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Abstract

We consider the structured-output prediction
problem through probabilistic approaches and
generalize the “perturb-and-MAP” framework
to more challenging weighted Hamming losses,
which are crucial in applications. While in
principle our approach is a straightforward
marginalization, it requires solving many re-
lated MAP inference problems. We show that
for log-supermodular pairwise models these op-
erations can be performed efficiently using the
machinery of dynamic graph cuts. We also pro-
pose to use double stochastic gradient descent,
both on the data and on the perturbations, for
efficient learning. Our framework can naturally
take weak supervision (e.g., partial labels) into
account. We conduct a set of experiments on
medium-scale character recognition and image
segmentation, showing the benefits of our algo-
rithms.

1 INTRODUCTION

Structured-output prediction is an important and chal-
lenging problem in the field of machine learning. When
outputs have a structure, often in terms of parts or el-
ements (e.g., pixels, sentences or characters), methods
that do take it into account typically outperform more
naive methods that consider outputs as a set of indepen-
dent elements. Structured-output methods based on opti-
mization can be broadly separated in two main families:
max-margin methods, such as structured support vector
machines (SSVM) (Taskar et al., 2003; Tsochantaridis
et al., 2005) and probabilistic methods based on maximum
likelihoods such as conditional random fields (CRF) (Laf-
ferty et al., 2001).

Structured-output prediction faces many challenges:

(1) on top of large input dimensions, problems also have
large outputs, leading to scalability issues, in particular
when prediction or learning depends on combinatorial
optimization problems (which are often polynomial-time,
but still slow given they are run many times); (2) it is often
necessary to use losses which go beyond the traditional
0-1 loss to shape the behavior of the learned models to-
wards the final evaluation metric; (3) having fully labelled
data is either rare or expensive and thus, methods should
be able to deal with weak supervision.

Max-margin methods can be used with predefined losses,
and have been made scalable by several recent contribu-
tions (see, e.g., Lacoste-Julien et al., 2013, and references
therein), but do not deal naturally with weak supervision.
However, a few works (Yu and Joachims, 2009; Kumar
et al., 2010; Girshick et al., 2011) incorporate weak super-
vision into the max-margin approach via the CCCP (Yuille
and Rangarajan, 2003) algorithm.

The flexibility of probabilistic modeling naturally allows
(a) taking into consideration weak supervision and (b)
characterizing the uncertainty of predictions, but it comes
with strong computational challenges as well as a non-
natural way of dealing with predefined losses beyond
the 0-1 loss. The main goal of this paper is to provide
new tools for structured-output inference with probabilis-
tic models, thus making them more widely applicable,
while still being efficient. There are two main techniques
to allow for scalable learning in CRFs: stochastic opti-
mization (Vishwanathan et al., 2006) and piecewise train-
ing (Sutton and McCallum, 2005, 2007; Kolesnikov et al.,
2014); note that the techniques above can also be used
for weak supervision (and we reuse some of them in this
work).

Learning and inference in probabilistic structured-output
models recently received a lot of attention from the re-
search community (Bakir et al., 2007; Nowozin and Lam-
pert, 2011; Smith, 2011). In this paper we consider
only models for which maximum-a posteriori (MAP)
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inference is feasible (a step often referred to as decod-
ing in max-margin formulations, and which typically
makes them tractable). A lot of efforts were spent to
explore MAP-solvers algorithms for various problems,
leveraging various structures, e.g., graphs of low tree-
width (Bishop, 2006; Wainwright and Jordan, 2008; Son-
tag et al., 2008; Komodakis et al., 2011) and function
submodularity (Boros and Hammer, 2002; Kolmogorov
and Zabih, 2004; Bach, 2013; Osokin and Vetrov, 2015).

Naturally, the existence of even an exact and efficient
MAP-solver does not mean that the partition function (a
key tool for probabilistic inference as shown below) is
tractable to compute. Indeed, the partition function com-
putation is known to be #P -hard (Jerrum and Sinclair,
1993) in general. For example, MAP-inference is efficient
for log-supermodular probabilistic models, while com-
putation of their partition function is not (Djolonga and
Krause, 2014).

