an optimal solution for hybrid Cloud setting. In [39], the
authors propose a modular Broker architecture for optimal service deployments
in dynamic pricing multi-Cloud environments. But they do not specify the time
complexity for solving various optimization problems. Moreover, performance

evaluation is restricted to one CSP (Amazon EC2).

In [40], the authors propose a Broker architecture Uni/Cloud to automate de-
ployment and configuration of multi-cloud applications. It handles lock-in using
standards such as OCCI [41] and OVF [42]. This architecture can be used only

with those CSPs who follow OCCI or OVF standards. But this scheme lacks sup-
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port for various features such as SLA monitoring, strategy to choose appropriate
CSP based on user requirements etc. Moreover, only a case study is presented

which is not sufficient to understand the behavior of the scheme in general cases.

In [43], the authors propose a Cloud architecture called OPTIMIS which has a
Broker model as part of the Cloud delivery architecture. They focus on Broker
integration service for integrating various CSPs and gives a detailed architec-
tural overview. In [44], the authors propose a Broker architecture to support
integration, delivery and management of composite services in a multi-provider
heterogeneous networks environment. In both cases, only a prototype architec-
ture is proposed with some details on different use cases. The do not provide the
required details such as system modeling, implementation and/or performance

evaluation.

A comparison of all the Cloud Aggregation strategies described in this section

are summarized in Table 2.2.

2.2.3 Cloud Service Intermediation

Intermediation Brokers customize and build add-on services on top of Cloud ser-
vices to incorporate additional features on current Cloud services. It may include
services to enhance the user experience with Clouds such as add-on security fea-
tures (e.g. Single Sign-On), integrated billing and monitoring services, financial

services etc.

In [45], the authors propose an identity brokerage and federation model to fa-

cilitate distributed access, Licence management and SLA management for SaaS
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and TaaS Clouds. In [46], the authors propose a change management approach
for Cloud backed business process models using an intelligent Broker. In [47], the
authors propose a Broker for optimal placement of VMs on Clouds. In [48], the
authors propose an architecture for managing CSPs and users for specifying sys-
tem decisions using rules and policies. But none of these scheme gives a detailed

system model , implementation and/or performance evaluation.

There are few models that are designed for specific Applications. In [49], the au-
thors specify a Broker for finding optimal route between Broker and the Cloud. In
[50], the authors specify a Broker for monitoring and managing SLA between users
and CSPs. In [51], a Broker-based trust model for identity federation (specifi-
cally Single Sign-On) in Cloud is proposed. In [52], coordination of cloud services,
based on a tuple-space architecture is proposed to enable the CSPs to advertise

their capabilities.

In [53], an optimization problem has been formulated to maximize the success-
ful allocation with QoS parameters such as bandwidth, data size and time for
reserving and provisioning resources for data-intensive Cloud applications. But,
the optimization problem formulated is not solved to obtain optimal values for the
problem considered. Further, the problem considered is user-centric and CSPs

can not adapt to market conditions. Finally, a limited application scenario is

described based on IPTV.

In [54], the authors propose an options market for purchasing long-term contracts
based on history and helps CSPs for resource forecasting. But, it does not specify
how to deal with multiple CSPs and only compute resources are considered. In

[55], a CloudBank has been proposed to provide analysis and guidance on price
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offers by various CSPs to users. The scheme considers only in the formulation of
price based on historical usage of resources and lacks in considering various Cloud
parameters such as trust, security and reputation. Performance evaluation is not

clear and the outcome of the experimental realization is not described clearly.

A comparison of all the Cloud Broker Intermediation strategies described in this

section are summarized in Table 2.3.

2.3 Cloud Service Broker System Architecture

Our model consists of N users {C4, Cy, ..,Cn} and M CSPs { Py, P, .., Py;} which
are connected together through a Broker. Broker maintains few databases about
the current system to aid users and CSPs to make their business decisions. A
detailed architecture for the Broker is illustrated in Figure 2.2. This Broker

architecture consists of three major components as described below.

2.3.1 Job Distribution Manager (JDM)

Job Distribution Manager is responsible for receiving User’s job requirements,
choose appropriate CSP selection strategy, informing appropriate CSPs about
the jobs, and maintaining the job distribution statistics. When a user submits
job requirements, the Job Classification module analyzes the job requirements
and decides the preferred CSP selection strategy (either Cloud Service Arbitrage

or Cloud Aggregation).

In this thesis, we discuss three Cloud Service Arbitrage mechanisms wherein

the users and CSPs behaves according to market situation to maximize their
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Figure 2.2: Architecture of the Proposed Multiple-Cloud Orchestration Mecha-
nisms

corresponding utilities. If the policy is Auction-based mechanism, then the Auc-
tioneer module will control the auction process and decides the winners. If the
user wants aggregate its application across multiple Clouds, then the Cloud Ag-
gregation unit will perform the necessary action. In all schemes, the Dispatcher
module dispatches the job to corresponding CSPs after the CSP selection process

is completed.

Further, the Distribution Database maintains a database about the job distri-
bution statistics such as the winning CSP. This helps both CSPs and users to
analyze their performance in the past with respect to other competing players in
the market. For choosing appropriate CSPs and consolidating price information,

JDM communicates with other components in the Broker.
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2.3.2 Operations Monitor (OM)

Operations Monitor (OM) monitors, manages and maintain various information
pertaining to both users and CSPs. The Capability Management module main-
tains databases about different resources and services offered by various CSPs.
It also updates this information periodically when it notices any changes in the
services offered by existing CSPs or when new CSPs enter the market. JDM
makes use of this information to short-list the list of CSPs for participating in

the game whenever a new job request arrives at JDM.

The modules Trust and Reputation and Security Inder maintains information
about the Reputation and security values of various CSPs from time to time.
These values are supplied to users when requested. Users, based on their prefer-
ences use these values to choose appropriate CSP. A cumulative credit value is
also derived based on these indices and user feedback which is maintained by the

Credit Rating module.

Moreover a user reliability index is maintained by the User Reliability Index mod-
ule. This is derived based on the trustworthiness of the feedback received from
the users. This value is used by CSPs in making their price offer and by other

users in forming their utility functions.

2.3.3 Price Manager (PM)

The Price Manager (PM) maintains the price offers supplied by CSPs from time
to time. It is also responsible to calculate the current market price for different

resources. This is used by CSPs to adjust their price offers. It also maintains other
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financial matters such as maintenance of integrated billing information which can
collectively calculate, display and manage the billing information from all the

CSPs for the users.

2.4 Chapter Summary

In this chapter, we proposed the need for a Cloud Broker to solve several chal-
lenges that are persisting in the Cloud environments and conducted a compre-
hensive classification of existing Cloud Broker mechanisms into three categories:
Cloud Broker Arbitrage, Aggregation and Intermediation. We presented the rela-
tive merits/demerits of the existing schemes and proposed a detailed Cloud Broker
Architecture to solve several key issues existing in the current Cloud Computing

environments.
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Table 2.1: Comparison of various

Cloud Broker Arbitrage Mechanisms

Scheme Basic Mechanism Cloud Ser- Pricing Extra Fea- Market Applications Limitations
vices Model tures adaptation
for CSP
NG [18] Distributed Negotiation Mecha- TaaS Dynamic No Yes General Only resource negotiation and allocation is
nism Pricing considered, Utility is only based on dead-
line and offer price
SCB [19] Helps users to choose appropriate TaaS No No No General User-centric scheme CSPs are not interact-
CSPs ing with the Broker to know the market
conditions
AHPBroker A Broker based on Analytic hier- TaaS No Reliability, No General User-centric scheme, CSPs are not inter-
[20] archy process (AHP) Uptime acting with the Broker to know the market
conditions
RAINBOW Deadline and Budget constrained TaaS No No No Compute Very Iimited because CSPs are not mod-
[21] optimization for Cloud resources eled to offer dynamic price offers and CSPs
can not adapt to market situation. No sys-
tem modeling or performance evaluation.
BNEA [22] Bayesian learning mechanism for SaaS, PaaS, Auctions  for No No Compete All users has to compete for same type of
resource allocation in Cloud IaaS user bid and for same resource (may not be applicable in a prac-
fixed pricing resources tical sense)
for CSPs
ICRAS [23] An intelligent Cloud resource al- TaaS Dynamic No Yes Only sin- Details of CSP pricing policies are missing.
location scheme pricing (But gle resource Other parameters such as trust, security,
detailas are requests geographical information etc are not con-
missing) sidered
Mandi [24] Market Exchange framework for TaaS Auction based No Yes Compute Lacks details and relative merits/demerits
Clouds pricing resources of different auctions in performance evalu-
ation The model can be used for any dis-
tributed systems such as Grid and failed to
proove the advantages for CSPs to use this
system
TCO [25] Market oriented resource schedul- TaaS No No No Compute Considers only one IaaS CSP for alloca-
ing for IaaS resources tion, Optimization is not done across mul-
tiple CSPs. CSPs offer fixed pricing. This
scheme is application any distributed envi-
ronments such as Grids and the applicabil-
ity in a Cloud context is not evaluated
MC-QoSMS Rough-set theory based QoS man- TaaS No Security, No General Handling of QoS parameters are not mod-
[26] agement for IaaS Clouds Availability eled realistically. Does not allow CSPs to
adapt to market conditions.
InterCloud An architecture and a scheme for TaaS No No No Compute A market competition is not created and
[27] a Cloud Coordinate to improve resources CSPs can not adapt to market conditions
the performance of various enti- to improve their revenue etc.
ties in a Cloud ecosystem
CRA 28] Knowledge-based auction TaaS Continuous No Yes Limited sup- Very limited model which is restricted to
model for trading resources in Double Auc- ply market handle the limited supply (Future Market
Cloud environments tions for compute and Spot Market). Hence it is applicable to
and storage any other distributed domain such as Grid.
resources The performance evaluation is restricted to
analyzing the efficiency of the scheme with
no comparative study with respect to other
schemes
CloudAgency | Cloud resource negotiation SaaS, PaaS, No No No General Only a framework is proposed, Tacks mod-
[29] TaaS eling and performance evaluation
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Table 2.2: Comparison of various Cloud Aggregation Models

Scheme Basic Mechanism Cloud Ser- Pricing Extra User/CSP Applications Limitations
vices Model Features centric
DFP [30] Distributed Resource Manage- TaaS, PaaS revenue No Both Data-intensive Repeated games requires convergence time,
ment based Applications Utility is formed only based on offer price
pricing and social welfare
CAB [31] An architecture for Cloud Burst- TaaS  (Stor- No Security Only a Dbasic Not mentioned Only a basic architecture is proposed. No
ing and Aggregation age) architecture is analysis and performance evaluation
proposed
CRS [32] Price based Mixed Integer pro- TaaS No No Only a basic Not mentioned Only basic details of the model are speci-
gram for splitting the load among architecture is fied. Optimization problem is not solved.
CSPs proposed No performance evaluation is done
GA-based A genetic algorithm to deploy TaaS No No User centric BoT applications The solutions found are suboptimal. Not
RE [35] BoT applications into multiple capable of preempting tasks when required.
Clouds to satisfy budget and Does not take into account the cost in-
deadline constraints volved in data communication and compu-
tation
CBA [37] A Cloud Brokering architecture TaaS  (Com- No No User centric Compute intensive Formulated problem is shown to be NP-
which optimizes placement of vir- pute) applications hard.
tual infrastructures across mul-
tiple clouds and also abstracts
the deployment and management
of infrastructure components in
these clouds.
HICCAM A binary integer program problem TaaS  (Com- No No User centric Compute intensive In case of hybrid Cloud, there are cases
[38] for multi-provider hybrid Cloud pute) applications wherein the problem solve time exceeded
setting even 5 days without getting an optimal so-
lution
Uni4dCloud Facilitating modeling, deploy- TaaS No No User centric Applications that Needs continuous monitoring, CSPs should
[40] ment and management of applica- follow the stan- follow OCCI/OVF standards. Lacks sup-
tions in multicloud environments dards port for various features such as SLA mon-
itoring. Only a case study is presented
which is not sufficient to understand the
general behavior.
SOFClIoud A model to support the federa- SaaS, PaaS, No Security User centric Real time online Limited application scope. Suitable for
[36] tion of multiple autonomous in- IaaS interactive appli- real-time online interactive applications
frastructure providers to provide cations such as online games
a scalable IT infrastructure for de-
livering ROIA application as QoS-
assured services
OPTIMIS Cloud brokerage model as part of SaaS, PaaS, Tiered Security, Both Not mentioned Only a prototype architecture is proposed
[43] a Cloud delivery architecture TaaS pricing Risk with some details on different use cases.
Lacks fine details such as system modeling
and performance evaluation
OCCS [33] Social network based approach for SaaS, PaaS, No No User centric Not mentioned Only an architecture is proposed. The
provisioning and managing Cloud IaaS work lacks system modeling and perfor-
resources mance evaluation
SDF [34] Service Delivery Framework SaaS, IaaS, No No User centric Not mentioned Only a framework is proposed, lacks mod-
PaaS eling and performance evaluation
OSD [39] Modular broker architecture for TaaS Yes, but No Both Compute intensive They model several optimization con-
optimal service deployments in but the applications straints based on user requirements but
dynamic pricing multicloud envi- instance they specified that the optimization prob-

ronments

prices are
assumed to
be known
in advance

lem is solved using MINOS solver. But
they do not specify the time complexity
for solving for various cases. Performance
evaluation is restricted to one CSP (Ama-
zon EC2)
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Table 2.3: Comparison of various Cloud Broker Intermediation Mechanisms

Scheme Basic Mechanism Supported Pricing Intermediation Limitations
Cloud Ser- Model Services
vices
FinanceCloud Financial Markets TaaS (Compute) Monthly Finanical man- Does not specify how to deal with multiple
[54] price offers agement and CSPs, Only compute resources are consid-
advanced resource ered, Only models price
reservation
BEInGRID Identitiy Brokerage and Federation SaaS, TaaS No Identity manage- Only a framework is proposed, Tacks model-
[45] ment ing and performance evaluation
BCM [49] Broker Cloud communication TaaS (Compute) No Route Finding A very specific usage of Broker to find opti-
paradigm mal communication route
CloudSLA Automatic construction of SLAs be- TaaS No SLA management Only a problem is discussed and its possible
[50] tween Cloud users and CSP implementation by a Cloud Broker
EventCB Change management approach for Not mentioned No Business  change Only a basic model is described. No archi-
[46] Cloud backed business process mod- management tecture and other details provided
els,
CAAT47] A broker for optimal placement of TaaS No VM placement Broker is part of a comprehensive Cloud ar-
VM instances on CSPs chitecture. Lacks details such as modeling
and performance evaluation
TFB [51] Broker-based trust model for iden- SaasS, PaasS, No Identity manage- A model which can handle only SSO man-
tity federation in Cloud TaaS ment agement by the Broker and hence has limited
scope
PBMOCSMA A policy based Cloud management TaaS (Compute) Yes. But Policy manage- Only an architecture is proposed. The work
[48] architecture no details ment lacks system modeling and performance eval-
provided uation
DCSC [52] Coordination of cloud services, TaaS No Coordination Very limited scheme. Does not specify the
based on a tuple-space architecture management parameters considered for the coordination
clearly.
CISF and Reserving and provisioning re- TaaS No Resource reserva- ()ptln{lzatlon problem is not solved to obtain
SRB [53] sources for data-intensive Cloud tion and manage- optimal values. The problem considered is
applications ment user-centric and CSPs can not adapt to mar-
ket conditions. Limited application scenario
is described based on IPTV
Cloud A resource agency to provide anal- SaaS, PaaS, Based on Price analyzer The scheme considers only in the formulation
Bank [55] ysis and guidance on price offers by IaaS historical of price based on historical usage of resources
various CSPs to users resource and lacks in considering various Cloud pa-
usage rameters such as trust, security and reputa-
tion. Performance evaluation is not clear and
the outcome of the experimental realization
is not described clearly.
SBMA A Broker architecture to support SaaS, PaaS, No Composite ser- An archiecture is presented. But the work
[44] integration, delivery and manage- TaaS vices - Integra- lacks in providing any modeling or perfor-
ment of composite services in a tion, Delivery and mance evaluation details.
multi-provider heterogeneous net- Management

works environment




PART I: MULTIPLE CLOUD
ARBITRAGE MECHANISMS
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Chapter 3

Broker-based Cloud Service
Arbitrage Mechanisms using
Sealed-bid Double Auctions and

Incentives

3.1 Introduction

Detailed Cloud Broker architecture and various Cloud Broker categories were
described in the last chapter. In this chapter, we propose two Cloud Service Ar-
bitrage mechanisms. The objectives of these mechanisms are to help the Cloud
users choose appropriate CSPs and for the CSPs to give opportunistic choices and
increase the mutual competition to improve their performance. We make use of
some principles of game theory such as Continuous Double Auctions, Incentives

and Belief-based repeated games with imperfect private monitoring to design var-
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ious aspects of the Broker in terms of formulating the utility function, dynamic

pricing strategies, user reliability etc.

3.2 Important Terms and Definitions

Initially, without any loss of generality, we assume that all CSPs have similar
capabilities and are able to service any incoming job request. Later we show that,
if CSPs offer multiple services, our schemes can handle it seamlessly. Important

terms used in this chapter are described as follows:

User Return Ratio (RR;;)

User Return Ratio captures the influence of how often a user C; gets its job
serviced by a CSP P}, after evaluating the quotes sent to C; by all CSPs in the
system. It may be noted that this ratio is actually a function of time as it has a
strong bearing on the number of jobs (e;;) from C; executed by P; with respect
to the number of job requests (.5;;) submitted to P; by C;. Thus we define RR;;
as:

€ij

Expected Return Ratio (ER;))

It denotes the number of times a CSP expects a user to get its job serviced by

it, when all CSPs are treated fairly in the system. If M CSPs are present in the

1

system, then E'R;; can be simply computed as the inverse of M, i.e., ER;; = 5;.
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CSP Affinity Index (Y;;)

The affinity index (Y;; € [0, 1]) is a measure of the goodwill of any CSP P; with
any user C;. There can be several contributors to goodwill in a real Cloud envi-
ronment such as trust and reputation [56] for completing jobs without dropping
them, job completion times (without delays), location of the CSP datacenter etc.
Users can obtain this value in the form of Credit Rating from the Operations

Monitor component of the Broker

CSP System Security (Z;;)

CSP System Security index (Z;; € [0, 1]) is the measure of the security level of a
CSP P; as perceived by a user (. Security is the assurance of secure computing
services provided by system nodes and is calculated according to the brand image

differential equation mechanism described in [57].

User Reliability Factor (y;)

Users submit feedback about CSPs after each transaction is completed. User Re-
liability Factor (y; € [0,1]) is the measure of the trustworthiness of the feedback
of a user C; according to the Broker. y; decreases when C; exhibits behavior that

is not in correlation with the value maintained by the Broker.

3.3 Incentive-based Cloud Arbitrage Mechanism

In this section, we describe the incentive-based Cloud arbitrage mechanism. At
any point of time, a user C; can submit a job request with a demand D; to a set

of CSPs through the Broker. Each CSP P; quotes an offer price to the Broker
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and the Broker informs the collective offers from all CSPs to user C;. The user,

then calculates its utility as follows:
Ui = a((1 = Xiy)) + B(Yy) +v(Zi;) Vi (32)

such that a + 8 +~v=1; a,8,7>0

Then C; selects the CSP which maximizes its utility. Here, X;; is the normalized
offered price', Y;; is the affinity index and Z;; is the security index. Based on
individual requirements, different users may have different weightage for these
factors. The job is submitted to the selected CSP, the corresponding databases
are updated at the Broker and the RR;; values are updated at the CSPs. This
complete flow is summarized in Figure 3.1.

