5 research outputs found

    Submodular relaxation for inference in Markov random fields

    Full text link
    In this paper we address the problem of finding the most probable state of a discrete Markov random field (MRF), also known as the MRF energy minimization problem. The task is known to be NP-hard in general and its practical importance motivates numerous approximate algorithms. We propose a submodular relaxation approach (SMR) based on a Lagrangian relaxation of the initial problem. Unlike the dual decomposition approach of Komodakis et al., 2011 SMR does not decompose the graph structure of the initial problem but constructs a submodular energy that is minimized within the Lagrangian relaxation. Our approach is applicable to both pairwise and high-order MRFs and allows to take into account global potentials of certain types. We study theoretical properties of the proposed approach and evaluate it experimentally.Comment: This paper is accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models

    Get PDF
    International audienceWe consider the structured-output prediction problem through probabilistic approaches and generalize the “perturb-and-MAP” framework to more challenging weighted Hamming losses, which are crucial in applications. While in principle our approach is a straightforward marginalization, it requires solving many related MAP inference problems. We show that for log-supermodular pairwise models these operations can be performed efficiently using the machinery of dynamic graph cuts. We also propose to use double stochastic gradient descent, both on the data and on the perturbations, for efficient learning. Our framework can naturally take weak supervision (e.g., partial labels) into account. We conduct a set of experiments on medium-scale character recognition and image segmentation, showing the benefits of our algorithms
    corecore