For such problems where MAP-inference is efficient, but
partition function computation is not, “perturb-and-MAP”
ideas such as proposed by Papandreou and Yuille (2011);
Hazan and Jaakkola (2012) are a very suitable treatment.
By adding random perturbations, and then performing
MAP-inference, they can lead to estimates of the partition
function. In Section 2, we review the existing approaches
to the partition function approximation, parameter learn-
ing and inference.

An attempt to learn parameters via “perturb-and-MAP”
ideas was made by Hazan et al. (2013), where the au-
thors have developed a PAC-Bayesian-flavoured approach
for the non-decomposable loss functions. While the pre-
sented algorithm has something in common with ours
(gradient descent optimization of the objective upper
bound), it differs in the sense of the objective function
and the problem setup, which is more general but that
requires a different (potentially with higher variance) es-
timates of the gradients. Such estimates are usual in
reinforcement learning, e.g., the log-derivative trick from
the REINFORCE algorithm (Williams, 1992).

The goal of this paper is to make the “perturb-and-MAP”
technique applicable to practical problems, in terms of (a)
scale, by increasing the problem size significantly, and (b)
losses, by treating structured losses such as the Hamming
loss or its weighted version, which are crucial to obtaining
good performance in practice.

Overall, we make the following contributions:

– In Section 3, we generalize the “perturb-and-MAP”
framework to more challenging weighted Hamming
losses which are commonly used in applications. In
principle, this is a straightforward marginalization but
this requires solving many related MAP inference prob-

lems. We show that for graph cuts (our main inference
algorithm for image segmentation), this can be done
particularly efficiently. Besides that, we propose to use
a double stochastic gradient descent, both on the data
and on the perturbations.

– In Section 4, we show how weak supervision (e.g., par-
tial labels) can be naturally dealt with. Our method in
this case relies on approximating marginal probabili-
ties that can be done almost at the cost of the partition
function approximation.

– In Section 5, we conduct a set of experiments on
medium-scale character recognition and image segmen-
tation, showing the benefits of our new algorithms.

2 PERTURB-AND-MAP

In this section, we introduce the notation and review the
relevant background. We study the following probabilistic
model (a.k.a. a Gibbs distribution) over a discrete product
space Y = Y1 × · · · × YD,

P (y) =
1

Z(f)
ef(y), (1)

which is defined by a potential function f : Y → R.
The constant Z(f) =

∑
y∈Y e

f(y) is called the partition
function and normalizes P (y) to be a valid probability
function, i.e., to sum to one. Z(f) is in general intractable
to compute as the direct computation requires summing
over exponentially (in D) many elements.

Various partition function approximations methods have
been used in parameter learning algorithms (Parise and
Welling, 2005), e.g., mean-field (MF, Jordan et al., 1999),
tree-reweighted belief propagation (TRW, Wainwright
and Jordan, 2008) or loopy belief propagation (LBP,
Weiss, 2001). We will work with the upper bound on
the partition function proposed by Hazan and Jaakkola
(2012) as it allows us to approximate the partition func-
tion via MAP-inference, calculate gradients efficiently,
approximate marginal probabilities and guarantee tight-
ness for some probabilistic models. We introduce this
class of techniques below.

2.1 Gumbel perturbations

Recently, Hazan and Jaakkola (2012) provided a general-
purpose upper bound on the log-partition function
A(f) = logZ(f), based on the “perturb-and-MAP”
idea (Papandreou and Yuille, 2011): maximize the po-
tential function perturbed by Gumbel-distributed noise.1

1The Gumbel distribution on the real line has cumulative
distribution function F (z) = exp(− exp(−(z + c))), where c
is the Euler constant.



Proposition 1 (Hazan and Jaakkola (2012), Corollary 1).
For any function f : Y → R, we have A(f) 6 AG(f),
where

AG(f) = Ez1,...,zD∼Gumbel

[
max
y∈Y

(
f(y)+

D∑
d=1

zd(yd)
)]
.

(2)
Gumbel denotes the Gumbel distribution and
{zd(yd)}d=1,...,D

yd∈Yd
is a collection of independent

Gumbel samples.