&) @

Job Requirements Job Requirements

o Operations Monitor

Calculation of

Dynamic Price
L Offer 0

Price Offers

Job Distribution Manager 0—
Pl ( Cloud Broker Arbitrage Job Dispatching
Database

Job
Classification Cloud Aggregation

Figure 3.1: Flow Diagram for Incentive-based Scheme

Trust and

Reputation User

Reliability
Capability Security Index

Management Index

Credit Rating

CSP selection Price offers and
using Utility CSPinformation

Model
(6)

User .. Job Submission

O
User M | ———

CSP Rating

Client Interface
Cloud Service Provider Interface

"'We normalize the price offers by various CSPs to make sure that the values lies between 0
and 1, with 1 being the highest price offered
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Table 3.1: Incentive Scheme: Dynamic Pricing for CSPs
Condition New Price Offer

RRZ‘J‘ > ERZ] P'T’Zt-j = Prffl
RR;; < ER;; and L; > ¢ Prfj = Prfj_1 + A
RR; < ER;jand L; < ¢ | Prj; = Prfj_1 —A

3.3.1 Dynamic Pricing strategies for CSPs

In this scheme, CSPs use return ratio (RR;;) to alter the price offers. In a
practical scenario, the CSPs can consider any other parameters relevant to them
for altering the price. If RR;; > FR;;, it implies that user C; has been getting its
jobs serviced by P; more often than the expected average number of times and
is a loyal customer. Hence P; continues to offer the same price per resource Pr;
to C;. The offer price X;; is calculated as (D; x Pr;;), where D; is the unit cost

per resource for user Cj.

On the other hand, if RR;; < ER;;, there are two possible scenarios depending

i
on the current load L; for P; at time ¢t. If L; > ¢, (¢ is some threshold value for
the load in a CSP) it implies that P; is popular with majority of the users and
increases Pr;; for C; linearly by a small fixed amount A. If L; < ¢, it indicates
a low popularity of P; with the majority of users. So the CSP tries to recover by
lowering its Pr;; for C; linearly by a small amount A, in an attempt to increase
RR;; and attract more users. Note that Pr;; can not be lowered beyond a floor

value. This is attributed to the fact that CSPs will not offer services which results

in monetary loss for them.
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3.3.2 Handling Security aspects by CSP

We define the weighted average H; of the system security of CSP P; as the
weighted average of independent system security values Z;; from all users and

can be calculated as follows:

N

H, = Zil(?(\i]x Zij) (3.3)
The calculation of H; takes into account the reliability of each user and their
individual security value for the CSP P; calculated by the user. It means that
reviews submitted by reliable users are given more consideration compared to the
reviews submitted by unreliable users. Initial value for the security index Z;; for
various CSPs can be calculated based on evaluating various security features sup-
ported by the corresponding CSPs. It can be calculated by using an assessment
model to prioritize user’s business systems and services for Cloud adoption [58].

Each time, user updates the security index as:
Ziz =n(Zy) + (1 —n)(Hj) (3.4)

such that n >0

The value of 7 indicates the level of importance that the user gives to its own
perception and the weighted average of fellow users’ perceptions in the system.
CSPs can modify their security features anytime by knowing user’s perception of

its security features by using the values of H; from Broker’s databases.
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3.4 Auction-based Multiple-Cloud Orchestration
Mechanism

In this section, we describe a Multiple-Cloud orchestration mechanism based on
auctions. A classification of classic auction types are summarized in Figure 3.2
[2]. (A detailed overview of various auction types can be found in [59].) We
employ sealed-bid Continuous Double Auction (CDA) in our model. In a CDA,
both sellers and buyers submit their bid information to a third-party mediator
(The Broker in our case). Sellers submit their price offers, buyers submit their
bid-values and the mediator decides the winner(s) by matching these two values.
The choice of bids reflect the user’s strategic attempts to manipulate the selling

price.

In our Auction-based Multiple-Cloud Orchestration mechanism, users submit a

Qutcry Sealed-bid Outcry Sealed-bid

E3C3CICD O ﬁ

Figure 3.2: A classification of classic auction types [2

Double

user bid price for a resource, number of resources required and the desired CSP id

to the Broker. The desired CSP P; is selected by user C; using the user’s utility
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function:

Uij = Oéﬂj -+ ﬁRU (35)
such that a + 8 =1; a,5 >0

Here, T;; is the trust value, R;; is the reputation index and o and 3 are the
weighing factors. The definition and calculation of T;; and R;; are described later
in this section. Users obtain the required CSP information (such as reliability
index) from the Broker prior to the calculation of the utility function. The Broker
also maintains the minimum acceptable price offered by all the CSPs for the same
resource in its price manager module. Using this information, the Broker can
select the user bid which is the smallest value above the minimum value, as the

winning bid for the auction. This complete flow is summarized in Figure 3.3.

CSP Info. Request

o Operations Monitor o m
g . Trust and
CSP selection CSP information jcredit Rating Reputation User Price Info
N . Reliability
using Utility o Capability Security Index
Model Management Index

Bid Submission

Winner Notification

Job Distribution Manager

Client Interface

User ..

T ( Cloud Broker Arbitrage
Database

— T——— E—————
Job Submission Job Job Dispatching
User M 2 Classification § cjoud Aggregation

CSP Rating

Cloud Service Provider Interface

CSP selection based on Bid
and Price Information

Figure 3.3: Flow Diagram for Auction-based Scheme
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3.4.1 Pricing strategies for CSPs and Users

The CSPs learn market demand using the auctioning process through the Broker
and alter their prices accordingly. The process of deciding prices is carried out
at the beginning of every auction. CSPs keep track of the number of auctions
in which they have not been picked. If this value exceeds a certain number, the
CSPs attempt to put an end to the dry spell by lowering their offer price. If the
CSPs have been picked, they raise their prices in the next auction. In order to
facilitate this process, CSPs keep track of the Average Winning Price. Whenever
the winning price is updated in the Price Manager module in the Broker, the

CSPs modify their Average Winning Price to keep it up to date.

Meanwhile, users use this scheme and locate the vicinity of the minimum bid
price. Users who mistakenly over-bid learn from the process and bid lesser in
the next time (as the immediate previous winning bid is always available in the
Broker). Apart from helping the users to reduce expenditure, this scheme also
ensures that other users are protected from an unreasonable inflation of prices
in the ecosystem. Users who mistakenly under-bid learn from the process and
raise their bids in order to win the next time. Thus, the auction process creates

a win-win situation to both CSPs and users in the system.

3.4.2 Calculation of Reputation by the Broker

Users select the desirable CSP using the Reputation inder maintained by the Op-
erations Monitor module of the Broker. Mathematically, the Reputation value is
a combination of the performance reviews submitted by the users at the end of

each auction and the minimum bid values submitted by the CSPs. The Reputa-
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tion index R;; for a CSP P; after K auctions can be calculated as:

KOS YhXE 1
Ry=2F=L N 4 (3.6)

where first term is the average value of the product of the feedback submitted by
the users about a particular CSP under consideration and the reliability index of
those users calculated for the last K auctions. It means that reviews submitted
by reliable users are given more consideration compared to the reviews submitted
by unreliable users. The second parameter is the inverse of the minimum bid
value from K auctions submitted by the corresponding CSP. If a CSP believes
that its performance is rendering its reputation value too low, it can increase its

reputation by lowering the prices upto some extent.

3.4.3 Calculation of Trust by the User

In addition to the reputation index, a Trust value (7;;) is calculated by the users
for each CSP. After each auction, T;; is computed by C; for P; using the following

relationship:

K
3/;,

T;; is the average value of C;’s affinity index to P; for past k auctions for the same
user. The users do not communicate this value between each other (assuming
sealed-bid double auction). Further, T}; is strictly a function of the feedback by

individual users observed at the end of the auction.
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3.5 Belief-based Game-theoretic Model for User
Reliability

In order to enforce truthful feedback by the users after each auction, the Opera-
tions Monitor module of the Broker maintains a reliability index x! for each user
C;. Users are not aware of the reliability value assigned to them by the Broker.
In each auction, the average performance of a particular CSP is calculated. If a
user reports a performance value that is different from the average value beyond
a threshold value, that user’s review is viewed as a special case. If this user con-

sistently submits such reviews, that user’s reliability is lowered.

We update the reliability value in the Operations Monitor based on imperfect
private monitoring (using belief-based non-cooperative repeated games) [60]. Let
¢ be correct feedback! submitted by the user and d be the defective feedback sub-
mitted by the user at time ¢. Further assume z € [0, 1] to be a very small value
indicating the noise in the observed feedback. A noise in this case shall be the
number of extra chances that the user gets before the user has been marked as a
completely unreliable user. Small value of noise (closer to 0) indicates more extra
chances given to users to correct themselves and high value of noise (closer to 1)
means Broker gives lesser number of chances to the user when defective feedback
is submitted and marks the user as unreliable quickly. Then, Broker updates the
value of x%:[0,1] — [0, 1] after each iteration [60] based on the feedback received

from the users. When a correct feedback ¢ is received, x! can be calculated as

n a correct feedback, the performance value reported by the user will not deviate from the
average performance value calculated by the Broker above a threshold value 6. Otherwise, the
feedback will be considered as a defective feedback.
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Start of the game

Figure 3.4: The state transition diagram for calculating the reliability index

[60]:
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and when a defective feedback d is received, y! is:

= X
o e (=) =X

(3.9)

We can observe that, if the initial value of x! is 1, then x! will be close to 1 as
long as a user submits correct feedback (following Eq. 3.8). If the user submits a
defective feedback, his reliability index ! will go down based on the calculation of
Eq. 3.9. The calculation of x! can be represented using a state transition diagram
as illustrated in Figure 3.4. In the state diagram, y; is the reliability value for a
user who always submits correct feedback. When the reliability index goes below
a threshold 6, the user reliability index becomes Y., and that user is marked as an

unreliable user. Thus we can observe that x; > x2 > X3 > ... > Xm-1 > 0 > Xm-

3.6 Performance Evaluation

In this section, we conduct extensive performance evaluation studies to analyze

the Revenue obtained by the CSPs and the Ezpenditure incurred by the users,
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in our schemes. We consider the following cases as most important issues to be

validated via performance evaluation studies in the context of our study:

e Comparison of the revenues obtained in various cases

Effect of user preferences in the utility function

Effect of CSP preferences in the CSP revenue

e User migration between Auction based and Incentive based models

Cloud market offering multiple services

The performance evaluation parameters are summarized in Table 3.2.

Table 3.2: General performance evaluation parameters

COMMON PARAMETERS
Number of users 1000
Number of CSPs 10
Number of iterations 50000
Minimum Price 50
Maximum price 70
Plot value iteration Every 10000
Threshold value for load in CSP (y) 0.5

3.6.1 Comparison of the revenues obtained in various cases

Initially, we conduct experiments to study the revenue obtained by the CSPs
in a variety of situations. We consider various budget requirements by users in
Auction-based scheme. We define a metric Hit-ratio as the ratio of the number
of successful auctions (A;) to the total number of auctions (A;). Mathematically,
Hit Ratio = ﬁ—j. As the users increase their minimum bid value, the hit-ratio also

increase. We also consider the revenue obtained in Incentive-based scheme and
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the original scheme (A scheme without the presence of a Broker). All parameters
in the utility function are given equal weightage in both schemes and the results

are plotted in Figure 3.5.

We can observe that both Incentive-based and Auction-based schemes result in
a fair revenue for all CSPs offering same resources compared to the traditional
Cloud system without Broker. This is further corroborated by Jain’s fairness
index! [61] plotted for the revenue obtained by the CSPs, in Figure 3.6. We
calculate Jain’s fairness index as:

(T L)

F([l,lz,...7[N):m (310)

j=177

where, I; is the gross income for CSP P;. We can see that fairness index is close

IThis index rates the fairness of a set of values. In our model, we calculate this index in
choosing various CSPs by the users. A value close to 1 indicates that the system treats all CSPs
fairly.

TOTAL REVENUE WITHOUT BROKER
INCENTIVE-BASED
AUCTION-BASED, HIT RATIO=1
AUCTION-BASED, HIT RATIO=0.5
Ailctr%ou;BAs:ED HI:T R:ATI:O:O:. 6
AUCTION-BASED, HIT RATIO=0.8

550000

500000

450000
400000
350000
300000

250000 \—_\/

200000

150000

100000

PROVIDER
1 2 3 1 5 6 1 8 9 0 11

Figure 3.5: Comparison of revenue obtained in different cases
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Figure 3.6: Jain’s Fairness Index

to unity in both models. Further, we can observe that, in the scheme without
Broker, users have limited knowledge about CSPs. They only have their own
perception about CSPs and they make decision. Hence, some CSPs are chosen
more often compared to others. With our model in place, users can choose the
best CSP which matches all their requirements such as budget, security features,
reputation etc. When the minimum budget is set to be the same in all models,
Incentive-based model results in a higher Revenue for CSPs whereas Auction-
based model results in about half of that (Auction-based with hit-ratio=0.5 in
Figure 3.5). This is because, in Auction-based model, some of the auctions are
not successful because of the higher bid price quoted by the CSP as compared
to user’s budget specifications. When users are willing to pay more, the hit ratio
also increases and finally achieves a hit ratio of 1 where, the revenue achieved by

the CSPs are comparable to other models.
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3.6.2 Effect of user preferences in the utility function

TOTAL REVENUE ALPHA=1,BETA=0 , GAMMA=0
360000 ALPHA=0, BETA=1 , GAMMA=0
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Figure 3.7: Effect of user preferences in Incentive-Based model
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Figure 3.8: Effect of user preferences in Auction-Based model

Now, we analyze the effect of user’s preferences in their utility function in
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choosing the CSPs. For this purpose, we vary various weightage values in Equa-
tions (3.2) and (3.5) for Incentive-based and Auction-based mechanisms respec-

tively and the results are plotted in Figures 3.7 and 3.8 respectively.

We can observe that, when the users give equal weightage to all parameters in
the utility function, the CSPs are treated fairly and they obtain a fair amount
of revenue. Whereas when the users give more importance to only trust and
reputation (in Auction-based scheme) or only security index or affinity index
(in Incentive-based scheme), the total revenue obtained by different CSPs vary.
This is because some CSPs have a higher value for these parameters compared
to others. For example, in Figure 3.8, CSP 1 and CSP 10 obtain a large revenue
compared to other CSPs when o = 0 and 5 = 1. This is because, these two CSPs

maintain higher reputation values compared to others.

3.6.3 Effect of CSP preferences to participate in the pro-

posed schemes

In this subsection, we analyze the effect of CSP preferences to participate in the
two proposed schemes. Initially all CSPs participate in the proposed schemes
and later after 25000 iterations, 5 CSPs decided to leave the system and function
independently. The revenue obtained by CSPs for Auction-based and Incentive-
based schemes for 50000 iterations are plotted in Figures 3.9 and 3.10 respectively.
Some users based on their individual perception, choose one of these independent
CSPs whereas other users choose one of the CSPs participating in the proposed
Broker-based mechanism based on the utility function. We can observe that those

CSPs who continue to participate in the Broker-based scheme achieves a higher
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Figure 3.9: Effect of CSP preferences in Auction-Based model

revenue compared to those who leave the system. Further, CSPs participating in

the Broker-based scheme obtain higher revenue as more users started choosing

them based on the collective information obtained through the Broker.
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3.6.4 User migration between the proposed schemes
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Figure 3.11: Migration from Auction-Based to Incentive-Based
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Figure 3.12: Migration from Incentive-Based to Auction-Based

Now we conduct experiments to analyze the average user expenditure when
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some users migrate from Auction-Based model to Incentive-Based model and
vice-versa. We conduct the performance evaluation for 10,000 iterations with
100 users, and 50 users are migrated from one scheme to the other after 2500
iterations. These users have the knowledge about the whole system with respect
to their parent scheme and now they choose the required CSP based on this his-

toric information.

The user expenditure for migration from Auction-Based to Incentive-Based scheme
(for one loyal user! and one not-loyal user chosen randomly) is plotted in Figure
3.11. A loyal user has less expenditure compared to a not-loyal user after few
iterations. This is because, when a user is loyal, the CSP reduces or does not
change its offer price for this user whereas if a user is not loyal, the CSP offers

same or higher price compared to past offer price.

The user expenditure for migration from Incentive-Based to Auction-Based scheme
is plotted in Figure 3.12. Comparing Figures 3.11 and 3.12, we see that initial
expenditure is higher in Incentive-based scheme because the user has no op-
tion to specify a minimum budget requirement. When these users migrate to
Auction-based scheme, both loyal and not-loyal users show similar trend in their
expenditure as evident from Figure 3.12 and their expenditure converge after few
iterations. This is due to the fact that, Auction-Based model treats all users (new
or existing) in the same way. Further, winner of the bid and the winning price
are decided by the Broker. Moreover the loyal-user has higher cumulative expen-
diture after few iterations because the user comes more often and uses resources

for more time compared to non-loyal user and hence incurs higher monitory ex-

LA user is considered as a loyal user if he/she uses the same CSP very often for longer time
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Table 3.3: Capability Management Database in the Broker

CSP-id Services offered
CSP 1 Compute
CSP 2 Storage
CSP 3 Data
CSP 4 Compute, Storage
CSP 5 Storage, Data
CSP 6 Compute. Data
CSP 7 | Compute, Storage, Data
CSP 8 Storage
CSP 9 Storage, Data
CSP 10 Compute

penses.

To summarize, if a user is loyal, and f a user wants to use the Cloud services
more often, then it is better for him to follow Incentive-based scheme. Whereas if
a user uses Cloud services infrequently, then the user may prefer Auction-based
model. Further, in Incentive-based model, users can not specify their minimum
budget and they choose the CSP who maximize his utility function. Whereas in
Auction-based model, the users may reject some auctions, if the offered price is

more than their bid price.

3.6.5 Cloud market offering multiple services

In real-world, CSPs often offer many kinds of services such as SaaS, PaaS and
laaS as discussed in Chapter 1. In order to demonstrate that our models can
seamlessly incorporate CSPs offering multiple resources and users having diverse
resource requirements, we consider CSPs offering up to three different services,
Compute, Storage and Data' for the experiments in this section. The services

offered by 10 different CSPs which are maintained by the Capability Management

!These services are chosen based on the services offered by Amazon Web Services (AWS)
[12].
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module, are summarized in Table 3.3. We also assume that users specify any of
these services based on their requirements (which follows uniform distribution)
when they submit the task. Here, the Broker sends the user requests to a subset

of CSPs based on the type of services they offer.

Further, in the experiments, compute was requested more often compared to
storage and data. So in the experiment, CSP 1 and 10 offers compute and generate
higher revenue with respect to CSP 2 and CSP 8 which offers storage alone or
CSP 3 which offers data alone. Due to the same reason, CSP 1 and 10 gets higher
revenue compared CSP 5 which offers storage and data. Also note that, CSP 4
and CSP 6 generate higher revenue compared to CSP 1 because CSP 4 and CSP
6 offers two types of resources in which one type is compute resource. We conduct
the experiments for 1000 iterations with 100 users and the results are plotted in

Figure 3.13. We can observe that, CSPs offering multiple services obtain more
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Figure 3.13: Revenue obtained when CSPs offer different products
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revenue compared to CSPs offering single service. This is because they get more
opportunities based on user requests. Further, it is interesting to note that CSPs
offering same types of resources are treated fairly by both models. For example,
CSP 5 and 9 (offering Storage and Data) gets similar revenues. This analysis
reveals that our schemes can seamlessly handle CSPs offering multiple types of

services and users with diverse requirements.