The bound is tight when f(y) is a separable function (i.e.,
a sum of functions of single variables), and the tightness
of this bound was further studied by Shpakova and Bach
(2016) for log-supermodular models (where f is super-
modular). They have shown that the bound AG is always
lower (and thus provide a better bound) than the “L-field”
bound proposed by Djolonga and Krause (2014, 2015),
which is itself based on separable optimization on the
base polytope of the associated supermodular function.

The partition function bound AG can be approximated
by replacing the expectation by an empirical average.
That is, to approximate it we need to solve a large num-
ber (as many as the number of Gumbel samples used
to approximate the expectation) of MAP-like problems
(i.e., maximizing f plus a separable function) which are
feasible by our assumption. Strictly speaking, the MAP-
inference is NP-hard in general, but firstly, it is much eas-
ier than the partition function calculation, secondly, there
are solvers for special cases, e.g., for log-supermodular
models (which include functions f which are negatives
of cuts (Kolmogorov and Zabih, 2004; Boykov and Kol-
mogorov, 2004)) and those solvers are often efficient
enough in practice. In this paper, we will focus primarily
on a subcase of supermodular potentials, namely nega-
tives of graph cuts.

2.2 Parameter learning and Inference

In the standard supervised setting of structured prediction,
we are givenN pairs of observations D = {(xn, yn)}Nn=1,
where xn is a feature representation of the n-th object and
yn ∈ Y = Y1 × · · · × YDn is a structured vector of in-
terest (e.g., a sequence of tags, a segmentation MAP or a
document summarization representation). In the standard
linear model, the potential function f(y|x) is represented
as a linear combination: f(y|x) = wTΨ(x, y), where
w is a vector of weights and the structured feature map
Ψ(x, y) contains the relevant information for the feature-
label pair (x, y). To learn the parameters using the prede-
fined probabilistic model, one can use the (regularized)
maximum likelihood approach:

max
w

1

N

N∑
n=1

logP (yn|xn, w)− λ

2
‖w‖2, (3)

where λ > 0 is a regularization parameter and the likeli-
hood P (y|x,w) is defined as exp(f(y|x))

Z(f,x) = exp(f(y|x)−
A(f, x)), whereA(f, x) is the log-partition function (that
now depends on x, since we consider conditional models).

Hazan and Jaakkola (2012) proposed to learn parame-
ters based on the Gumbel bound AG(f, x) instead of the
intractable log-partition function:

logP (y|x) = f(y|x)−A(f, x) ≤ f(y|x)−AG(f, x)

= f(y|x)− Ez
[

max
y∈Y

{ D∑
d=1

zd(yd) + f(y)
}]

≈ f(y|x)− 1

M

M∑
m=1

max
y(m)∈Y

{ D∑
d=1

z
(m)
d (y

(m)
d ) + f(y(m))

}
.

Hazan and Jaakkola (2012) considered the fully-
supervised setup where labels yn were given for all data
points xn. Shpakova and Bach (2016) developed the ap-
proach, but also considered a setup with missing data (part
of the labels yn are unknown) for the small Weizmann
Horse dataset (Borenstein et al., 2004). Leveraging the
additional stochasticity present in the Gumbel samples,
Shpakova and Bach (2016) extend the use of stochastic
gradient descent, not on the data as usually done, but on
the Gumbel randomization. It is equivalent to the choice
of parameter M = 1 for every gradient computation (but
with a new Gumbel sample at every iteration). In our
work, we use the stochastic gradient descent in a regime
stochastic w.r.t. both the data and the Gumbel perturba-
tions. This allows us to apply the method to large-scale
datasets.

For linear models, we have f(y|x) = wTΨ(x, y) and
Ψ(x, y) is usually given or takes zero effort to compute.
We assume that the gradient calculation ∇wf(y|x) =
Ψ(x, y) does not add complexity to the optimization algo-
rithm. The gradient of logP (y|x) is equal to∇wf(y|x)−
∇w max

y∈Y

{∑D
d=1 zd(yd) + f(y|x)

}
= ∇wf(y|x) −

∇wf(y∗|x), where y∗ lies in arg max of the perturbed op-
timization problem. The gradient of 〈logP (y|x)〉 (the av-
erage over a subsample of data, typically a mini-batch) has
the form 〈∇wf(y|x)〉−〈∇wf(y∗|x)〉 = 〈Ψ(x, y)〉emp.−
〈Ψ(x, y∗)〉, where 〈Ψ(x, y)〉emp. denotes the empirical
average over the data. Algorithm 1 contains this double
stochastic gradient descent (SGD) with stochasticity w.r.t.
both sampled data and Gumbel samples. The choice of
the stepsize γh = 1

λh is standard for strongly-convex
problems (Shalev-Shwartz et al., 2011).