3.6.6 Remarks

o If CSPs offer multiple products/services, Broker can selectively handle user
requests with a subset of appropriate CSPs without making any additional

changes in the current schemes

e Our schemes can also seamlessly handle influx of new CSPs and users with-

out affecting the existing market.

e It is interesting to note that users who use the Cloud services for a long time
may prefer Incentive-based mechanism due to lower offered prices for the
loyal customers and guaranteed win in single iteration. Whereas Auction-
based scheme lowers user expenditure at the expense of response-time for

choosing appropriate CSP (refer Figures 3.11 and 3.12).

e We can observe that the current Broker architecture already offers few light
intermediation services such as maintaining security, reliability and reputa-
tion indices and market price information etc. More Cloud Broker Inter-
mediation services can also be added for our schemes through the Broker

very easily.
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3.7 Chapter Summary

In this chapter, we proposed two schemes using incentives and continuous double
auctions to connect users and CSPs through a Broker. The Broker maintains
necessary information aiding the CSPs to offer attractive dynamic pricing poli-
cies to the users and, aiding users to choose appropriate CSP based on their re-
quirements. Later we showed the effectiveness of our schemes through extensive
performance evaluation studies and proved that our schemes give a fair treatment
to all CSPs under certain conditions and always forces users and CSPs to reveal
truthful information. Further, we showed the effect of user migration from one
scheme to the other. We also showed the suitability of our schemes for different
types of users, i.e. if a user wants to use the Cloud services more often, then it
is better for him to follow Incentive-based scheme. Whereas if a user uses Cloud
services infrequently, then the user may prefer Auction-based model. Finally, we
showed that our schemes can seamlessly handle CSPs offering multiple types of

resources and users having diverse requirements.
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Chapter 4

Risk-aware Multiple Cloud

Orchestration Mechanism

4.1 Introduction

In the last chapter, we described two Cloud Broker Arbitrage mechanisms one
based on incentives and another one based on sealed-bid double auctions which
can take into account various requirements such as budget requirements, trust,
reputation etc. In this chapter, we model the utility function using the principles
of Von Neumann-Morgenstern utility theorem (VNM-UT) [62] which can effec-
tively handle user’s risk bias towards the selection of appropriate CSPs based
on their trust and reputation values. Similar to the other two Broker arbitrage
mechanisms, this scheme also enables CSPs to adapt to market conditions to offer
dynamic pricing strategies based on their history as well as the current market

situation.
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4.2 The Proposed Risk-based Cloud Broker Ar-
bitrage Mechanism

Similar to the two models we have described in Chapter 3, users and CSPs are
connected using a Broker (based on the Broker architecture described in Chapter
2) in this scheme as well. Users submit a job request to the Broker and Broker
forwards this request details to all CSPs connected to it. CSPs send back the
price offers to the user through the Broker. User has a utility function which is
based on various parameters such as trust, risk bias and the cost involved. User
chooses one CSP which maximizes its utility. Without any loss of generality,
we assume that all CSPs have similar capabilities and are able to service any
incoming job request. Later we show that, if CSPs offer multiple services, our

scheme can handle it seamlessly. This complete flow is summarized in Figure 4.1.
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4.2.1 Formulation of Trust Function

A user makes use of a trust mechanism in which he/she calculates the trust using
a reference scheme. A particular user uses the trust information from some of
the other users to calculate its updated trust index (also called as Credit Rating)
for each CSP. We propose two ways to calculate this rating. One based on trust

without reference and the other one based on trust with reference.

Trust without Reference or local Trust is an accumulative value of job rating. To
calculate Trust with Reference, user needs to select some users as reference users.
In order to make sure that the selected reference users are not malicious, the
user should have a rating for the reference users, which is referred to as Reference
Credit RC'in our system. With Reference Credit and local Trust, we can calculate

Trust with Reference, which is used in the calculation of utility function.

Job Rating

After each transaction, user C; who sends the request needs to rate the chosen
CSP P;’s performance. The rating can be ranked according to user’s expectations
and is subjective. Some of the main factors in providing the rating could be,
meeting task deadline, adherence to Service Level Agreement (SLA) specifications
etc. In this chapter, we use JR; ;)" € [0, 1] to represent user C; ’s Job Rating to

CSP P; in the n'* transaction.
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Local Trust

In our system, Local Trust (i.e. Trust without Reference or Job Rating) of user 4

to CSP j for all past transactions without reference is given by [63]:

J S € [0,1] (4.1)

where, f is the total number of past iterations considered in calculating the trust.
It totally depends on the job Rating of all the past f transactions between User C;
itself and CSP P;. In the above equation, n = 1 denotes the latest transaction and

&n

in the equation means that transactions happened recently are given higher
importance compared to transactions in the distant past. « is the decaying factor
(0 < @ < 1) and it determines the importance of the most recent transaction to

the local trust.

Reference Credit

If a user C; has never performed any transactions with CSP P; in the past, it is
necessary to have some other users’ evaluation results as reference. It also helps
the user to avoid bias judgement and to give more trustworthy evaluation of the
CSP. However, it is necessary to rate the reference user v so that the user can
find the most appropriate reference user and avoid any malicious reference users.
After n' transaction, user C; will compare its own job rating JR; ;)" to the
offered trust T'R, ;) of reference user v and rate the reference user v accordingly
as:

RCP =1—|JR!, — TR, | (4.2)

LYy
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Here, a value close to 1 means user C; gives user j a better rating. User C}’s
Reference Credit (RC}.) to user v will be accumulated to calculate an overall
rating RC; 5 and it shows the trustworthiness of reference user v according to user
C;. This value will be used in the calculation of Trust with Reference. 3 € (0,1]
is a decaying factor and it indicates the importance of most recent transaction
to the credit of reference v in user C;’s evaluation. Credit rating of user ¢ to

reference «y for all the reference actions is given by [63]:

Y BRCY

RC; ., = 4.3
R (4.3)

Trust with reference

With both the local trust of user C; to CSP P; and the total value of f reference

user’s local trust to CSP P;, we define Trust with Reference as [63]:

TRi;+ Y RCLTR,

7 1+>7 RC{L,Y

(4.4)

The local trust T'R; ; of user C; to CSP P; is completely taken into account in
the definition. The product of local trust TR, ; of reference user v to CSP F;

and the Reference Credit RC;, is used in the calculation of utility function

4.2.2 Formulation of User’s Utility Function

We model the expected utility function using the principles of Von Neumann-
Morgenstern utility theorem (VNM-UT) [62]. Let G be the set of all gambles (in
our case, it is the set of CSPs in the market). Then a utility function formulated

based on VNM-UT, satisfies the following axioms ([64], [62]):
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Completeness: If g, ¢ € G, then either g = ¢’ or ¢’ = g.

Transitivity: For any three gambles g,¢',¢" € G, if g = ¢ and ¢’ = ¢”,

then g = ¢”.

Continuity: For any three gambles g,¢’, ¢" € G such that, g = ¢’ = ¢”,

then there exists some w € [0, 1] such that wg + (1 — w)g” ~ ¢'.

Independence: For any three gambles g, ¢, ¢" € G and w € [0, 1], then

9z g o wg+(1-w)g" Z=wy + (1 -wm)g".

Below we attempt to explain the physical significance of the above axioms. The
completeness axiom says that, users have preference over all gambles and can
rank them all. The Transitivity axiom says that, if g is preferred (or indifferent)
to ¢’, and ¢’ is preferred (or indifferent) to ¢”, then g is preferred (or indifferent)
to ¢”. An implication of the continuity axiom is that if ¢ is preferred to ¢’, then
a gamble close to g (a short distance away in the direction of ¢” for instance) is
still preferred to ¢’. Finally, independence axiom says that, if users are indifferent
between two possible outcomes, then they are indifferent between two gambles
which offer them with equal probabilities, if the gambles are identical in every

other way.

VNM-UT is widely used in literature ([65], [66], [67]) for modeling expected
utility under various situations especially because, it can take into account user’s
risk-bias. In general, we can categorize users into risk-averse, risk-neutral or risk-
seeking [64]. Risk-Averse users are reluctant to accept an offer with an uncertain
payoff compared to an offer with a more certain, but possibly lower payoff. On

the other hand, a risk seeking user prefers to take risk. Users who do not fall into
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Table 4.1: Different types of users

User type v(TR;;) r(TR;;)

Risk averse Concave r(TR;;) >0
Risk neutral Linear r(TR;;) =0
Risk seeking Convex r(TR;;) <0

either of these categories are risk neutral users.

Let V(T'R; ;) be a utility function following VNM-UT. A more concave nature of
V(TR; ;) implies more risk-aware users [62]. We can measure this mathematically
using Arrow-Pratt measure of risk aversion r(TR; ;). Mathematically,

VI(TR;;)

r(TR;;) = — WRZJ)

(4.5)

The nature of V(T'R; ;) and the range of values for 7(T'R; ;) are summarized in

Table 4.1. The utility function [67] can be defined as:

. 1 — e_)\TRZJ .
V(TRZJ) = ﬁ,TRZJ c [0, ].], A>0 (46)
Then,
) )\efATRZJ
VITR;;) = 1o 0 (4.7)
; _)\267>\TR{’J.
VI(TR;;) = 1o < 0 (4.8)
and
(TR ;) =A>0 (4.9)
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The explicit cost by the user with respect to each CSP can be expressed as:
B
E. == 4.10
4 (4.10)

where P, is the price offered at time ¢t and B is the budget specified by the user.
Combining Equations (4.6) and (4.10), we formulate the final utility function for
the user as:

1— efATRZj 1

Substituting the value of TR} ; and E. from Equations (4.4) and (4.10) in (4.12),

we get:
TRy ;+58 ) ROF TRy

—A 1+ men
]_ — e t2ip=1 i,y

B
1—e ‘P,

)

U(TR;;) = (4.12)

The utility function can take into account risk, trust and cost parameters and

the user chooses the CSP which maximizes the expected utility value.

4.2.3 Dynamic Pricing Strategies

In this section, we describe the formulation of dynamic pricing strategies for
CSPs based on acceptance rate. We formulate the dynamic pricing model based
on several factors such as the price offered in the last transaction, current market
price maintained by the Broker and the acceptance rate of the CSP. Price offered

at time ¢ is given by:

Po=P 1+ (A — Apr) (P + (1 = §)Qe1) 06T (4.13)
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where, P;_; is the price offered in the last transaction, A; is the acceptance rate
of this CSP at time ¢, A, is the expected acceptance rate of CSP, );_; is the
market price for this resource (i.e. average price of other CSPs offered this at
time ¢ — 1) obtained from the Broker and ¢ is the weighing parameter. The actual

acceptance rate for a CSP at time ¢ is given by:

an:to Sm

A = Epstem
Zinzto Om

(4.14)

where, S(m) is the total resources sold from time ¢, till time ¢ and O(m) is the

total resources offered from time ¢, till time ¢.

The CSP adjusts its price around the price it offered the last time to this user
and the average price offered by all the CSPs @);_; according to the supply and
demand of its offered resources. If A; > Ay, it means the CSP’s offerings have
been accepted adequately and it can choose to increase its price. If A; < Ay, it
means the CSP’s have been rejected too much and it should consider to reduce
its price to win more users. ¢ is the parameter indicating how much the CSP
want to refer to its own price or the average price offered by all the users in last

transaction.

4.3 Performance Evaluation

4.3.1 Simulation Setup

In this section, we conduct extensive performance evaluation studies to analyze

the effectiveness of the proposed multiple Cloud orchestration mechanism. In our
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simulation setup, there are 10 CSPs and 1000 users. 50,000 requests are sent
to the broker in each run. Table 4.2 summarizes values for various parameters
used in our first set of performance evaluation experiments. Now, we describe the
initialization of price and credit rating values and explain the rationale behind

this initialization.

Table 4.2: General simulation parameters

Parameter Values
Number of requests 50,000
Number of CSPs 10
Number of Users 1,000
Budget range of Users | [38, 140]

Initial values for price offers by various CSPs

In order to perform a realistic performance analysis of our model with a real Cloud
environment, we use initial offered price of 10 CSPs from publicly available data
[5]. We choose 10 CSPs who offer resources with same specifications (Table 4.3
summarizes the resource specifications of various CSPs) and use their price offers
to initialize the price offers in our model. Table 4.4 specifies the initial price

values of these 10 CSPs.

Table 4.3: Resource specifications of CSPs [5]

Resource | Specifications
RAM 8 GB
Storage 50 TB
CPU Power 5%4
0S Windows
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Table 4.4: Initial price offers by various CSPs [5]

CSP id CSp Monthly Price (in dollars)
1 Bit refinery 38
2 CloudSigma 49
3 aTLanTIC.ner 45
4 OpSource 78
5 VPS NET 98
6 GoGRID 140
7 terremark 46
8 JoyentCloud 61
9 dediserve 112
10 AWS 123

Choice of values for Initial Credit Rating

Initially, we randomly generate 10 random values as the base credit for each of
the CSP. Then, we generate the credit value of each user to each CSP based on
the base credit. The generated credit value of each user to certain CSP is within

20% of the base credit of the CSP.

4.3.2 Effect of Dynamic Credit with static price

First we analyze the effect of our credit system. Keeping the price static, we
repeat the experiments for static credit and dynamic credit and the results are
plotted in Figure 4.2. In the case of dynamic credit, the trust (or credit rating)
for CSPs by users changes with time based on their interaction and every time

users use updated credit values in calculating the utility function.

Case 1: Static Credit: None of the users change their Credit Rating for the
CSPs. From Figure 4.2, we can observe that, with static credit, only C'SP1 and

C'SP3 are always chosen by the users.

Case 2: Dynamic Credit: In this case, C'S P2 changes its trust features every
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500 iterations until the credit reaches 0.9 and hence all users provide a higher
credit rating to C'SP2 by a small value. We can observe from Figure 4.2 that
C'S P2 obtains considerable gain in revenue by improving its credit rating obtained

from the users.

Effect of Dynamic Credit
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Figure 4.2: Effect of dynamic credit on CSP revenue

4.3.3 Effect of Dynamic Credit with dynamic pricing strate-
gies

In this section, we conduct experiments to analyze the effect of dynamic credit
with dynamic pricing strategies. As defined earlier, the credit rating of various
users to certain CSP is around the base credit of the CSP. To show the effect of
different credit, two credit settings are generated. In the first credit setting, base
credits falls within the set [0.2,0.9] (case 1) and in the second credit setting, base
credits are generated from the set [0.6,0.8] (case 2). Further, keeping the values
of other parameters the same, dynamic pricing strategy is applied. In order to
show the effect of credit, we change the price in a relatively large interval (Every

100 interactions). Simulation parameters used for the experiments in this section
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are summarized in Table 4.5 and individual base credit values for various CSPs
are summarized in Table 4.6. The results obtained in case 1 and case 2 are plotted

in Figures 4.3 and 4.4, respectively.
5 Credit Ratings of CSP 1 is entirely different in two settings and we take this as

Table 4.5: Simulation parameters for Section 4.3.3

Parameter Values
Number of requests | 1,000
Number of CSPs 5

Number of Users 10
Minimum Budget 45
Maximum Budget 60
Minimum Price 40
Maximum Price 60

Table 4.6: Credit Setting 1

CSP id | Base Credit (case 1) | Base Credit (case 2)
1 0.217241 0.751348
2 0.746005 0.68454
3 0.487929 0.659554
4 0.758531 0.730438
5 0.761890 0.677734

a representative example to discuss our observations. In Figure 4.3, C'SP1 does
not generate revenue for first 500 interactions while in Figure 4.4, C'SP1 begins
to generate revenue immediately after 100 interactions and obtains relatively
constant revenue after that. Further, we can observe that as all CSPs change
their dynamic credit and price with time, they all obtain same cumulative revenue

at the end of the experiments.

This reveals that if some CSPs have less credit rating (i.e. users do not trust them
due to some reasons), by improving their trust features, they can get a higher
rating among the users and hence obtain a higher revenue. In the absence of a

Broker, it is difficult to adapt to market conditions such as changing the price
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Figure 4.3: Effect of dynamic credit on CSP revenue for Setting 1

offers based on market price and improving the trust features to improve user

credibility.

4.3.4 Analysis of Revenue for static and dynamic pricing

cases

Now we analyze the effect of dynamic pricing strategies on the revenue of CSPs
and compare it with the static pricing scenario. We set the risk parameter A to
1 for all cases wherever it is applicable. The job rating of each user to each CSP
is set to be varying within 20% of its initial credit. In case of dynamic pricing
mechanism, we consider two cases with £ = 1 (price offered depends only on the
price offered by the same CSP in past) and £ = 0 (price offered is changed based

on both its past price and the current market price) and we also set the desired
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Figure 4.4: Effect of dynamic credit on CSP revenue for setting 2

acceptance rate for all CSPs to 0.1 for comparison purposes. We also compare
the performance of the proposed schemes with current Cloud market wherein the
CSPs are chosen according to user’s own perception without any Broker. We term
it as Random in our experiments. The results for total revenue and acceptance

rate are plotted in Figures 4.5 and 4.6 respectively.

We can observe from the results that when CSPs offer static prices, only two
out of 10 CSPs, which offers the least price are chosen every time and hence only
two CSPs get the revenue. It shows that if a CSP can not respond to the market
quickly, it can be an unfavorable choice and may lead to economic loss. After
applying dynamic pricing strategy (in both cases), we can observe that all the
CSPs generate revenue and they are treated more fairly in the market. Further,

when ¢ = 0, most of the CSPs generate higher revenue compared to the case with
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Figure 4.5: Analysis of revenue in static and dynamic cases

¢ = 1. This reflects that, CSPs are able to effectively make use of the market
price information available in the Broker to increase their revenue and to adapt

to the market conditions.

Further, we use Jain’s fairness index to measure the fairness in revenue for 10
CSPs as done in Chapter 3. We record the total revenue obtained after every
10,000 transaction for a total of 50,000 transactions for different cases and the
results are plotted in Figure 4.7. We can observe that, fairness index is close
to 1 for our model with dynamic pricing strategies. In the beginning of the
simulation, the values are smaller, but as the time progresses, CSPs adapt to
market conditions by calculating and offering competitive prices and hence obtain
fair revenue for all CSPs. We can also observe that, our dynamic schemes treat
the CSPs fairly compared to the Random case where the CSPs are chosen by the

users based on their own perception and understanding.
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Figure 4.6: Acceptance rate for various CSPs

4.3.5 Analysis of various dynamic pricing mechanisms

Our price formulation expressed by Equation 4.13 has a variable parameter &
which allows the CSPs to alter their price offer either based on its own past
price, based on the market price or based on both of them. Here, we conduct
experiments with & = 0,0.5 and 1 and the results are plotted in Figures 4.8, 4.9
and 4.10 respectively. We conduct experiments for 50,000 iterations and values
are plotted after every 5,000 iterations. The results are plotted for only C'SP1

as a representative example.

When & = 0, the price adjustment fully rely on the average price of all CSPs.
From Figure 4.8, we can observe that, C'SP1’s offer price gets close to average
price of all CSPs very quickly. When & = 0.5, the price adjustment depends
on both CSP’s own price and all other CSP’s average price. From Figure 4.9,
we can observe that, C'SP1’s offer price still gets close to average price of all
other CSPs but with a relatively low speed compared to the previous case. When

¢ =1, CSP adjusts its price offers fully according to its own offered price in the
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Jain's Fairness-Static Pricing VS Dynamic Pricing
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Figure 4.7: Analysis of Jain’s Fairness Index for CSPs

last interaction and the CSP does not make use of the market price information
available at the Broker. From Figure 4.10, it can be shown that C'SP1’s price

does not get close to the average market price.
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Figure 4.8: £ = 0: Price adjustment only based on market price
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Figure 4.9: ¢ = 0.5: Price adjustment based on both market price as well as price
offered by same CSP in past iterations
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Figure 4.10: £ = 1: Price adjustment based on only the price offered by same
CSP in past iterations

4.3.6 Effect of Different settings of Expected Acceptance

Rate

In this section we analyze the effect of expected acceptance rate on the revenue

of CSPs for five different cases. Our simulation parameters are summarized in

Tables 4.7 and 4.8.

e Scenario 1: All CSPs set their desired job acceptance rate Ay, = 0.2
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Table 4.7: Simulation parameters for Section 4.3.6
Parameter Values
Number of requests | 50,000
Number of CSPs 10
Number of Users 1000
Minimum Price 50
Maximum Price 70

Table 4.8: Base Credit, Initial Price and Acceptance Rate for 10 CSPs

CSE Base Credit | Initial Acceptance Rate

id Price | Senl | Sen2 | Sen3 | Send | Senb
1 0.764225 58 0.2 0.1 ] 0.05| 0.1 | 0.01
2 0.648288 64 0.2 0.1 | 005 ] 0.1 | 0.05
3 0.778135 59 0.2 0.1 ] 0.05| 0.1 0.2
4 0.618787 64 0.2 0.1 | 0.051] 0.15 | 0.2
5 0.639872 60 0.2 0.1 | 0.05 | 0.15 | 0.05
6 0.656864 64 0.2 0.1 | 0.05 | 0.15 | 0.15
7 0.768901 59 0.2 0.1 | 0.051] 0.15 | 0.1
8 0.615769 62 0.2 0.1 | 0.051] 0.2 0.1
9 0.606409 64 0.2 0.1 ] 0.05| 0.2 | 0.01
10 0.668191 59 0.2 0.1 | 0.05] 0.2 | 0.15

(high) and the results are plotted in Figure 4.11. This is considered to be
high because when there are 10 CSPs, on average each CSP will be selected

with probability 0.1.

Scenario 2: All CSPs set Ay, = 0.1 (normal) and the results are plotted

in Figure 4.12.

Scenario 3: All CSPs set Ay, = 0.05 (low) and the results are plotted in

Figure 4.13.

Scenario 4: CSPs have random values for Ay, from the set {0.1, 0.15,

0.2} as summarized in Table 4.8 and the results are plotted in Figure 4.14.

Scenario 5: CSPs have random values for Ay, as summarized in Table

4.8 and the results are plotted in Figure 4.15.
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Figure 4.11: Analysis of revenue for acceptance rate Ay, = 0.2
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Figure 4.12: Analysis of revenue for acceptance rate Ay, = 0.1

When Ay, = 0.2, all CSPs set the expected acceptance rate to be high and hence
the revenue obtained by the CSPs are based on the credit rating for the CSPs.
For example, CSP1, CSP3 and C'SPT have the highest credit rating and hence
get the highest revenue compared to other CSPs. Similarly, C'SP4, C'SP8 and
C'S P9 have the least credit rating and hence obtain a lower revenue compared to

other CSPs. When Ay, = 0.1, all CSPs set their Ay, to be the normal expected
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Figure 4.13: Analysis of revenue for acceptance rate Ay, = 0.05
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Figure 4.14: Analysis of revenue when acceptance rate A, is random; Scenario
4

acceptance rate and hence obtain fair revenue. When Ay, = 0.05, CSPs set
their Ay, to be much lower compared to their average expected acceptance rate.
Hence, the revenue obtained is unpredictable and we can not expect this case in

a real market.

In reality, different CSPs may maintain different values for the expected accep-
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Figure 4.15: Analysis of revenue when acceptance rate A, is random; Scenario
5

tance rate. When Ay, is random, those CSPs with higher credit ratings show
similar behavior whereas those CSPs (CSP 8 and CSP 9) with high A, and low
credit rating show slight deviations in obtaining their revenue (Refer Figure 4.15.
This results from the pricing strategies because when the credit is less and Ay, is
high, those CSPs reduce the price offers to attract more users until they get the
expected acceptance rate. We can also observe from Figure 4.15 that, for CSPs
with same high Ay, (CSP3 and CSP4 in this example), the CSP with high
credit (C'SP3) gets higher revenue compared to the other CSP. Finally, CSPs

with lower A, obtain very low revenue as expected.

4.3.7 Effect of the frequency in changing the Price offers

In this section, we analyze the effect of the frequency in changing the price offers

on the revenue for different cases. In addition, we compare this values with the

1)



Auction-based multiple Cloud Orchestration mechanism described in Chapter 31.

Values used for various simulation parameters are are summarized in Table 4.9.

Table 4.9: Simulation parameters for Section 4.3.7

Parameter Values
Number of requests 1,00,000
Number of CSPs 5
Number of Users 1000
Minimum Price 45
Maximum Price 55
Plot value iteration | Every 10000

e Scenario 1: CSPs analyze the market conditions and change the price offer

every 10,000 iterations. The results are plotted in Figure 4.16.

e Scenario 2: CSPs analyze the market conditions and change the price offer

every 1,000 iterations. The results are plotted in Figure 4.17.
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Figure 4.16: Effect of the frequency in changing the Price offers in revenue sce-
nario 1

! Pricing mechanism in Incentive-based scheme described in Chapter 3 is based on individual
user’s affinity to different CSPs and hence we can not compare that in this case.
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Figure 4.18: Revenue for auction based scheme proposed in Chapter 3

By comparing Figures 4.16 and 4.17, we can understand that when price offers
are altered more frequently (Figure 4.17), revenue of different CSPs increase in
a smooth manner and the revenue they generated are more fair compared to the

case when price offers are altered less frequently (Figure 4.16). In real case, it
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depends on the CSP’s willingness. If the CSP is satisfied with its performance, it
can slow its adjustment with the market and vice versa. An important conclusion
from this study is that CSPs need not monitor and alter the price offer after every
iteration. Even if they alter the price offers periodically, they can still adapt to

the market conditions quickly.

In order to compare the performance of the present scheme with the Auction-
based multiple Cloud Orchestration mechanism described in Chapter 3, we il-
lustrate the relevant results in Figure 4.18. Compared to Figure 4.17, CSPs in
the present model generate more revenue. During the auction, CSPs’ revenues
are more fairly distributed. However, the present model is more flexible. As
discussed earlier, by changing CSPs’ expected acceptance rate, our model can

generate different revenues.

4.3.8 Comparison of different Broker arbitrage mecha-

nisms

In this section, we conduct experiments to compare the performance of the present
scheme to both auction based and incentive based schemes proposed in Chapter
3 using the simulation parameters described there. We also compare the results
with the model without Broker. We conduct experiments for the present model
with two cases one with lower budget requirements and the other one with higher
budget requirements specified by the users. We analyze the revenue obtained as
well as the Jain’s fairness index and the results are plotted in Figures 4.19 and

4.20, respectively.

We can observe that the present scheme generates revenues which is comparable
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Figure 4.19: Comparison of revenue for various schemes

to the revenues generated by Auction-based and Incentive-based mechanisms for
various budget requirements specified by the user. Further, we can also observe
that, when the user has higher budget specifications, they are willing to pay more
for the resources and hence the CSPs generate higher revenue. CSPs obtain this
higher revenue because of the dynamic pricing strategies based on past transac-

tions as well as the market price obtained from Broker.

We can also observe that our scheme has comparable values for Jain’s fairness
index (close to unity) with respect to the other two cases. Further, even if some
of the CSPs generate lower revenue in the beginning, due to the market-based

dynamic pricing strategies, they are able to get a fair revenue after some time.
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Figure 4.20: Comparison of Jain’s fairness index for various schemes
4.3.9 Cloud market offering multiple services

12000

10000

8000

6000 -

 Risk

H Auction

Revenue (in Dollars)

i Incentive
4000 -

2000

Figure 4.21: Revenue obtained when CSPs offer different products

In order to demonstrate that our scheme can seamlessly incorporate CSPs

offering multiple resources and users having diverse resource requirements, we
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consider CSPs offering three different services, Compute, Storage and Data for the
experiments as described in Section 3.6.5 of Chapter 3. We conduct experiments
in this section for 1000 iterations with 100 users and the results obtained are
plotted in Figure 4.21. We can observe that, CSPs offering multiple services
obtain more revenue compared to CSPs offering a single service. This is because
they get more opportunities based on user requests. Further, it is interesting
to note that CSPs offering the same types of resources are treated fairly by
our scheme. For example, CSP 5 and 9 (offering Storage and Data) get similar
revenues. 'This analysis reveals that our scheme can seamlessly handle CSPs

offering multiple types of services and users with diverse resource requirements.

4.4 Chapter Summary

In this chapter, we proposed a risk-aware Cloud Broker Arbitrage mechanism to
connect various CSPs and users through a Broker-mediated system. We proposed
a mathematical model for the utility function for the users to choose appropriate
CSP from time to time and considered various user specific parameters such as
user’s risk-bias, trust and reputation of CSP, price offered by the CSP and user’s
budget requirements. Further, we formulated a function for the CSPs to make
dynamic price offers based on the last transactions, CSP’s expected and real

acceptance rates as well as the current market price.

Later we conducted extensive simulation studies and analyzed the effect of various
factors such as the effect of dynamic credit mechanism used in our model, various
dynamic pricing strategies that are supported by our system and the effect of

different system parameters in the CSP’s revenue. Finally, we also compared our
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model with other models and showed that our scheme is effective under various

cases.
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Chapter 5

Cooperative Game-theoretic
Approaches for Cloud

Aggregation

5.1 Introduction

In the first part of this thesis, we have described an architecture for a Cloud Broker
and discussed several Cloud Broker Arbitrage mechanisms to provide opportunis-
tic choices and competition among different CSPs. In the following chapters, we
describe two Cloud Broker Aggregation mechanisms for deploying user applica-
tions among multiple resources to meet certain customer requirements based on
the Broker architecture described in Chapter 3. We devise strategies for deploying
compute and data intensive applications such as Bag-of-Tasks (BoT) applications
and divisible load applications on TaaS Compute Cloud environments based on

user requirements. Note that Broker may be used for task aggregation within
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one Cloud or across multiple Clouds based on the requirements imposed by the
user. For example, an organization may have a private Cloud within which they
may want to deploy the tasks with the help of a Broker. The Broker can also
aggregate tasks among multiple CSPs offering same or different types of resources

to meet some user objectives.

In this Chapter, we consider task aggregation in a private Compute Cloud (which
is equally applicable for aggregation among multiple CSPs having same types of
resources) running on a particular platform in which all computing resources have
identical characteristics. (eg: standard instances of Amazon EC2 running on IBM
Informix dynamic servers). Based on the requests received for the resource in-
stances, Broker needs to employ efficient strategies to allocate optimal number of
resources to achieve certain goal such as minimizing task execution time or max-
imizing revenue, which is beneficial to both CSPs and users. In our model, users
submit few parameters pertaining to the tasks such as task deadline or budget

requirements and the Broker calculates the optimal resource assignment.

The strategies described in this Chapter are suitable for scheduling both inde-
pendent tasks as well as workflow tasks. We employ bargaining approaches [68]
which are propounded in the literature [69] for devising our task aggregation
strategies. A price based non-cooperative bargaining theoretic model for a mobile
grid environment, has been discussed in [70]. A utility-based resource negotiation
approach for resource management in grid based content distribution network is
proposed in [71]. In [72], noncooperative alternating-offers bargaining game is
used for formulating a pricing strategy in distributed computing systems. All

these proposals emphasize on pricing and they require a few iterations to reach
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the equilibrium.

In [73], the authors use Nash bargaining solutions for job allocation in a grid
environment. They assume that the grid providers can not handle the requests
themselves and hence different providers cooperate to guarantee Quality of Ser-
vice (QoS). For a Cloud environment, this may not be true. Further, the above
models are not capable of handling real-time task arrivals and fluctuations in user
requirements with time. A CSP has a huge free pool of resources available for
customers and it requires strategies to efficiently allocate the available resources

for tasks arriving to the Cloud. We consider this situation in our framework.

5.2 Cooperative Game-Theory Framework

We assume that the tasks to be executed in the Compute Cloud are known a
priori. This is a reasonable assumption for a Cloud because tasks to be executed
in Cloud are generally submitted well in advance and they usually have large
processing time (of the order of hours or days) [74]. Further, tasks within certain
applications such as compute-intensive workflow applications are known in ad-
vance. However, they may not know the exact amount of resources needed until
the run-time. Later we show that our models can handle task dynamics as well as
real-time task arrivals up to a great extent. We consider computation-intensive
tasks that demand many Virtual CPU Instances (VCIs) and need to meet cer-
tain requirements such as deadline and/or budget. Further, without any loss of
generality, we assume that the scheduling details such as the task distribution
values for different CSPs (if the aggregation is performed on multiple CSPs), the

individual billing information etc are abstracted from the User and the Broker
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takes care of these information management and Broker maintains the informa-

tion such as integrated billing.

Consider there are N tasks (t1, s, ...ty) present in the system waiting for execu-
tion. The players or bargainers in this problem are these tasks. Task specifies
two parameters, {AET" t}}, average execution time and deadline for the task
when deadline! is the primary criteria and budget requirements when budget is
the primary criteria. The complete model of the system, based on the Broker

architecture described in Chapter 3, is illustrated in Figure 5.1. Note that in the
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Trust and
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Capability Security Index

Management Index

Credit Rating

Job Distribution Manager

DT Tl [ loud Broker Arbitrage
Database
Dispatcher
Job
Classification § cjoud Aggiegation

Client Interface

Job Dispatching

Cloud Service Provider Interface

Task scheduling based on
Bargaining approaches

Figure 5.1: Architecture for the proposed bargaining model. Here, DC stands for
Datacenter and these datacenters may belong to one or more CSPs

proposed aggregation mechanisms, we focus on task scheduling to satisfy user
specifications and ignore other parameters such as handling reliability and trust.
It can be observed that such parameters can be specified by the users when they
submit the tasks and Broker can consider a subset of CSPs satisfying such criteria

for the task scheduling in a seamless manner.

'Deadline is the time on or before which the task should be completed.
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Let R = {Ry, Rs,...Ry} be the bargaining domain or the feasible set of all pos-
sible outcomes (VCIs) required for each task. R is assumed to be convex, closed
and bounded sets of RY. Each player i has a disagreement point d; which is
the minimum number of VCIs required to complete the execution based on cer-
tain requirements. The disagreement point for the game can be represented as
d = (dy,ds,..dy). The pair (R, d) is the bargaining problem under consideration.
Below we present the required background material on the complete formulation

of optimal solutions for NBS and RBS based strategies.

5.2.1 Nash Bargaining Solution (NBS)

The Nash Bargaining Solution (NBS) allows us to assign fair amount of resources
for various tasks present in the system [68]. Let r = f(R,d) be an NBS which

satisfies the following four axioms [68]:

e Al. Pareto Optimality: 1f (R, d) is a bargaining problem with r, 7" € R and
i > 1, Vj, then f(R,d) # r.

e A2. Independence of Linear Transformations: Let y(.) be any positive affine

linear transformation, y(r) = f(y(R),y(d)).

e A3. Symmetry: If bargaining problem is symmetric, for any two users k

and m where dy = d,,, then fy(R,d) = f(R,d).

e A4. Independence of Irrelevant Alternatives: For every r’ € R’ where r’ =

f(R.d),if RC R then f(R,d)=r".

Below we attempt to explain the physical significance of the above axioms. The

linearity axiom A2 says that, the solution is not affected if the performance
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objectives are affinely scaled. Imposing the axiom of symmetry A3 assumes that
all players have equal bargaining skills. But in reality, the bargaining may be
influenced by other parameters such as the strategies employed by the players for
bargaining. This can be termed as the bargaining power «; for a player ¢. Such
bargaining games are called as asymmetric bargaining games [68]. The axiom A4
tells that the bargaining point is not affected by enlarging the domain. For the
asymmetric NBS model [68], we can define the utility function for the task i as
R = (R; — d;)*. where R} is the optimal number of resources derived based
on NBS for task i. Now, R* = {Rj, R;,..., Ry} which satisfies the axioms of
generalized NBS are the optimal set of resources for the tasks. The optimization

problem can be defined as (P1):

N
R* = arg max H(RZ —d;)™ (5.1)
subject to
(Rl, e RN) €R, (52)
R; > d; Vi, and (5.3)
Eij\il R; < Riot (5.4)

Here Ry, is the total amount of resources available. The objective function in
Equation (5.1) captures the proportional fairness. This means that every task
will get resources in proportion to what it has requested. Due to the nature of
Cloud, i.e. number of resources available is far more than the requests, we are

trying to allocate more resources to users than the required number of resources.
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This will help to finish the task before deadline and free the resources earlier.
The constraint R; > d; Vi says that each task ¢ should get at least the minimum
number of resources d; required to finish the task before deadline. Similarly the
constraint Ziil R; < Ry specifies that the total number of allocated tasks can
not exceed the total number of resources available. To obtain feasible bargaining
outcomes, Zﬁl R; < Ry,; must be satisfied. Assuming Zﬁl R; = Ry, the NBS
for user i is given as!

g = Qi = di) |, (5.5)

’ Aot
where ay,; is the sum of all bargaining powers of all tasks and d;,; is the sum of
the minimum number of resources required for all tasks. The solution offered by
NBS is useful and directly applicable when the set of tasks are known in advance
and the Broker needs to allocate the resources for these tasks in a fair manner.
Moreover, it makes use of all available free resources for allocation which leads to
high resource utilization. In short, NBS results in fair resource allocation which

maximizes the free resource utilization.

On the other hand, although NBS offers an attractive solution, it may be noted
that it only takes care of individual’s gain and does not care about how much
others have given up. In order to take this fact into consideration, we adopt

another solution, which is an extension of NBS as described below.

5.2.2 Raiffa-Kalai-Smorodinsky Bargaining Solution (RBS)

In order to ensure that one’s gain should be proportional to its maximum gain (in

other words, every player should give same weight for individual gain and other

'Readers may refer to the proof in [68].
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player’s losses), Kalai and Smorodinsky, and Raiffa [68] proposed a new solution.
They retained axioms Al — A3 in Nash’s solution and added a new axiom A4’ as

follows:

o A4 Monotonicity: For any ' € R’ where ' = f(R',d), if R C R’ and

22:1 T;c,n Z 25:1 r;c,n7 then fk(Rla d) Z fk(R7 d)

Consider the same game we defined before with T players. We can define [75]
the " player’s preference function with minimum utility d; and maximum utility

R as follows:

N
/8 max (07
vi(B) = [(Ri — d;) + m(Z R — Ry)|™ (5.6)
J#
where, (3 is the weighing factor to measure the trade-off between one’s gain and
another’s loss. When these two factors are given equal weightage, i.e. substitute
f =1 in equation (5.6), we obtain RBS. So we can write the utility function for

RBS as follows:

w(8) = (R — ) + 5 (S0 RJ“ — Ry)]™ 5.7
i

Given this utility function, we can write the RBS optimization problem (P2) as

follows:
~ N 1 N
R* = arg m}%XH[(RZ — dl) + ﬁ(% Rj — R])] ‘ (58)
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subject to

(Ri,...,Ry) € R, (5.9)
R, > d; Vi, (5.10)

R; < R™®* Vi, and (5.11)
SV R < Ry (5.12)

where R[™* is the maximum resources that can be allocated for task . To
obtain feasible bargaining outcomes, le\il R; < R;,; must be satisfied. Assuming
SN Ri = Ry, the RBS for user i is given as' R* = min{R:, R""*} where R}

can be expressed as shown in Equation (5.13).