Note, that the classic log-likelihood formulation (3) is
implicitly considering a “0-1 loss” l0-1(y, ŷ) = [y 6=
ŷ] as it takes probability of the entire output object yn

conditioned on the observed feature representation xn.

However, in many structured-output problems 0-1 loss



Algorithm 1 Double SGD: stochasticity w.r.t. data and
Gumbel samples

Input: dataset D = {(xn, yn)}Nn=1, number of iter-
ations H , size of the mini-batch T , stepsize se-
quence {γh}Hh=1, regularization parameter λ

Output: model parameters w
1: Initialization: w = 0
2: for h = 1 to H do
3: Sample data mini-batch of small size T (that is, T

pairs of observations)
4: Calculate sufficient statistics 〈Ψ(x, y)〉emp. from

the mini-batch
5: for t=1 to T do
6: Sample zd(yd) as independent Gumbels for all

yd ∈ Yd and for all d

7: Find y∗ ∈ arg maxy∈Y
{ D∑
d=1

zd(yd) + f(y)
}

8: end for
9: Make a gradient step:

wh+1 → wh+γh

(
〈Ψ(x, y)〉emp.−〈Ψ(x, y∗)〉−λwh

)
10: end for

evaluation is not an adequate performance measure. The
Hamming or weighted Hamming losses that sum mistakes
across the D elements of the outputs, are more in demand
as they count misclassification per element.

2.3 Marginal probability estimation

Either at testing time (to provide an estimate of the un-
certainty of the model) or at training time (in the case of
weak supervision, see Section 4), we need to compute
marginal probabilities for a single variable yd out of the d
ones, that is,

P (yd|x) =
∑
y−d

P (y−d, yd|x),

where y−d is a sub-vector of y obtained by elimination
of the variable yd. Following Hazan and Jaakkola (2012)
and Shpakova and Bach (2016), this can be obtained by
taking m Gumbel samples and the associated maximizers
ym ∈ Y = Y1 × · · · × YD, and, for any particular d,
counting the number of occurrences in each possible value
in all the d-th components ymd of the maximizers ym.

While this provides an estimate of the marginal probabil-
ity, this is not an easy expression to optimize at it depends
on several maximizers of potentially complex optimiza-
tion problems. In the next section, we show how we can
compute a different (and new) approximation which is
easily differentiable and on which we can apply stochastic
gradient descent.

3 MARGINAL LIKELIHOOD

In this section, we demonstrate the learning procedure
for the element-decoupled losses. We consider the regu-
larized empirical risk minimization problem in a general
form:

max
w

1

N

N∑
n=1

`(w, xn, yn)− λ

2
‖w‖2, (4)

where `(w, x, y) can take various forms from Table 1
and λ is the regularization parameter. The choice of the
likelihood form is based on the problem setting such as
presence of missing data and the considered test-time
evaluation function.

3.1 Hamming loss

The Hamming loss is a loss function that counts misclas-
sification per dimension: lh(y, ŷ) = 1

D

∑D
d=1[yd 6= ŷd].

For this type of loss instead of the classic log-likelihood
objective it is more reasonable to consider the following
decoupling representation from Table 1:

`(w, x, y) =
D∑
d=1

logP (yd|x,w), (5)

where
P (yd|x,w) =

∑
y−d

exp(f(w, y−d|yd, x) − A(f, x))

= exp(B(f, yd, x)−A(f, x))

is the marginal probability of the single element
yd given the entire input x, and B(f, yd) =
log
∑
y−d

exp(f(w, y−d|yd)), where y−d ∈ Y1 ×
. . . Yd−1 × Yd+1 × · · · × YD. Thus, the log-marginal
probability may be obtained from the difference of two
log-partition functions (which we will approximate below
with Gumbel samples).