R; = o' Ripi+

(1 = Na)Ryot + (N = 1)(d; — adyor) + RI"* + (N — 1)af — 1) SN | Rpas
N

(5.13)

In Equation (5.13), af' = ZTO"' — s the normalized bargaining power with
=1
Zﬁvzl a =1 and dyy is the sum of the minimum resources required for all tasks.

I;’;-k is the optimal resources derived based on RBS for task i.

The Nash and Raiffa solutions that we derived satisfy the axioms, and we now
show that the results are on Pareto optimal boundary. When Nash solution
maximizes the product of the gain of all players, the Raiffa solution considers

how much other players gave up, in addition to one’s gain. We now demonstrate

'Readers may refer to the proof in [68].
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the workings and solutions of the above proposed strategies using an illustrative

example with two tasks.

Example 1. Suppose there are 100 virtual CPU instances available, i.e. Ry =

v
A
\

\
N Ri-dy )Ryt }=constant
110 \
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100 4 s
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Figure 5.2: Geometrical Interpretation of Nash and Raiffa solutions

100 and the minimum and maximum requirements for two tasks are d = (20, 30)
and R™* = (70, 80) respectively. Consider a case with equal bargaining powers
(symmetric) for both tasks. i.e. @ = (0.5,0.5). Using equations (5.5) and (5.13),
we obtain the solution as R* = (45,55) and R* = (43,57), for the respective

cases.

Consider another case of asymmetric bargaining power with a = (0.8,0.2). This
means that player 1 increases his bid. The solution is R* = (60,40) and R =

(61,39). A geometrical interpretation of this solutions are described in Figure
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5.2. The solid line is the Pareto boundary. From the geometrical interpretation
as described in [75], the symmetric Nash solution lies on the tangent to the
hyperbola (Ry — dy)(Ry — dy) = constant and the symmetric Raiffa solution is
the intersection point between a line from (dy, d2) to (R, RY**) and the Pareto
optimal boundary. For the asymmetric case, player 1 has more bargaining power

and hence got more resources in both cases.

We can make the following observations from this analysis. In both NBS and
RBS, the allocation depends on the bargaining power. So even if two tasks have
same value for disagreement point, depending upon the bargaining power, they
may get a different amount of resources for their task execution. Further, NBS
is a special case of RBS and we can obtain it by substituting # = 0 in equation
(5.6). In this case, the players do not care about other player’s loss. Whereas,
we can observe that RBS takes into account both disagreement point and the
maximum resource requirements to obtain the optimal allocation of resources.
Further, if a CSP offers multiple kinds of resources, it can use this algorithm on

each resource type separately to arrive at the optimal solution.

5.3 Performance Evaluation and Discussions

In this section, we perform rigorous simulation experiments to demonstrate how
the above presented approaches are applied in handling the resource allocation
problem in a variety of situations. To demonstrate this, we consider a general

case with 300 tasks and we derive the bargaining power in three different ways:

e Deadline: Bargaining power is derived based on deadline. This means
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critical tasks with short deadlines have higher bargaining power and tasks

with longer deadline have lower bargaining power.

e Budget Requirements: Bargaining power is derived based on the budget
constraints proposed by the tasks. This means, tasks which can afford to

pay more, will get more resources still satisfying the disagreement point.

e Deadline and Budget: Bargaining power is derived based on both dead-
line requirements as well as the budget requirements. This means short

deadline tasks which can afford to pay more, will get more resources.

5.3.1 Resource allocation based on Deadline

We derive the bargaining power based on the deadline as follows. AET" values
are randomly chosen within the range [51,100] and ¢/, values are within the range
[10, 50] for any task 7. Then bargaining power «; can be calculated as 100 — ¢, for
any task 7. This a; for all tasks are normalized such that it lies between 0 and 1.

Then we consider a Compute Cloud with 3000 virtual instances of CPUs available

for allocation. We obtain the disagreement point for a task i as d; = AfiTi Vi. For
d

simplicity, we calculate R as R"** = 2 x d; for RBS. In practical situations,

the Brokers can obtain user requirements and make use of different approaches

to derive d; and R;"**.

Figure 5.3 plots the percentage of available resources allocated in both schemes.
In this graph, we can observe that if we allocate only based on d;, there are
many resources not being allocated. In this example, only around 40% of the

total resources are used. We can observe that NBS efficiently allocates more than
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Figure 5.3: Percentage of Resources allocated /Free with R;,; = 3000 and 7' = 300

95% of the resources and hence resource utilization is high. On the other hand,
for RBS, we note that approximately 78% of resources are allocated. Further, it
allocates resources more evenly considering the maximum resource requirements
and hence it is more efficient to finish the overall task execution in shorter time,

especially for longer deadline tasks.

Handling Auto-Elastic property of Cloud

For various tasks in compute-intensive applications (such as workflow applica-
tions), especially for data analytic applications, the resource demand varies with
time. Cloud environments have abundant computational resources and resources

are assigned as and when demand exists which is referred to as auto-elasticity. To
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Figure 5.5: Auto-elasticity of Cloud when the demand varies with time with
R;,; = 300 and T = 35

understand the efficiency of RBS in handling this property, we have conducted
a set of experiments wherein the requirements of tasks vary with time. In the
first set of experiments, we considered R;,; = 300 and 7" = 35. We have varied
the demand of at most £ = 5 randomly chosen tasks in each iteration. Figure
5.4 shows the individual resource allocation for 35 jobs in 6 different iterations.
A summary of the total resources allocated in these 6 iterations are plotted in
Figure 5.5. From these figures, we can observe that, RBS can handle variations
in resource requirements efficiently. In these experiments, resources are allocated
to tasks having more demand. Meanwhile, the algorithm does not change any
other task’s existing allocations even though the new calculation may demand a

resource reallocation for these tasks (for example, refer to tasks A and B pointed
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in Figure 5.4). This means that without changing any existing allocations, RBS

is able to take care of the auto-elastic property of Cloud up to a great extent.

To understand this effect on NBS and RBS in a large scale situation, we have
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Figure 5.6: Auto-elasticity of Cloud when the demand varies with time with
R0t = 3000 and T" = 300

repeated this experiments with R,,; = 3000 and 7" = 300. Here up to 50 ran-
domly selected jobs change their demand in every iteration and the results are
plotted in Figure 5.6. As we can observe from this figure, NBS allocate maximum
number of resources to the existing tasks and hence it may need to re-allocate

when the task demand changes with time. Among them, asymmetric NBS per-
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forms slightly better than symmetric NBS due to the influence of o in making the
optimal allocation. Whereas, as RBS consider maximum resource requirements,
it can efficiently handle the auto-elastic property without affecting the existing
allocations. So we can see that when the task requirements are stable, NBS is
a better choice and when the task requirements change dynamically, then RBS
could be a better choice. For a set of tasks with mixed task requirements, Broker
can choose an appropriate value for # in Equation (5.6) in order to arrive at the

optimal allocation.

Effect of real-time task arrival on RBS
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Figure 5.7: Resource allocation on RBS in two cases
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Figure 5.8: Percentage of Resources allocated/Free on RBS in two cases with
R = 300 and T = 30

In order to demonstrate the real-time task handling capability of RBS, we con-
sider 30 tasks and the resource allocator derives the optimal resource allocation
using RBS. Now consider 5 new tasks arriving at the Cloud. The aggregation
unit in the Broker’s Job Distribution Manager (JDM) run the RBS algorithm
and derives the optimal number of resources for all the 35 tasks. The minimum
number of resources required and the optimal number of resources derived are
plotted in Figure 5.7. Figure 5.8 shows the percentage of resources allocated and
freed in both cases. From Figure 5.8, we note that 65% (approx. 200 out of 300)
of resources were used for allocation in first case. Later when 5 new tasks arrive,

we observe that RBS consumes 77% resources (approx. 230 resources) and hence
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Figure 5.9: Analysis of pricing effects with change in number of tasks present

the allocator can allocate resources for these new tasks without affecting any of

the existing allocation. Thus RBS has the ability to handle real-time task arrivals

in a Cloud environment.

5.3.2 Budget requirements based resource allocation: Asym-

metric pricing schemes

In a Cloud environment, a CSP is most often interested in a pricing analysis. In

this section, we conduct experiments for analyzing the pricing aspects for both

symmetric (equal bargaining power for all tasks in the system) and asymmetric

(Users can specify how much they can afford to pay for the resources) cases of

NBS and RBS. In case of asymmetric schemes, we allow the tasks to specify a

price per resource in a range [Kin, Kpmaz] With K, = 50 cents and K, = 1
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dollar. These prices are generated randomly for all tasks present in the system.
In case of symmetric schemes, we set price per resource as 75 cents!. The tasks
specify a Quality of Service (QoS) parameter to tell how much maximum they
can afford to pay for each task. Note that this QoS parameter can be directly

captured in RBS as R’

max

while this can not be done so by NBS.

We calculate the total revenue to the CSP when the number of tasks present
in the system is varied from 200 to 450. As NBS can not handle the maximum
requirement, we calculate the price based on the resources allocated to each task?.
We propose to solve this issue by choosing the number of resources BA’;* given
by Rf = min{ R}, R**"}, where R} is the result of NBS optimization problem

described earlier and BA’;* is the new solution for NBS.

The results for both symmetric and asymmetric cases (using the notations NBS
modified Sym and NBS modified Asym respectively) are plotted in Figure 5.9. The
graph also shows the pricing scheme for original NBS and RBS solutions. We can
observe that, when the number of tasks present in the system are very less, original
NBS allocated resources more aggressively and hence the revenue generated is
more for both symmetric and asymmetric NBS schemes. If we take the modified
NBS for symmetric and asymmetric bargaining, the results are similar to the RBS

counterparts.

We can also observe that asymmetric scheme performs better than symmetric

scheme in both cases and asymmetric scheme is more efficient when the number

IFor an extra large standard or high-CPU on-demand instance of linux/unix, Amazon EC2
charge 0.76 cents per hour [12]

2In this case we can view as the users do not have any restriction to pay for all the resources
allocated as it reduces task execution time
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of tasks present in the system is more. This is because, when more tasks are
present, the allocator has an option to allocate more resources for tasks who can
afford to pay more. For example, when the number of tasks present in the system
is 450, both asymmetric schemes generates a better revenue compared to their
symmetric counterparts. As current CSPs follow symmetric pricing schemes,
the results on asymmetric pricing approach would give adequate flexibility in

managing the resources as well as generating more revenue.

5.3.3 Combined effect of deadline and pricing on resource

allocation

Resource Allocation Status H Allocated Resources

T ‘When 3000 YCIS are avail‘able M Free Resources

RBS Combined

RBS Price

RBS deadline

NBS Combined

Allocation Scheme

NBS Price

NBS Deadline

T T T
75% 80% 85% 90% 95% 100%

Percentage of Resources allocated/Free

Figure 5.10: Analysis of the combined effect of pricing and deadline on resource
allocation

In this subsection, we study the combined effect of deadline and pricing on
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resource allocation using NBS and RBS by capturing bargaining power as a func-
tion of deadline and pricing. We generate random values for deadline and user
budget for all the tasks present in the system and calculate the bargaining power
using deadline, user budget and combined deadline and budget requirements and

the results are plotted in 5.10.

We can observe that, in all cases, NBS aggressively allocates most of the resources
and maximizes the resource utilization whereas RBS also considers the maximum
resource requirements in the allocation. Calculating bargaining power using both
deadline and pricing results in a resource allocation which is favorable to short
deadline tasks that have higher budget the most, at the same time satisfying
the requirements for all tasks. The resource utilization in RBS is highest (92%)
when bargaining power is purely based on deadline and lowest when bargaining
power is calculated based on price (80%). We can observe that when bargaining
power is calculated based on both price and deadline, the resource utilization is
around 90%. To summarize, a CSP can consider any parameter or a combination

of parameters in deriving the bargaining power.

5.4 Chapter Summary

For scheduling large-scale compute-intensive applications such as workflow schedul-
ing, often times the strategies need to be adaptable to the resource demands. In
this Chapter, we precisely attempt to capture this requirement and proposed two
viable solutions based on axiomatic bargaining theory (NBS and RBS) that are
practically realizable. NBS maximizes the utilization of resources and guarantees

proportional fairness whereas, RBS considers maximum requirement of resources
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for allocation, which is useful when we want to consider the Cloud wherein tasks
that are either as independent tasks or from workflow schemes arrive in a dynamic
fashion. In our simulation study, we had shown how RBS effectively handles fluc-
tuations in the resource requirements (auto-elasticity property) and real-time task
arrivals up to some extent. One important observation to make is on the choice
between NBS and RBS which our simulation study reveals. NBS is shown to
be suitable for shorter deadline tasks whereas RBS is shown to be applicable for
handling tasks of longer deadline. We also demonstrated that our schemes are
adaptable to the CSPs’ requirements (choice of bargaining power o and minimum
and maximum resource requirements for each task) and that these schemes are

shown to offer a win-win situation to CSPs and Cloud customers.

An important contribution of this work is in introducing asymmetric pricing
scheme wherein a user is given a complete flexibility to specify his budget con-
straints and CSPs can attempt to maximize the revenue without sacrificing the
performance. Finally we show the combined effect of task deadline and budget
requirements in allocation of resources for both NBS and RBS. NBS efficiently
utilizes maximum number of resources in the Cloud whereas RBS indirectly maps
to an energy efficient solution by meeting the deadline with less number of re-

sources.
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Chapter 6

Design and Analysis of
Broker-Mediated Cloud
Aggregation and Task Scheduling
Mechanisms Using Markovian

Queues for Bag-of-Tasks

6.1 Introduction

While we discussed about task aggregation among Clouds offering similar types
of resources in the last Chapter, we address aggregation of BoT applications
among multiple Clouds having heterogeneous compute capabilities in this Chap-
ter. Scheduling of data-intensive BoT applications from several fields including

bioinformatics [76], [77], quantum optics [78] and factoring large numbers for ad-
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vanced cryptography [79] on various distributed systems received huge attention
in the recent past. BoT applications can be structured as a set of independent
computational tasks and a task may have some instructions or data of arbitrary
size and complexity. A typical example is the matching of DNA to independent
known sequences [80]. Based on the results obtained from the execution of some

of the tasks, other tasks may be canceled or modified.

In this Chapter, we address the aggregation of data-intensive BoT applications
across multiple CSPs offering resources with different capabilities and price offers
to meet some objectives such as task-deadline and /or budget requirements. Based
on the number of tasks present or the amount of data to be processed, resource
requirements may change with time. Further, we address the task scheduling
and its effect on a particular Cloud after the task aggregation is completed. We

employ the principles of Markovian queues for the problem under consideration.

Price Manager

Operations Monitor
Trust and

Reputation User
Reliability
Capability Security Index

Management Index

Credit Rating

Job Distribution Manager

Distribution Cloud Broker Arbitrage
Database

User _
Bag-of-Tasks

Client Interface

Job Dispatching

Cloud Service Provider Interface

Dispatcher
Job
Classification Cloud Aggregation

Task aggregation based on_
Markovian queues

Figure 6.1: Proposed architecture for the Broker-mediated Cloud-aggregation
mechanism
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6.2 Proposed Multiple-Cloud Aggregation and
Task Scheduling Mechanism

First we describe the markovian queue based optimization problem and derive
optimal load fractions for task distribution in order to minimize task execution
time. Later we also describe a heuristic algorithm to take into account the user’s
budget constraints. At any point of time, a user C; can submit a BoT applica-
tion request having X tasks to the Broker. Using the databases maintained by
the Broker, it makes a task schedule and distributes the tasks to various CSPs.
The system model is similar to the architecture discussed in Chapter 5 and is

illustrated in Fig. 6.1.

6.2.1 Task distribution to minimize application comple-

tion time

Now, we derive optimal fraction of tasks to be sent out to various CSPs in order
to minimize the time spent by various tasks of a BoT application in the system.
If p; is the fraction of job to be send to CSP j, then \; = p,uo. Further, if N; is

the number of tasks in CSP j, then,
Nj = p; X (6.1)

Further, considering each queue as an independent M/M/1 queue, it follows [81]
that,
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Further, we can calculate total time all N; tasks spent in the system as,

X
T; = Njt; = Lo (6.3)
Hj — Pjlo

So we formulate the optimization problem as

Minimize
M
X
A 6.4
=1 B — Pitto
subject to

ij =1 (6.5)

P> 0Vi =12 M (6.6)

Temporarily relaxing the constraint (6.6) and applying Lagrange Multiplier K

for the optimization problem, the augmented cost function could be written as

- K _p—1) (6.7)
Now, taking the partial derivative of L with respect to each p; and setting the

derivative to zero, we can obtain,

Opi (17 — pjio)?

(6.8)

Further simplifying, we obtain,

pi L[ X
pi==L - — 6.9
Tope VK (6.9)
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Since, > p; = 1, it follows that

pio L[ Xy
Z(% o 7) =1 (6.10)

and we obtain the value of K as,

K = —X(Z \/’Tj)Q (6.11)

(22 1y — Ho)?

Substituting the value of K from Equation (6.11) in Equation (6.9), we obtain a

closed form solution for the individual load fractions p; for each CSP P; as,

b=t VIS (22 15 — po) (6.12)

Ho oY vV Hj

Thus we can calculate the number of tasks to be send out to each CSP N; using
Eq. (6.1). Note that, the values of N; obtained need not be integer quantities.
In reality, the assigned load fraction will be in terms of integer quantums. Thus,
without loss of generality, we can assume that the minimum possible granularity
for any IN; that can be assigned to a CSP as 1. We use integer approximation
technique [82] which runs in O(M) to ensure that each processor gets an integer

load quantum .