This idea of considering the marginal likelihood was pro-
posed by Kakade et al. (2002). Our contribution is to
consider the approximation by “perturb-and-MAP” tech-
niques. We thus have a new objective function `(w, x, y):
`(w, x, y) =

∑D
d=1 [(B(f, x, yd)−A(f, x))] , and now

the following approximation could be applied:

A(f) ≈ AG(f) = Ez
{

max
y∈Y

D∑
d=1

zd(yd) + f(y)
}
,

B(f |yd) ≈ BG(f |yd)

= Ez
{

max
y−d∈Y−d

D∑
s=1:s6=d

zs(ys) + f(y−d|yd)
}
.

It is worth noting, that the approximation is not anymore
an upper bound of the marginal likelihood; moreover it
is a difference of convex functions. Remarkably, the ob-
jective function exactly matches the log-likelihood in the



Table 1: Variants of the Objective Loss `(w, x, y) Function. {θd(yd)}Dd=1 are the weights of the weighted Hamming
loss, {qd(yd)}Dd=1 are the marginal probabilities P (yd|x).

Loss Labelled Data Unlabelled Data
0-1 logP (w, y|x) log

∑
y∈Y

P (w, y, x)

Hamming
D∑
d=1

logP (w, yd|xd)
D∑
d=1

∑
yd∈Yd

qd(yd) logP (w, yd|xd)

Weighted Hamming
D∑
d=1

θd(yd) logP (w, yd|xd)
D∑
d=1

∑
yd∈Yd

qd(yd)θd(yd) logP (w, yd|xd)

case of unary potentials (separable potential function) as
the log-likelihood function becomes the sum of marginal
likelihoods.

As noted, the objective `(w, x, y) is not convex anymore,
but it is presented as the difference of two convex func-
tions. We can still try to approximate with stochastic gra-
dient descent (which then only converges to a stationary
point, typically a local minimum). Algorithm 2 describes
the implementation details.

Algorithm 2 Double SGD for Marginal Likelihood

Input: dataset D = {(xn, yn)}Nn=1, number of iter-
ations H , size of the mini-batch T , stepsize se-
quence {γh}Hh=1, regularization parameter λ

Output: model parameters w
1: Initialization: w = 0
2: for h = 1 to H do
3: Sample data mini-batch of small size T (that is, T

pairs of observations)
4: for t=1 to T do
5: Sample zd(yd) as independent Gumbels for all

yd ∈ Yd and for all d

6: Find y∗A ∈ arg maxy∈Y
{ D∑
d=1

zd(yd) + f(y)
}

7: for d=1 to D do

8: Find y∗B ∈ arg max
y−d∈Y−d

{
D∑

s=1:s6=d
zs(ys) +

f(y−d|yd)}
9: end for

10: end for
11: Make a gradient step:

wh+1 → wh+γh

(〈
〈Ψ(x, y∗B)〉−Ψ(x, y∗A)

〉
−λwh

)
12: end for

Acceleration trick. Interestingly we can use the same
Gumbel perturbation realizations for approximating
AG(f) and BG(f |yd) through an empirical average. On
the one hand, this restriction should not influence on the
result as with a sufficient large averaging number M ,
AG(f) and BG(f |yd) converges to their expectations.
This is the same for stochastic gradients: on every itera-

tion, we use a different Gumbel perturbation, but we share
this one for the estimation of the gradients of AG(f) and
BG(f |yd). This allows us to save some computations
as shown below, while preserving convergence (the ex-
tra correlation added by using the same samples for the
two gradients does not change the unbiasedness of our
estimates).

Moreover, if y∗A has the same label value yd as the ground
truth, then the MAP inference problem for y∗A exactly
matches the one for y∗B (with the element yd fixed from
the ground truth). Then y∗A = y∗B and the corresponding
difference of gradients gives zero impact into the gradient
step. This fact allows us to reduce the number of MAP-
inference problems. We should thus calculate y∗B only
for those indices d that leads to a mismatch between d-th
label of y∗A and the ground truth one. Remarkably, during
the convergence to the optimal value, the reduction will
occur more often and decrease the execution time with
the number of iteration increase. Besides that, in the ex-
periments with graph cuts in Section 5 we use dynamic
graph cut algorithm for solving several optimization prob-
lems of similar structure (here D marginal probabilities
calculation). We describe it in more details in Section 3.3.

3.2 Weighted Hamming loss

The weighted Hamming loss is used for performance
evaluation in the models, where each dimension has its
own level of importance, e.g., in an image segmentation
with superpixels, proportional to the size of superpix-
els. It differs from the usual Hamming loss in this way:
lh(y, ŷ) = 1

D

∑D
d=1 θd(yd)[yd 6= ŷd].

Thus we consider a dimension-weighted model as it can
be adjusted for the problem of interest that gives the model
more flexibility. The optimization problem of interest is
transformed from the previous case by weighted multipli-
cation:

`(w, x, y) =

D∑
d=1

θd(yd) [(B(f, x, yd)−A(f, x))] . (6)

To justify this objective function, we notice that in the
case of unit weights, the weighted loss and objective



function (6) match the loss and the objective from the
previous section. Furthermore, yd with a large weight
θd(yd) puts more importance towards making the right
prediction for this yd, and that is why we put more weight
on the d-th marginal likelihood. This corresponds to the
usual rebalancing used in binary classification (see, e.g.,
Bach et al., 2006, and references therein). Then, the
algorithm for this case duplicated the one for the usual
Hamming loss and the acceleration trick can be used as
well.

3.3 Scalable algorithms for graph cuts

As a classical efficient MAP-solver for pairwise potentials
problem we will use graph cut algorithms from Boykov
and Kolmogorov (2004). The function f(y|x) should
then be supermodular, i.e., with pairwise potentials, all
pairwise weights of w should remain negative.

In both Sections 3.1 and 3.2 we can apply the dynamic
graphcut algorithm proposed by Kohli and Torr (2007),
which is a modification of the Boykov-Kolmogorov graph-
cut algorithms. It is dedicated to situations when a se-
quence of graphcut problems with slightly different unary
potentials need to be solved. Then, instead of solving
them separately, we can use the dynamic procedure and
find the solutions for slightly different problems with less
costs. This makes graphcut scalable for a special class of
problems.

It can easily be seen that our sequence of problems
y∗B ∈ arg max

y−d∈Y−d

{
∑

s=1:s6=d
zs(ys) + f(y−d|yd)} for

d = 1, . . . , D is a perfect application for the dynamic
graph cut algorithm. At each iteration we solve T sets of
graph cut problems, each of set contains 1 + at problems
solvable by the same dynamic cut, where at is the num-
ber of not matched pixels between y∗A and ground truth
yn. Finally, using acceleration trick and dynamic cuts
we reduce the gradient descent iteration complexity from∑T

t=1 (1 +Dt) graphcut problems to T dynamic graph
cut problems. We make the approach scalable and can
apply it for large datasets.

4 PARAMETER LEARNING IN THE
SEMISUPERVISED SETUP

In this section we assume the presence of objects with
unknown labels in the train dataset. We can separate
the given data in two parts: fully annotated data D1 =
{(xn, yn)}Nn=1 as in the supervised case and unlabeled
data D2 = {xl}Ll=1. Then, the optimal model parameter
w is a solution of the following optimization problem:

max
w

L1(w) + κL2(w)− λ

2
‖w‖2, (7)

where L1(w) =
∑N
n=1 `1(w, xn, yn), L2(w) =

∑L
l=1 `2(w, xl) and the parameter κ governs the impor-

tance of the unlabeled data. `1(w, xn, yn) can have a
form from the left column of the Table 1, and `2(w, xl)
from the right one.

Marginal calculations. It is worth reminding from Sec-
tion 2.3, that we can approximate marginal probabilities
q(y) of holding yd = k along with the partition function
approximation almost for free. This can be obtained by
taking m Gumbel samples and the associated maximizers
ym ∈ Y = Y1×· · ·×YD, and, for any particular d, count-
ing the number of occurrences in each possible value in
all the d-th components ymd of the maximizers ym. The
approximation accuracy depends on number of samples
M . To calculate this we already need to have a trained
weight vector w which we can obtained from the fully
annotated dataset D = {(xn, yn}Nn=1). We will calcu-
late q(y) for the unlabelled data D2 = {xl}ll=1. Those
marginal probabilities contain much more information
than MAP inference for the new data as can be seen on
the example in Figure 1. We believe that proper use of the
marginal probabilities will help to gain better result than
using labels from the MAP inference (which we observe
in experiments).