We illustrate this through an example. Assume X = 500, M = 5 and py = 70,
then various values obtained based on our results are summarized in Table 6.1. We
can observe that, the constraints specified by Equations (6.5) and (6.6). Further,

values of p;‘s are in proportion to the service rates of various CSPs.
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Table 6.1: Example to illustrate the mathematical model

CSP | Service Job frac- | No. of | Unit cost | Total task exe- | Total Cost
() Rate (u;) | tion (p;) | Tasks (N;) | (D;) cution time (73) | (N;D;)

1 7D 0.21 107 0.5 1.79 53.50

2 65 0.13 66 0.4 1.17 26.40

3 77 0.23 116 0.7 1.91 81.20

4 70 0.17 86 0.6 1.49 51.60

5 79 0.25 125 0.5 2.03 62.50
Total task execution time (max(T})) 2.03 275.20
and total expenditure (3>° N;D;)

Eliminating CSPs with lower resource capabilities

Note that, when we derived the optimal values for p;‘s, we relaxed the constraint
specified by Eq. (6.6). This means that, values of all p,;’s need not be always
greater than zero. For example, consider the above example with ps = 35 instead

of 65. Then the values of p;’s obtained are summarized in Table 6.2. From Table

Table 6.2: Example to illustrate Drop-out condition

CSP (j) | Service Rate (u;) Job fraction (p,)
1 75 0.26
2 35 -0.05
3 7 0.28
4 70 0.22
) 79 0.30

6.2, we can see that for a CSP which has resources with lower specifications such
as low service rate, the value of p; becomes negative. In such cases, we propose
to avoid such slow CSPs and recalculate the values of p;. Avoiding CSP 2 in the
above example, we obtain various values as given in Table 6.3. In this case, we
obtain the values such that ij‘ilpj = 1 and that p; > 0Vj = 1,2,..., M. We
can also observe that, as tasks are distributed among fewer CSPs, the total task

execution time increases.
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Table 6.3: Example Drop-out condition: Avoiding slow CSPs

CSP | Service Job frac- | No. of | Unit cost | Total task exe- | Total Cost
() Rate (u;) | tion (p;) | Tasks (N;) | (D;) cution time (73) | (N;D;)

1 D 0.25 124 0. 2.15 62.00

2 35 0 0 0.4 0 0

3 77 0.27 133 0.7 2.27 93.10

4 70 0.20 102 0.6 1.83 61.20

5 79 0.28 142 0.5 2.39 71.00
Total task execution time (max(T})) 2.03 287.30
and total expenditure (3>° N;D;)

Table 6.4: Heuristic algorithm for task distribution based on budget requirements

1) Input user budget B

2) Calculate N;‘s based on the derivations in Section 6.2.1
3) Calculate total expenditure Dyy

4) WHILE Dy, > B THEN

5) Eliminate the CSP which correspond to max(D;)

6) Calculate all N;‘s excluding this CSP

7) Apply integer approximations to N;

8) Recalculate total expenditure Dy

9) END

10)Output the task distribution obtained at present

6.2.2 Task distribution based on budget requirements

Now we describe a simple, but effective heuristic to find a task distribution which
can also handle the user’s budget requirements in addition to the application
execution time. When the optimal allocation obtained in Section 6.2.1 exceeds
the user budget, we opt out the CSP which has the highest cost per resource
and recalculate the optimal allocation for the minimization problem described in
Section 6.2.1. We repeat this process until the total expenditure is less than or
equal to the budget requirements specified by the user. The pseudo-code for this

algorithm is summarized in Table 6.4.

For example, consider the example problem described in Table 6.1. The total

cost for that allocation is $275.20. Now, suppose the user budget requirements
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specifies that the total expenditure shall not exceed $240.00. So following the
algorithm, we avoid CSP Pj in first iteration and CSP (P;) in the text iteration,

we obtain the values as shown in Table 6.5.

Note that, now the total expenditure satisfies the budget requirements and hence

Table 6.5: Recomputed optimal values without P; and P, in Examplel

CSP | Service Job frac- | No. of | Unit cost | Total task exe- | Total Cost
() Rate (u;) | tion (p;) | Tasks (NV;) | (D;) cution time (73) | (N;D;)

1 75 0.35 176 0. 3.49 88.00

2 65 0.26 129 0.4 2.76 51.60

3 7 0 0 0.7 0 0

4 70 0 0 0.6 0 0

5 79 0.39 195 0.5 3.77 97.50
Total task execution time (maxz(T;)) 3.77 237.10
and total expenditure (- N;D,)

the algorithm stops here. Further we can observe that, as we reduce the number
of CSPs required for the task distribution, the total application execution time

mcreases.

6.3 Task scheduling within a Cloud environment

So far, we have described a model to aggregate a set of BoTs among multi-
ple Clouds with different types of resources. Now, we take a closer look at the
scheduling of tasks among datacenters within a Cloud after the aggregation is
performed. The novelty of the scheduler lies in segregating tasks into two dif-
ferent priority queues based on whether a task is uncertain® or certain, assigns
higher priority to certain tasks and employs a novel scheduling mechanism to
minimize the task computation time, resource usage as well as the monetary cost

for the task execution.

LAn uncertain task may be canceled or modified at a later point of time whereas a certain
task will not be modified once submitted for execution.
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The Cloud C under consideration consists of a number of datacenters (DCs) with
C = {DC;,DCy, - -- ,DC;, - - - }, where datacenter DC; = H; US; ULY 45 ULY, 45
DC,; is the ith datacenter participating in C. Each datacenter, contains a set
H; of physical hosts, a set of S; of storages for storing data, a set L% 5 of lo-
cal area network (LAN) links used for communicating among the hosts in Hj,
and a set LY, 4y of wide area network (WAN) link with other datacenters. For
modeling purposes, specific network topologies or technologies are not considered,
and we ignore the impact of the internal network topology on the speed of both
inter-physical host or inter-VM data transfers. This is because, we focus on task
scheduling and designing a datacenter network to improve the data transmission
efficiency for data-intensive communication in datacenters itself is a hot research
area ([83] and [84] to quote few). Communication links between physical hosts
are assumed to be contention free to accommodate the deterministic nature of
scheduling, and communication between them is via I/O channels thereby allow-

ing concurrent computation and communication.

It is interesting to note that the above model can handle not only the subset of
tasks dispatched by the Broker, but also tasks submitted directly by independent
BoT applications. Thus the dispatcher itself can be a Broker within one Cloud
to perform the task scheduling among multiple datacenters. Hence, without any
1

loss of generality, we consider task scheduling of independent BoT applications

in the remaining Chapter.

A wvirtual cluster (VC) consists of multiple VMs (combined together based on

user requirements), that are logically connected together over one or more phys-

!Tasks submitted by the Broker can be considered as a set of tasks within a BoT application

115



&

Output‘
(@
VM 1 read |»{ computation |» write | send receive | > —»[ write | -
VM 2 read |-»{ computation | write | send receive > -
“ee aee aee \ aee aee
VMM read |>{ computation | write | send receive | >

[ input data (d& temp data (dt) > [ output data (do)

(b)

V

Figure 6.2: The system model. (a) Data from a BoT application arriving at the
Cloud system can be assigned to M VMs with input data dz, where, di,, dio, and
dips are belong to task ni, ng, and ny,, respectively. This is, task ni, ng, and
nys are assigned to VM VM, V My, and V M,,, respectively. In the same way,
dt is the temp data created by Cloud system, and do is the output data of Cloud
system. (b) A map-reduce example.

ical servers. The communication overhead between two tasks scheduled on the
same VM is assumed to be zero. Each VC is an administrative domain that has
its own master and slaves.

Our system model (Fig. 6.2) assumes that input data is distributed across
all participating VMs in a VC, and that each VM retrieves its initial input from
local storage. The model also accounts for output data replication, assuming the
common strategy of storing the first replica on the local disks and sending the
others over the network to other physical hosts.

We denote the amount of input data for V M; as di; and output data for V M;
as do;. The amount of temporary data produced or consumed by computation

for VM, is denoted as dt;. For many map-reduce applications, the mapper will
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implement some form of selection or filtering, and the reducer will perform ag-
gregation. A communication cost is only required when two tasks are assigned to
different VMs. In other words, the communication cost when tasks are assigned
to the same VM can be ignored.

Different BoT applications may have different requirements in categorizing
their tasks into certain or uncertain tasks. Hence, without any loss of generality,
we assume that the users or the Broker indicate whether each task is certain
or uncertain upon submission based on their prior knowledge about the tasks.
We also assume that, uncertain tasks may be canceled or modified, but certain
tasks will never be canceled. This is done to make sure that, our scheduler can
seamlessly work for a wide variety of applications.

The scheduler decides the order in which the tasks need to be executed. The
scheduler communicates decisions to the operating systems running on the VC
resources which handles the details of running tasks on the VMs and provides
task statistics to the scheduler. If a certain task is executed, then the task
output is supplied to the requesting user. If an uncertain task is executed, then
the task output is stored in a location isolated from the rest of the system until it
becomes certain or canceled. A task could be marked uncertain by its submitter
and assigned a real number between 0 and 1 indicating the probability of eventual
need at the time of submission. We also assume that the system does not allow
to promote an uncertain task to a certain task, or to cancel a certain task. We
define three parameters for evaluating the performance of our proposed scheduling

strategy— Makespan, Monetary cost and Resource Usage Index.
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6.3.1 Makespan

The makespan of an application is the time elapsed once the application is submit-
ted until its execution is completed [85]. It is a natural metric for the application
performance due to its ability to reflect a users view of how long an application
takes to complete its execution.

As users are generally more interested in the certain task’s execution time,
we define a new metric, M, as the makespan of certain tasks. It denotes the time
duration since a task has been submitted till the necessary outputs are obtained.
M. accrues only after a user asks for output from some certain tasks that may
have been submitted much earlier and thus measures the time that a user actually
waits for output. M, differs from the actual makespan in the sense that M, is
calculated only based on certain tasks whereas actual makespan computation
includes all tasks including uncertain tasks [86]. We define the M, for N BoT
applications as M. = max{T}, Ty, ..., Ty} where, K is the number of VCs. Note

that, the execution time of uncertain tasks are not considered in this case.

6.3.2 Monetary Cost

Our computation cost model assumes that computation time unit, expressed in
hours, are identical for all VMs. Each VM, however, has its own cost per hour,
expressed in dollars. CSPs compute the time for which the VCs are used by the
tasks. The billing starts when the VC is ready and is allocated to the requested
application’s first task and ends when the last task completes its execution. In
practice, if a VC is not released to CSPs then the user will be charged even if the

VC is idle. Thus, the total computational monetary cost of all BoT applications
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Costipy for all K VCs can be calculated as:

K

Costiptar = Zmax{TkO, T} - e - my, (6.13)

k=1

where TP and T} are the task execution time for certain and uncertain tasks
respectively and ¢ is the price per VM. In other words, ¢ is the monetary
cost/computation time unit of VM expressed in dollars. For example, let let
max{TY, Ti'} be 30000 seconds and there are 64 VMs. If the CSP charges
$0.1/hour for one VM in the VCy, the actual monetary cost is [30000/3600] x

64 x 0.1 = $57.6.

6.3.3 Resource Usage Index (RUI)

The goal of the proposed elastic scheduling scheme is to improve the usage of
the resources in the Cloud and performance of submitted bag-of-tasks. In order
to calculate the resource usage, we define another metric RUI, v as the ratio of
the used resource capacity of the VC to the total resource capacity of that VC
and is used to show the utilization of Cloud resources. For the same value of my,
higher value for RUI means higher resource utilization for certain tasks, for the
same percentage of uncertain tasks and higher RUI means more uncertain tasks

are scheduled.

6.3.4 The Queuing Model for Task Scheduling

We assume there are N BoTs (¢4, to, ..., tn) and each BoT ¢; has it own data
di;. Further there are K VCs containing M VMs that store a total of D different

data diq, dis, ..., dip, where D > M. We use DI to denote the set of input data
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Figure 6.3: The scheduling model dispatches BoTs to a virtual cluster for parallel
execution in a Cloud platform. This model can handle not only the subset of tasks
dispatched by the Broker, but also tasks submitted directly by independent BoT
applications. Thus the dispatcher itself can be a Broker within one Cloud (private
or public Cloud) to perform the task scheduling among multiple datacenters.

in the system. Since each data di; may have one or more replicas in practice,
each object may have one or more replicas that are stored in different VMs and
we use Vdi; to denote the set of VMs that store the same data di;. Clearly, if
there is no replica for dij, [Vdi;| = 1 holds for each di; in Vdi;. We define VM7
as the primary VM for di;, which stores one replica of data di; and takes charge
of the scheduling on the data di;.

BoT applications are assigned to the Cloud system C and let A be the total
task arrival rate in the entire Cloud system. If VC} is scheduled with probabil-
ity pk, then, Zszl pr = 1. Our method attempt to minimize user expenditure,
resource usage and task execution time by appropriate scheduling of the BoTs.
Uncertain and certain tasks are segregated into two queues by the BoT applica-
tion dispatcher and certain tasks are assigned higher priority, resulting in better
makespan. Uncertain tasks are scheduled whenever VMs are idle. The queuing

model of the BoT scheduling is shown in Fig. 6.3. If a task is canceled, it may
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affect other tasks in the queue. Further, efforts in transferring the input data to
respective VM as well as the computation time involved till the task gets canceled
are wasted. Hence, we should postpone or avoid to schedule such tasks and give
higher priority to certain tasks.

We assume that in a virtual cluster V' C}, the arrival rate of certain task and
uncertain task are A and A}, respectively. As shown in Fig. 6.3, V'C}, has one
queue to store certain tasks and another one to store uncertain tasks. When
a task arrives at the VC, it waits at the corresponding queue which follows a
non-preemptive First Come First Serve (FCFS) queuing discipline. Note that, in
a VC, there may be several VMs and each VM may have different computation
and /O capacity.

For ease of simplicity, we assume that the aggregate computation and 1/O
bandwidth capacity on VCy are Ccomy, and Ciog, respectively. The scheduling
can be done based on the available compute and I/O bandwidth capacity. Due
to the similarity in disk bandwidth and network resource considerations, we only
consider disk bandwidth for scheduling and we assume that there is sufficient
network bandwidth available between VMs.

For a BoT application, the task arrival rate for VC} is A\, = pr - A. When a
task t; is assigned to a VC, C'com; and C'io; should be assigned to this task to
guarantee the task execution. We can obtain the expected computation and 1/O

bandwidth capacity to execute a task ¢; in the system as:

K
K Ceom,
E[Ccom;| = Zjlp]K o (6.14)
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K .
> =1 pj - Cio;
K

E[Cio;] = (6.15)

When a task is arriving at V' C}, scheduler determines appropriate VM, V M;
for its execution if that task can be scheduled. The task is then forwarded to
the local queue of VM;. From Eq.(6.14) and Eq.(6.15), we can calculate the

expected number of tasks which can be served in a service round on VC} as

Ccomy, J L Clioy,
)

BlCeorT] E[Cm}J}. We use i, to denote the service rate of VCj and

er=min{|
model a VC as M/M/m queueing system. Besides the uncertain tasks, VCjy
needs to accept those certain tasks that have higher priorities.

In order to guarantee shorter makespan (7,akespan) for BoT applications, we
adopt priority-based scheduling policy in our system. The basic idea is that
certain tasks can use all of the VMs and uncertain tasks can use only up to my
VMs, where 0 < my, < ny, where n, is the number of VMs present in k-th VC.
We assume that when tasks are assigned to V (Y, if there is no available VM at
that moment, scheduler will block uncertain tasks in the uncertain queue, but
schedule certain tasks in the certain queue and/or let them wait until some VMs
are released. Here, we assume that the length of both queues are infinity.

Given a state space of the system based on the above scheduling policy, we
can identify those states where a certain task will wait in the certain queue or an
uncertain task will wait (or be blocked) because of the capacity constraints or the
priority. According to this information, we can compute the execution time of
tasks. Let ®; be the state space of VCy that is defined by @, = {(lo,{1) | lo, 11 >
0}, where Iy and [; are the expected number of certain and uncertain tasks
respectively. We can divide ®; into four sub-space as shown in Table 6.6 with

), = OLUPIUDIUDY. For example, for a Vi with ny = 128 and my, = 32, V.Cy,
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can allocate only up to 32 VMs for uncertain tasks and up to 128 VMs for certain
tasks. We can observe that waiting states for certain tasks and uncertain tasks
will be, @5, = {(lo, 1) [(128—1;) < ly,1; < 32 }. This is the case when ®;, = &% in

Table 6.6. Using Little’s Theorem [81], we can obtain the equilibrium probability

Table 6.6: Sub-space of ®y.
Symbol Meaning
O = {(lo,l1) | lo <ngp—my, Iy <mi} No tasks are waiting in
) both queues
O = {(lo,l1) | lo < np—my, L >my} Some uncertain tasks are
blocking in the wuncertain
queue and no task is wait-
ing in the certain queue
O = {(lp, 1) | lo > ng—my, I3 <mi} No tasks are waiting in the
_ uncertain queue
O = {(lo,l1) | lo > ng —my, I >mg} Some tasks waiting (block-
ing) in both queues

of ly certain tasks and l; uncertain tasks in the system in the state (o, ;) of @i,

pr(lo, l1) as:

((ng — my)po)’ (myp1)™

pr(lo, l1) = px(0,0) (6.16)
lo! I
where, py = %, p1 = mf:w and pg(0,0) is the probability that there is

neither certain nor uncertain tasks under service in V.

Similarly, the system in the state (Iy, ;) of ®¥ has the following product form:

N — M lo gk 1
el 1) = pif0,0) =IO (6.17)
0- my.-
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The system in the state (lo,l1) of @i has the following product form:

(g — ) ) o ()
lo,11) = px(0,0 6.18
pk( 0y 1) pk( ’ ) (nk —mk)‘ l1| ( )
The system in the state (lo,[1) of ®¥¥ has the following product form:
(1 — ) ) pg i !
pr(lo, 1) = px(0,0) K (6.19)

We can calculate pg(0,0) using Eq.(6.16) to Eq.(6.19) and the condition

Z?:Hl:o pr(lo, 1) =1 as,

_ ng—mp—1 ((nk—my)po)'o ((ng—mg)po)" e ™k 11
pk<070> - [ leZO * - l()]!c = + (sk—nfkg)!o(l—po) ] ’
[ m—1 (mgp1)L + (mpp1)"k ]—1
L=0 — 4! el (1—p1)

(6.20)

In our proposed policy, when the system is busy, a newly-arriving uncertain
task may be blocked in the uncertain queue, however, a certain task will wait in
the certain queue. Since certain tasks have higher priority than uncertain tasks,
certain tasks will be serviced by all the VMs whenever VMs are available in V (Y.
In order to analyze the state in ®¥, @i and ¢, we shall focus on the boundary
states of ®;. Here, we use pi(¢) to denote the probability that all VMs in the
V. are in use but there is neither certain nor uncertain tasks are waiting in

both queues. Then pi(¢) can be calculated as:

pr(9) = Z;?iopk(nk — 11, 1)
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substituting Eq.(6.16), we obtain,

m ny—l =l (m !
pi(8) = S0t pi(0,0) (il L i) (6.21)

Let pr(Q) denote the probability that a newly arrived certain task will find

all VMs busy and will be forced to wait in certain queue. Then,

_ N\~ P(P) (g —my)"k "k ply  p(¢p)((ngg—my)po)k "k
P(Q) = Xy T = Gl p0) (6.22)

From Eq.(6.22), we can obtain that the expected number of tasks waiting in

the certain queue is:

Qg - pk(Q) 1P0

—Po

In the same way, we can find out the probability px(B) that a newly arrived
uncertain task will find all VMs, reserved for uncertain task, busy and will be

blocked /forced to wait in the uncertain queue:

_ oo p@meF el p(d)(mypr)™
pr(B) = El:mk m:! "= pmk!(lk—p;l) (6.23)

and the expected number of uncertain tasks waiting in the uncertain queue is:

QL = pu(B) 12

Now, we discuss the task execution time in the system. If u, is the service rate

for cluster V' Cy, using Little’s Theorem [81], Eq.(6.23) and Eq.(6.24), we obtain
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the execution time T} and T for certain and uncertain tasks respectively as,

Qs

T =—"r 6.24
1
T = i/ (6.25)
Mg

This implies that, task execution time of certain(uncertain) tasks depends on the
number of VMs available for execution, the expected number of tasks waiting in
the certain(uncertain) queues and the service rate of the Virtual Cluster VCj.
Task execution time of certain tasks also depends on the number of VMs that

can be allocated to uncertain tasks at any point of time.

6.4 Performance Evaluation and Discussions

6.4.1 Performance analysis of multiple-Cloud aggregation

mechanism

In this section, we perform rigorous simulation experiments to evaluate the per-
formance of the proposed task aggregation scheme. We conduct experiments
to evaluate the task execution time, total expenditure and the task distribution
pattern for large scale Broker-mediated multiple Cloud environments. The simu-
lation parameters are summarized in Table 6.7. We analyze the task execution
time for various user budget requirements and the results are plotted in Figure
6.4. We can observe that, when no budget requirements are specified, all the

10 CSPs are used and the total tasks execution time is 2.79 units. As the user
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Figure 6.4: Task Execution Time

imposes higher budget restrictions, the total task execution time increases. This
is because, when higher budget restrictions are imposed, tasks are distributed to
fewer CSPs and hence takes more time to complete the same tasks. Now, we
compare the total user expenditure for various budget requirements imposed by
the user. From Fig. 6.5, we can observe that, in all cases, the expenditure is
lower than the user budget requirements. We can also observe that, a minimum

cost is involved when all the tasks are submitted to only one CSP which offers

Table 6.7: Major simulation parameters

Parameter Value Parameter Value
M 10 X 1000
B [450,600] | po 100
M1 61 1 0.5
125 67 D2 0.4
M3 s Dg 0.7
M4 60 D4 0.6
1255 79 D5 0.5
L6 54 Dy 0.75
7 74 D7 0.55
Lis 53 Dy 0.6
Lo 72 Do 0.65
H10 64 D10 0.7
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the least price for the resource and the maximum expenditure can be determined

based on the task distribution derived from our optimization problem. In this

Task Distribution in each budget case
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Figure 6.6: Task distribution

section, we analyze the distribution of tasks to different CSPs based on various
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user budget requirements and results are plotted in Figure 6.6. In this figure,
for example CSP1(0.5,61) means that C'SP1 has a price offer 0.5 and a service
rate 61. From Figure 6.6, we can understand that, when a user is flexible with
his/her budget, tasks are distributed evenly among the CSPs available for the
task execution. But as the user imposes more budget restrictions, the tasks are
distributed among fewer CSPs and hence more resources are used from these

CSPs to complete the same number of tasks.

6.4.2 Performance analysis of the task scheduling strategy

within a Cloud environment

Now we evaluate the performance of the task scheduling within a Cloud. Our
simulator models a number of BoT applications which are submitted to a number
of VCs in the Cloud. The number of applications is varied across simulations.
Refer Table 6.8 for various simulation parameters used in our experiments in this
section. A uniform distribution (uni.) is described by ‘lower bound to upper
bound’, where the bound is specified by a range varied across runs. An exponen-
tial distribution (exp.) is described by its mean, where the mean is specified by a
range varied across runs. A step determines the distance between each sample in
the range of its parameter. Important parameters considered in the experiments

are:

1. Uncertain task proportion: 1t indicates the ratio of uncertain tasks with
respect to the total number of tasks in a BoT application. Each application
has an uncertain task proportion randomly chosen following a continuous

uniform distribution. For example, if the uncertain task proportion is set
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to 0.2, then 20% of the tasks are uncertain in the applications.

2. Write back time: It indicates the time required by the tasks to write the
output back to the external device such as disk. The write-back time values
are also generated randomly following exponential distribution. Note that,

the task runtime is the sum of computation time and write back time.

Table 6.8: Parameters used in the experiments in Section 6.4.2

Parameter Setting Step Sample
number of app. 1 - -
number of BoT's per app. 1000 - -
number of tasks per BoT 1 to 5 (uni.) 1 5
uncertain task proportion 30% - 1
computation time (s) 15 to 180 (exp.) 15 13
write back time (s) 15 to 90 (exp.) 15 7
number of VMs 64 - 1
number of app. 5 to 20 5 4
number of BoTs per app. 20 to 80 (uni.) 20 4
number of tasks per BoT 1 to 5 (uni.) 1 5
uncertain task proportion 10% to 30% 10% 3
computation time (s) 15 to 180 (exp.) 15 13
write back time (s) 15 to 90 (exp.) 15 7
number of VMs 64 - 1
number of app. 100,1000,2000,

3000.,4000,5000 - -
number of BoTs per app. 2000 to 10000 (uni.) 1000 9
number of tasks per BoT 1 to 5 (uni.) 1 5
uncertain task proportion 10% to 30% 10% 3
computation time (s) 30 to 360 exp.g 30 13
write back time (s) 30 to 180 (exp. 30 7
number of VMs 64, 1024 - 2

Comparison between simulation and theoretical analysis

We simulate our model in a realistic way in order to reflect the uncertain behav-
ior of tasks in BoT applications. We made several runs of our simulation with
the same parameters but different random number seeds for generating random
variables to confirm that the variability was sufficiently small to make the results
dependable. Here, we compare the values of M. and RUI obtained based on our

theoretical analysis as well as based on our simulation results. For that purpose,
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Table 6.9: Comparison between simulation and theoretical analysis.
Items | Theoretical analysis | Simulation
M. 10237.079 9970.914
RUI 0.923813 0.922058

we consider a BoT application with 1000 BoTs and we set the uncertain task
proportion to be 30%. Further, we set the task computation time and write back
time to be exponentially distributed with mean 360s with he number of VMs set
to 64 and the maximum number of VMs allocated to uncertain tasks my is set
to 13. The values obtained for our theoretical analysis described in Section 6.3.4
and simulated metrics are summarized in Table 6.9. We can observe that, the
values are very close to each other with only less than 3% difference for M, and

less than 0.2% difference for RUI

Experimental Results for task scheduling within a Cloud

We conduct experiments to analyze various metrics such as makespan, monetary
cost and resource usage for our elastic scheduling scheme and compare the values
with traditional batch scheduling scheme which follows FCFS scheduling. In our
experiments, we vary the number of VMs kept aside for the uncertain tasks. For
example, ‘elastic(6/58)" means, there are 64 VMs, with a maximum of 13 VMs
for uncertain tasks. Certain tasks can use up to 64 VMs because all the VMs
can be used by certain tasks if there are tasks in the certain queue.

Our workload model is similar to the workload described in [87]. In our
system model, we assume that the VMs are grouped into clusters. The VMs may
have different performance across clusters, but within the same cluster they are
homogeneous. The workload of the system consists of applications submitted by

user(s); each of the applications consists of a number of Bag-of-Tasks which is a
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bag of unordered tasks (possibly only one). Upon their arrival into the system,
the BoTs are queued in certain queue or uncertain queue respectively, waiting for
available VM on which to be executed. Once started, BoTs run to completion, so
we do not consider BoT preemption or BoT migration during execution. Instead,
tasks can be canceled when all certain BoTs are finished. Please note that, in
our application model, the ranges used in simulating BoT applications and tasks
were motivated by the scenarios, such as computer animated scenes in computer-
animated film [88].

In [87], the user patterns and the user submissions are considered as Zipf
distribution and, the BoT arrival patterns are modeled in two steps: first the
inter-arrival time (IAT) between consecutive BoT arrivals during peak hours,
and then the IAT variations caused by the daily submission cycle. We have given
more importance to the scale of applications and do not consider the submission
pattern by the user. So we consider the user submission to follow as a more generic
uniform distribution. Currently, we consider a BoT, either all are certain tasks or
all are uncertain tasks. So the certain tasks queue includes some BoTs any one of
which may consist of a number of certain tasks. Also, the uncertain tasks queue
includes some BoTs any one of which may consist of a number of uncertain tasks.
In our model, the tasks in a BoT are unordered, which is different [87], which
assumes that the tasks in a BoT are processed in a sequential manner. So, in our

model, we do not consider the intra-BoT characteristics defined by reference [87].

Performance evaluation for an application with 1000 BoT's

To show the difference between batch and elastic schedule strategies, we consider

batch and elastic execution process of a BoT application with 1000 BoT’s as illus-
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trated in Fig.6.7. In Fig.6.7(a) and Fig.6.7(b), the x-axis represents the elapsed
time in seconds, and each horizontal lines in the chart represents different tasks
in a BoT application. Within each line, Before scheduled, Running uncertain,
Running certain and Finished represent the period before the BoT is scheduled,
when the uncertain BoT is running, when the certain BoT is running and the
period after the BoT is complete respectively. Similarly, Canceled uncertain and
Blocked uncertain represent the point when the uncertain BoT is canceled, and
when it is blocked and is not scheduled. Fig.6.7(c) shows that, for elastic strategy,
19% uncertain BoTs complete their execution, 2% uncertain BoTs are canceled
and 9% uncertain BoTs are blocked. This means, our scheduling strategy is able
to prioritize and avoid execution of those blocked and canceled tasks which is the
root cause of the large makespan gap between batch and elastic.

In order to analyze the effect of the number of my on the performance of BoT
application with certain and uncertain tasks, we plot M, for various values of my,
for three different proportions of uncertain tasks. Fig. 6.8 shows the execution

of a BoT application with 1000 BoTs on batch scheme, and elastic scheme for

Batch Elastic

Certain and uncertain BoTs

BoTs
BoTs

8 Certain BoTs = Uncertain BoTs (finished)
10000 = Uncertain BoTs (canceled) ® Uncertain BoTs (blocked)

0 200¢ 000

0 4000 6000 E
Elapse of wall clock time (sec)

(a) (b) (c)

2000 4000 6000 8000 10000
Elapse of wall clock time (sec)

Figure 6.7: The execution of a BoT application with 1000 BoTs (number of VMs
is 64, my, is 13, uncertain task proportion is 30%). (a) Batch strategy; (b) Elastic

strategy; (c) Pie chart of certain and uncertain BoTs for elastic execution (as
shown in (b)).
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Figure 6.8: The effect of the number of m, for makespan M, and resource usage
index ¢ (number of VMs is 64). (a) makespan M,; (b) resource usage index .

different M.. We can observe that, higher proportion of uncertain tasks gives a
better makespan M, with the same my. Further, it is interesting to observe that
the proportion of uncertain tasks associates with my for M. and RUI metrics:
There exists a turning point in the growth curve and turn up when the proportion

of uncertain tasks and the value of my/ny are approximately equal.

Performance evaluation with 20 BoT Applications and 64 VMs

Fig. 6.9 shows the effect of the number of applications on elastic scheme, and

batch scheme for M,.. We plot the makespan of certain tasks M, for various values

Nbatch  Welastic(3/61) % elastic(6/58) R elastic(13/51) “batch  Welastic(3/61) 7 elastic(6/58) R elastic(13/51) Nbatch  Welastic(3/61) % elastic(6/58) R elastic(13/51)
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Figure 6.9: The effect of the number of applications for makespan M, (num-
ber of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain task
proportion; (c¢) 30% uncertain task proportion.
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Figure 6.10: The effect of the number of applications for resource usage index 1)
(number of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain
task proportion; (¢) 30% uncertain task proportion.

of my, (i.e. the maximum number of VMs that can be allocated for uncertain tasks,
my = 3,6,13) for three different proportions of uncertain tasks present in the
applications. We can observe that our scheme always gives a better makespan M.,
compared to the batch scheme. Further, it is interesting to observe that amount
of uncertain tasks has no influence on M, in case of batch scheme. However, as
the amount of uncertain tasks increase, our scheme improves M...

We can observe an improvement of 25.2% for M, compared to the traditional
scheme when the amount of uncertain tasks present is 30%. It means that users
having higher amount of uncertain task proportion will be able to benefit more
from our scheme in order to reduce their overall task execution time. In most
cases, our scheme performs better compared to the batch scheduling scheme. This
is because, waiting time for certain tasks have been reduced considerably with the
prioritization of tasks. At the busiest part or low uncertain task proportion, both
schemes begin to converge because the certain task queue of the elastic scheduler
is never empty.

Fig. 6.10 plots the resource usage index, 1 for various number of BoT ap-

plications in the Cloud. When the value of v is large, more resources are used
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for completing the execution of BoT applications. Further, as the uncertain task
proportion increases, the values of 1 is better for our scheme, whereas its value
remains the same for batch scheme in all cases. It is also interesting to note that,
our scheme shows an average improvement of 28.13% for ¢ compared to batch
scheme when 30% of the tasks present are uncertain. We obtain the best case
improvement of 52.55% and minimum improvement of 22.25% for 1) when there
are 5 and 20 applications respectively. The higher value of ¢ in case of traditional
scheme is because, it does not distinguish between certain and uncertain tasks

and uses the resources for uncertain tasks which are later modified or canceled.

Large scale Performance Analysis with 5000 BoT Applications

Now we conduct experiments to validate our findings for large-scale BoT appli-
cations. The results obtained for M, and 1 for up to 5000 BoT applications, are
plotted in Figures 6.11 and 6.12 respectively. We can observe that, our scheme
outperforms the traditional batch scheme even when we scale up the number of
BoT applications in the system to 5000. Further, it is evident from the figures

that, when lesser number of VMs are reserved for uncertain tasks, our scheme

Nbatch  Welastic(3/61) % elastic(6/58)  # elastic(13/51) Nbatch  Welastic(3/61) 7 elastic(6/58) ~ # elastic(13/51) Nbatch  Welastic(3/61) 7 elastic(6/58) ~ # elastic(13/51)
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Figure 6.11: The effect of large-scale BoT applications for makespan M, (num-
ber of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain task
proportion; (¢) 30% uncertain task proportion.
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Figure 6.12: The effect of large-scale BoT applications on resource usage index
¢ (number of VMs is 64). (a) 10% uncertain task proportion; (b) 20% uncertain
task proportion; (¢) 30% uncertain task proportion.
shows better M, and ¢ values. This is because when certain task queue is empty,
uncertain tasks can use lesser number of VMs and hence a newly arrived certain
task can obtain more resources to complete its execution earlier.

Further, one needs to determine the optimal number of VMs required to al-
locate for uncertain tasks, to minimize the values of M, and 1. This is evident
from Fig. 6.10 and Fig. 6.12. We can notice that values of v is increased as
more number of VMs are reserved for uncertain tasks or higher number of BoT
applications are present in the system. So the CSPs need to fine-tune the values
of various parameters based on the characteristics of the tasks coming to the
system.

Figures 6.13 and 6.14 plot the value of M. and v respectively when there
are 1024 VMs in the virtual cluster. Having more VMs for the same number of
applications results in better M, and ¢ in our scheme compared to the traditional
scheme. For example, when there are 100 BoT applications, the shortest possible
M. and 1) values are obtained. But, note that this also means higher monetary
cost for using larger number of VMs. This means that there is a trade-off between

improving the value of M, and lowering the monetary cost for using the VMs to
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Table 6.10: Monetary costs (64 VMs).

Number batch elastic scheme
of BoT scheme | 10% uncertain task ({3 /lp) [ 20% uncertain task (1 /lp) [ 30% uncertain task (1, /ly)
applications 3/61 6/58 13/51 3/61 6/58 13/51 3/61 6/58 13/51
(a1) (a2) (az) (aq) (as) (as) (a7) (as) (ag)
100 96 96 96 96 96 96 96 89.6 89.6 96
1000 921.6 857.6 870.4 889.6 857.6 857.6 876.8 800 806.4 870.4
2000 1760 1638.4 | T708.8 | 1734.4 1587.2 | 1625.6 | 1670.4 1472 1612.8 | 1606.4
3000 2508.8 | 2323.2 | 2457.6 | 2464 2233.6 | 2304 2419.2 2150.4 | 2272 2329.6
4000 3187.2 | 2700.8 | 2867.2 | 3052.8 2598.4 | 2758.4 | 2892.8 2496 2649.6 | 2694.4
5000 3782.4 | 3276.8 | 3347.2 | 3475.2 3040 3110.4 | 3264 2700.8 | 2835.2 | 2886.4

run BoT applications.

Tables 6.10 and 6.11 summarize the monetary cost C'osty,q for all the BoT

applications when the number of VMs are 64 and 1024 respectively. In this case,

we use ¢ = 0.10 (i.e. cost for resource/hour=0.10$/hour). It can be observed

that, elastic scheme successfully reduces the overall monetary cost of the BoT
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Figure 6.13: The effect of large-scale BoT applications for makespan M, (number
of VMs is 1024). (a) 10% uncertain task proportion; (b) 20% uncertain task
proportion; (¢) 30% uncertain task proportion.

Table 6.11: Monetary costs (1024 VMs).

Number batch elastic scheme
of BoT scheme | 10% uncertain task (11 /ly) | 20% uncertain task (71 /Ty) | 30% uncertain task (71 /lo)
applications 48/976 1 96/928 [ 208/816 | 48/976 | 96/928 | 208/816 | 48/976 | 96/928 | 208/816
(b1) (b) (bs) (ba) (bs) (bs) (br) (bs) (b)
100 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4
1000 921.6 819.2 921.6 921.6 819.2 819.2 921.6 716.8 819.2 819.2
2000 18343.2 [ 1536 1536 1638.4 1433.6 [ 1433.6 [ 1536 1331.2 [ 1433.6 [ 1T433.6
3000 2560 2048 2150.4 | 2150.4 1843.2 [ 1945.6 [ 2048 1740.8 [ 1945.6 [ 1843.2
4000 3276.8 | 2355.2 | 2457.6 | 2560 2150.4 T 2252.8 | 2355.2 2048 2150.4 | 2252.8
5000 4198.4 | 2662.4 | 2867.2 | 2969.6 2560 2662.4 | 2764.8 2355.2 | 2560 2560
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Figure 6.14: The effect of large-scale BoT applications for resource usage index 1)
(number of VMs is 1024). (a) 10% uncertain task proportion; (b) 20% uncertain
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Table 6.12: Relative monetary costs of using 1024 VMs vs. 64 VMs

Number Monetary cost of 64 VMs - Monetary cost of 1024 VMs

of BoT 10% uncertain task (11 /o) | 20% uncertain task (1, /lo) | 30% uncertain task (1, /ly)
applications ["a; —0b; | ag—03 | ag—03 as—0bs [ as—0s [ ag—bs | ar—0b7 [ ag—bsg [ ag—Dbg
100 -6.4 -6.4 -6.4 -6.4 -6.4 -6.4 -12.8 -12.8 -6.4
1000 38.4 -51.2 -32 384 384 -448 832 -12.8 51.2
2000 102.4 1728 96 153.6 192 134.4 140.8 179.2 1728
3000 275.2 3072 [ 3136 3904 [ 3584 [ 371.2 409.6 3264 | 486.4
4000 345.6 [ 409.6 | 4928 148 505.6 537.6 148 199.2° 144156
5000 614.4 | 480 505.6 480 448 499.2 3456 [ 275.2 [ 3264

applications under various situations by carefully scheduling the tasks based on
priority. It can also be noted that, reserving more VMs (my,) for uncertain tasks
results in higher monetary cost. So one need to carefully choose the value of my

based on his requirements.

We also compare the relative monetary cost for using 1024 VMs as compared to
64 VMs (Refer Table 6.12). When large number of BoT applications are present
in the system, large number of resources helps in reducing the cost of execution.
This also helps users to decide the number of VMs required to execute their tasks

based on the application requirements and size.
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6.5 Chapter Summary

In this chapter, we first proposed a model for aggregating BoT applications among
multiple TaaS Compute CSPs with different resource capabilities. We modeled
the CSPs as independent M/M /1 queues, formulated an optimization problem to
minimize the task execution time and derived optimal solutions for task distri-
bution. We further proposed a heuristic algorithm which considers not only the
task execution time, but also the user’s budget requirements in order to derive

the task distribution.

We can observe that large scale data-intensive divisible load applications!' such
as image processing [89], [90] and biological computing [91], [92] applications, can
also use our model for execution, to satisfy various constraints such as budget
constraints and application execution time. In case of divisible load applications,
we calculate the optimal amount of data to be distributed to each CSP instead
of determining the number of tasks to be distributed. An exampel for data
aggregation on Cloud environments is described in Appendix A. In addition to
application execution time and budget constraints, users have many other consid-
erations such as security, trust and reputation of CSP [93]. Using the Operations
Monitor in our Broker, we can seamlessly integrate these features. Broker can
consider a subset of all the CSPs satisfying such user criteria to derive the optimal

task distribution.

Later, a strategy for the task scheduling of BoT applications within a Cloud has
been proposed to minimize task execution time, resource usage and monetary

cost. Tasks may be either a subset of tasks dispatched by the Broker or a set

!Divisible Load scheduling theory is referred to as Divisible Load Theory (DLT) in literature.
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of BoTs submitted directly by users or both. These tasks are segregated in to
two queues by assigning higher priority to certain tasks and lower priority to
uncertain tasks. We model the Cloud as an M/M/m system and formulate the

mathematical model to find out the makespan of the tasks in the system.

We conducted rigorous performance evaluation studies to evaluate our model
and compared our scheme with traditional FCFS batch scheduling scheme. We
specifically analyzed the influence on the amount of uncertain tasks present in
the system, number of resources available for each task and the number of BoT
applications present in the system and proved that our scheme considerably im-
proves the makespan, reduces the resource usage and lowers the monetary cost
incurred under all cases compared to batch scheme. One of the key findings
from our studies is in demonstrating the trade-off relationship between improv-
ing makespan and lowering the monetary cost for using the resources to run BoT

applications.
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Chapter 7

Conclusions and Future Remarks

7.1 Conclusions

In this thesis, we have presented a Cloud-Broker architecture and Broker-mediated
Cloud Orchestration mechanisms to connect users and CSPs through the Broker.
Cloud users have several concerns for deploying their tasks/data into Cloud such
as choosing the right CSP, security concerns, trustworthiness of CSPs etc. On
the other hand, CSPs face several issues to enter and establish their business
in this new distributed computing platform such as understanding and adapting
to the market conditions, adapting to user requirements developing strategies to
increase the revenue etc. In this thesis, we developed a comprehensive architec-
ture for Cloud Broker and devised strategies for helping users and CSPs to make

appropriate business decisions from time to time.

We have described a comprehensive survey on the state-of-the-art Cloud Bro-
ker mechanisms existing in the literature and categorized them into three based
on the services offered by the Brokers. However the current Broker models are

not capable of addressing various concerns by users as well as CSPs. From the
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user perspective, Cloud Broker arbitrage strategies lack in efficient modeling of
trust, reputation, security and user’s risk bias. From the CSP’s perspective, these
Broker models lacks in efficient mechanisms to understand and adapt to market
conditions in terms of devising market-oriented dynamic pricing strategies and

modeling user reliability.

In the first part of this thesis, we proposed three Cloud Broker arbitrage mecha-
nisms to address the above issues based on incentives, auction theory and VNM
utility theory. We proposed dynamic pricing strategies for CSPs based on the
market conditions, non-cooperative repeated game theoretic model for measuring
the reliability of users and mathematical formulations for calculating and main-
taining various parameters such as trust, reputation etc. We have conducted
extensive performance evaluation studies to understand the effect of various sys-
tem parameters under different market conditions. We found that incentive based
scheme is suitable for loyal users who use the Cloud for long time whereas sealed-
bid continuous double auction based model is suitable for users who use Cloud
in an ad-hoc manner. The scheme based on VNM utility theory is particularly

useful for users who are risk-averse in nature.

In the second part of this thesis, we proposed two Cloud Broker aggregation
mechanisms for TaaS Clouds one based on cooperative games and the other one
based on Markovian queues. We employed bargaining solutions propounded in
literature to efficiently determine the resource requirements for a set of tasks re-
questing for one type of resources so as to maximize the resource utilization and
to handle elastic user requirements. An important contribution of this work is in

introducing an asymmetric pricing scheme which takes into account user’s budget
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requirements for resource allocation.

Further, we proposed a Cloud Broker aggregation mechanism for deploying tasks
in BoT applications and applications following divisible load theory, among mul-
tiple Clouds with different resource capabilities. We modeled the problem using
Markovian queues and formulated an optimization problem. We considered dif-
ferent user requirements such as deadline and budget specifications for determin-
ing the task aggregation. We further modeled task aggregation among a single
CSP with different datacenters using queueing theory and discussed efficient task
scheduling strategies to minimize makespan and improve resource usage. We
compared the results with existing strategies and showed that our scheduling

mechanism is effective under different situations.

Thus, our Broker can incorporate several features suitable for various situations.
It enables different arbitrage mechanisms for various kinds of users such as loyal
customers, risk-averse users etc. It also incorporates several intermediation fea-
tures such as trust, reputation and security indices about CSPs for users. Further,
the Broker enables aggregation of a set of tasks/data among multiple CSPs to
satisfy certain user requirements such as budget and/or deadline. Our Broker
can function either as an entity to connect several CSPs and users or as an entity
to connect several users to one CSP. It also helps CSPs to monitor the market
and develop market-oriented pricing strategies and understand user behavior in

order to adapt to the market situations.
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7.2 Future Work

The Broker architecture discussed in this thesis has solved various issues pertain-
ing to users and CSPs in using Cloud environments efficiently. However, there
are still many issues left to be addressed. In this section, we briefly discuss some

of these issues.

1. The Broker arbitrage mechanisms described in first part of the thesis can
effectively handle several issues such as trust, risk etc. However, vendor
lock-in is not discussed in this thesis. In order to handle vendor lock-in
issues, we need to know the exact profile of all the CSPs participating
in the market and efficient mathematical models are required to form the
switching cost model. The switching cost includes possible end-of-contract
penalties, charges for format conversion and data/application switching and

possible additional charges for bandwidth usage.

2. The Broker can create a spot market where the CSPs can participate in
an auction market to offer their unused resources temporarily for short
duration of time. This could be achieved by creating a market place wherein
CSPs can inform Brokers about the amount and type of resources available
and users can bid for such limited resources. Special mathematical models
are required to formulate the spot pricing strategies based on supply and

demand of resources in a competitive environment.

3. The Broker architecture can also be extended to support few Broker inter-
mediation services such as Singel Sign-On (SSO). SSO can help users to

log-in only once to access all Cloud services available through the Broker.
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It will also help users to access unified billing information and payment op-
tions. A SSO mechanism allows users to change their security information
such as password and billing details in a single place (at the Broker) for all

providers.
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Appendix: Example for Data
Aggregation on Cloud -
Large-scale Polynomial

Multiplication

A.1 Introduction

As mentioned in Chapter 6, we can deploy large-scale divisible load applications
among multiple resources (belonging to one or more CSPs) to minimize the appli-
cation execution time. Now, we describe the deterministic modeling of one such
application considering various system parameters. Users can submit such appli-
cations to Broker and Broker can determine the fraction of data to be distributed
to different resources based on different system parameters and the amount of

input data.

Large scale polynomial product computations often used in applications such

as image processing and sensor networks data processing always pose consider-
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able challenge when processed on networked computing systems. With non-zero
communication and computation time delays of the links and processors, the
computation becomes all the more challenging. We use Divisible Load Theory
(DLT) [94] to design efficient strategies to minimize the overall processing time for
performing large scale polynomial product computations in Cloud environments.
We consider a Cloud system (It can also be a set of CSPs among which the data
is distributed) with the Broker distributing the entire load to a set of virtual
CPU instances (VCI) and the VCIs propagating back the processed results to
Broker for post-processing. Thus Broker offers intermediation features such as
determining the optimal number of resources required and final post-processing

of the results in addition to data aggregation.

We use Point Value Representation (PVR) method for polynomial product com-
putation. It primarily involves four phases - Selection, Fvaluation, Multiplication,
and Interpolation respectively [90]. With very large degree-bound n for the poly-
nomials, the time taken for product computations become prohibitively large and
hence, inputs to the VClIs are the point values selected in the Selection phase.
Also, it may be noted that the product computations are independent and hence

they can be divided arbitrarily among different VCls.

As the problem setting demands a post-processing phase, we also consider so-
lution back propagation in our modeling. We consider only the case where each
main VCI for computation has an associated front-end VCI for the communi-
cation and hence a pair of VCIs can perform both computation (by main VCI)
and communication (by front-end VCI) operations concurrently. We also assume

that the polynomials to be used are available at the Broker. For simplicity, we
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denote the term main VCI as processor in the remainder of the paper. We shall
now define the following terms:

1.Load Distribution: It is denoted as « and is defined as an m-tuple (aq, . .
. ,ay) such that 0 < a; < m and Z;‘io «; = 1. This is called as a normalization
equation.

2. Processing Time: This is the total computation time taken by the resource
allocator VCI for a Compute Cloud system.

3. Availability of Link (Link availability) - The term availability of a link is
defined as the percentage of the link capacity that is available to transfer the load
from the resource allocator VCI to other processors.

4. Availability of VCI (VCI availability) - The term availability of a VCI is
defined as the percentage of the VCI capacity that is available for computation
of the load fractions assigned to that VCI.

5. Optimal Sequence: This is defined as the sequence of optimal load distri-
bution for a given arrangement such that the processing time is minimum.

6. Optimal Sequence Theorem (OST): In order to achieve minimum process-
ing time in a single-level tree network, the sequence of load distribution by the

root processor pg should follow the order in which the link speed decrease.

A.2 Analysis For the Load Fractions

The Cloud consists of m + 1 processors/VCIs (po, p1, P2, -----s Pm) With pg as the
Broker and m communication links (I1, [, ...0,,). Each of these VCIs has an asso-
ciated front-end VCI for the communication of the load (The aggregation module

in case of Broker). The VCIs and links are considered to be heterogeneous i.e.,
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Figure A.1: Timing Diagram for Compute Cloud with solution-back propagation

they have different processing and communication speeds, respectively. The load
for the processors are the 2n points (for the Evaluation phase) which are selected
by the Broker pg. Initially, it is assumed that the load is available/submitted at
po. The availabilities of the links and the processors, denoted as Al and A?. re-
spectively, are also considered. We assume that the Broker p, is always available,

Le., Aj=1.

We now derive a closed form solution for the optimal load fraction for each pro-
cessor. It is assumed that the load distribution is from p; to p,,. The fraction
of the total load assigned to a processor p; is denoted as a;. The process of load
distribution is represented in the form of a timing diagram shown in Figure A.1 as

described in the literature [94]. From the timing diagram, we obtain the following
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recursive equations for the load fractions to the processors!.

OéiEi (){Z‘+1CZ'+1 OéiJrlEZ'Jrl OéiCZ-
Tiig = 4 T, 0, — (g, Al
A AL AP AP P (AgA’; ) (A1)

fori=1,2,...m—1.
It can be noted that, the overheads will have their influence only when a link
and/or a processor, is available and largely comes as additive parameters [95] (as

followed and demonstrated in DLT literature so far).

We can express «; as:

o = ki (A2
2

where a; = % + ﬁ. Expressing each of the load fractions in terms

of a,, we obtain,

amMi
o = A3
where M; = HT:iJrl a; and N; = HZL;; Gg. From Figure A.1, we obtain
the total processing time as follows.
;0 O By, mCo,
i=1 i) m m*m

(m+1)0.,

oy = aydy + asds + ...+ andy, + anh 4+ agnd,, + 7
0

(A.5)

'In this definition, without loss of generality, we assume 98% = O¢p, and 9%) = 0.,Vi for the
sake of analytical ease
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Ci/ALAP Eum /AP, . . .
where d; = /Eio and h = %0 Now we will derive an expression for

obtaining the load fraction o, assigned to the m processor. The normalization
equation is given by > 7" a; =1

Expanding the normalization equation and substituting the value of g from
(A.5), we have,

(m+1)0.,

ar(l+di)+oa(l+do)+ .. +am(l+dy+h+dn)=1- E,
0

(A.6)

Expressing each «; in terms of «,, from (A.3) and further simplifying we

obtain «,, as,

1— (m+1)0cm

Ey
Ny = i Ji j (A7)
(1+2dy, + h + Zﬁll(%»
Let
1 ecm
and

L+ d) ([T )
L A.
S (A.9)

m—1
Y,, = (1+2dm+h+2(<
i=1
then (A.7) can be rewritten as,

1—X(m)

o) (A.10)

Ay =

From the expression for overhead factor (A.8), we can obviously infer that as
the number of processors (m) increases, the overhead factor also increases and

this overhead factor is also directly proportional to 6.,. For a given load size,
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we may not require all (m + 1) available processors (and hence the front-end
VCIs). The maximum number of processors that can be used for a given load
size can be calculated easily by knowing the overhead factor. We can see that
when X (m) is greater than or equal to 1, then the load fraction for processor
m becomes negative i.e., the overhead factor dominates. So a necessary and
sufficient condition to obtain a maximal number of processors that can be used

for a given load size is given by,

X(m)=—" <1 (A.11)

Thus in a given network of sufficiently large number of VClIs, say M, we need to
choose only k* < M processors that need to be assigned load fractions, where k*
satisfies (A.11). This maximal set of processors k* can be determined recursively
using the recursive equations derived above. Obviously this consumes O(m) time.

We also verify these findings via our simulation experiments.

A.3 Performance Evaluation and Discussions of

the Results

In our simulation experiments, we generate random values for processor speeds,
link speeds, and processor and link availabilities. We use two polynomials of de-
gree 10, 000 each for our simulation experiments. The coefficients of all the points
are randomly generated following a uniform distribution at the resource allocator
po- Then we derive the load fractions to be assigned to each processor available in

the Cloud and then we apply integer approximation technique. Polynomials are
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Table A.1: Simulation parameters

T C1[ Co] C3] C4] Cs] Ce] Cr] Cs] Co] Cio] Cii] Ci2] Ci3] Cia] Cis] Cig] Ciz] Cig] Cig
20,000 T 0.2] 0.9] 0.6] 0.8] 0.5] 0.7 0.4] 1.2] 1.3 . T R R R . R R

Ey | Eo| B3| Ba| E5| Ee| E7| Eg| E9| Eio| Fhi| Eio| Eis| Eha]l Eis| Ehel Ei7| Fas| Eio

0.9 T 0.7] 0.9] 0.5 0.8] 0.6] 0.4] T T2 T2 09 IT[ 03] 0.6[ 09] 0.7 08] 05[] I.1T

AR | AT] AR AR] AR AR] ABL A7] AR AG] AT AT)| ATl ATl AT ATl ATl AT ATl AT

1 0.7] 0.4] 0.9 0.5] 0.8] 0.6] 0.7 0.8p T T 077091 03] 04[] 06] 05[] 0.9

Ay LAl sl AR Al AL AWl AG] AL AG Aol Ay] Av| ALl AL Al AL AL Al g

— 03] T 0.6] 0.7] 0.8 0.9] 0.8] 0.7p 0.5] 0.9

evaluated using the PVR method and multiplied and the resulting polynomial
is obtained using interpolation as described earlier. Values of different parame-
ters used for simulation are given in Table A.1'. We carried out the simulation

experiments for polynomial multiplication for the following cases:

e Homogeneous networks with and without overheads (i.e. ., and 0.,,) with

l_ o . .
A=A =1, Vi,j

Homogeneous networks in an ideal case where we consider the scenario with
highly available links and VClIs are connected together (In the other cases,

highly available links may not be connected to highly available VCIs.)

Heterogeneous networks using Optimal Sequence Theorem (OST)

Heterogeneous networks with processor and link availability

We consider processing time as performance metric. It is studied for different
values of communication overheads 6.,,, as it has direct influence in deciding a
maximal set of VCIs to be used and hence on the performance too. This also

influences the number of VCIs needs to be requested from the Cloud Service

Provider and determines the economic factors.

'Note that the values of F; and C; are set to 1 for homogeneous experiments.
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Figure A.2: Processing Time vs Number of processors (a) 0., = 0.01 (b)0.,, =
0.05 (¢) o = 0.1

A.3.1 Processing time

The performance of the system in terms of processing time with respect to number
of processors for different values of 6., are plotted in Figures 2(a), 2(b) and
2(c). When a homogeneous Compute Cloud with no overheads is considered, the
processing time decreases with the increase in the number of processors. But
for all other cases, the processing time decreases initially with more number of
processors up to some extent and then the processing time increases if we increase
the number of processors. This is due to the effect of X (m) in equation (A.10).
That is, as the communication overhead increases, the system takes more time

to transfer the load to leaf nodes. As the value of 0., increases, X (m) increases
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and hence a,,, the load to processor m decreases. From equation (A.3), it is
clear that as the value of «,, decreases, the load fractions for leaf nodes «;$ also
decreases linearly. This leads to an increased load in resource allocator and hence
the processing time increases. This effect is more evident in Figures 2(b) and 2(c)

for the cases with and without overheads.

For example, when the value of 6., is 0.01, it uses all processors and the processing
time is least when the number of processors is m = 9 in case of heterogeneous
Compute Cloud system, between 8-12 for homogeneous Compute Cloud with
overheads and m = 6 for homogeneous Compute Cloud under an ideal condition.
The ideal condition is that, we physically connect highly available links to highly
available processors in a decreasing order and distribute the load. In case of
homogeneous Compute Cloud with no overheads, we can observe that beyond
m = 12, the rate at which the processing time decreases is minimum. Hence one
can utilize 12 processors without having to utilize all 20 processors to achieve

high performance.

When the value of 6., is 0.05, the maximum number of processors required to
process the entire load is less than the number of available processors in some
cases. For example, the maximum number of processors required to process the
entire load in case of a heterogeneous Compute Cloud using OST is 19 even
though 20 processors are available to do the operation. This is because, if the
number of processors are increased beyond this value, then the overhead outweighs
the processing time. Also the processing time is minimum when the number of
processors is 3 for a heterogeneous Compute Cloud using OST and 4 for all other

cases.
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When we further increase the value of 6., to 0.1, then the optimal number of
processors is further reduced. In all cases except the case when the overhead is not

considered for a homogeneous Compute Cloud, the optimal number of processors

required to process the entire load is only 3.

A.3.2 Strategies for eliminating redundant processors

In all above cases, when the number of processors required is less than the actual
number of available processors, we selected the required number of processors
in sequence. In the Figures 3(a), 3(b) and 3(c), we show the influence of sys-
tem characteristics - link speed, processor speed, link availability and processor

availability - in selecting the required processors when the number of processors
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required is less than the available number of processors. The figures contain plots
for four different cases - (1) Eliminate the slowest links; (2) Eliminate the slow-
est processors; (3) Eliminate the least available links and 4) Eliminate the least

available processors.

Processing time is the least in case when we eliminate the slower links for all
values of 0.,,. The optimal processing time obtained by eliminating slower links
is less compared to that obtained by eliminating slower processors. This is be-
cause a faster processor can have a slow (or poorly available) link which will take
more time to communicate. Similarly, the optimal processing time obtained by
selecting processors with higher link availability compared to the processing time

obtained by selecting processors with higher processor availability.

A.4 Summary

Thus we can observe that for a given load and application, Broker can derive
optimal number of processors required for processing as well as the fraction of
data for each processor based on network heterogeneity. In this way, Broker
can incorporate some important intermediation services which can help users to
reduce their application execution time and the total monetary cost. Further, the
application described here is a representative example and any user application
which comes under DLT and needs a post processing can use this model to derive

the load fractions and optimal number of resources required.
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