It is worth noting that for the inference and learning
phases we use a different number of Gumbel samples.
During the learning phase, we incorporate the double
stochastic procedure and use 1 sample per 1 iteration
and 1 label. For the marginal calculation (inference) we
should use large number of samples (e.g. 100 samples) to
get accurate approximation.

Algorithm 3 Sketch for the semisupervised algorithm.

Input: fully annotated dataset D1 = {(xn, yn)}Nn=1,
number of iterations H , size of the mini-batch T ,
stepsize sequence {γh}Hh=1, regularization param. λ

Output: model parameters w1

1: Initialization: w1 = 0
2: Find w1 via Algorithm 2

Input: fully annotated dataset D1 = {(xn, yn)}Nn=1,
unlabeled dataset D2 = {xl}Ll=1, number of it-
erations H , size of the mini-batch T , stepsize se-
quence {γh}Hh=1, regularization parameter λ

Output: model parameters w1,2

3: Initialization: w1,2 = w1

4: Calculate: q(y) for unlabeled data via w1

5: Find w1,2 via mixture of Algorithms 2 and 4

We provide the sketch of the proposed optimization
algorithm in Algorithm 3. The optimization of L1

is fully supervised and this can be done with tools
of the previous section. The optimization of L2 re-
quires the specification of `2(w, x), which we take as



`2(w, x) =
D∑
d=1

∑
yd∈{0,...,K}

qd(yd) logP (w, yd|xd) =

D∑
d=1

∑
yd∈{0,...,K}

qd(yd)B(f |yd)−DA(f), that is, the av-

erage of the fully supervised cost function with labels
generated from the model q. The term L2 corresponds to
the common way of treating unlabeled data through the
marginal likelihood. The sub-algorithm for the optimiza-
tion of `2 is presented as Algorithm 4.

Algorithm 4 Double SGD for Unsupervised Learning

Input: unlabeled dataset D2 = {xl}Ll=1, parameter es-
timate w1, number of iterations H , size of the mini-
batch T , stepsize sequence {γh}Hh=1, regularization
parameter λ

Output: model parameters w1,2

1: Initialization: w1,2 = w1

2: for h = 1 to H do
3: Sample data mini-batch of small size T (that is, T

pairs of observations)
4: for t=1 to T do
5: Sample zd(yd) as independent Gumbels for all

yd ∈ Yd and for all d

6: Find y∗A ∈ arg maxy∈Y
{ D∑
d=1

zd(yd) + f(y)
}

7: for d=1 to D and k=0 to K do

8: Find y∗B,d,k ∈ arg max
y−d∈Y−d

{
D∑

s=1:s 6=d
zs(ys) +

f(y−d|yd = k)}
9: end for

10: end for
11: Make a gradient step:

wh+1 → wh+γh

(〈
〈
∑K
k=0 qd(k)Ψ(x, y∗B,d,k)〉−

Ψ(x, y∗A)
〉
− λwh

)
12: end for

Acceleration trick. Suppose, that yd can take values in
the range {0, . . . ,K}. Again we use the same Gumbel
perturbation for estimating AG(f) and BdkG(f |yd = k)
for all k ∈ {0, . . . ,K}. The consequence of using the
same perturbations is that if the d-th label yd of y∗A takes
value k, than the corresponding d-th gradient will cancel
out with one of the y∗Bk. Thus, we will calculate only K
(instead of K+1 labels) structured labels y∗Bl(l 6= k) and
reduce the number of optimization problems to be solved.
Dynamic graph cuts are applied here as well.

Finally in Table 1 we see the relationships between the
proposed objective functions. Firstly, the known labels
yn in the supervised case are equivalent to the binary
marginal probabilities q(yn) ∈ {0, 1}Dn

. Secondly, the
unit weights θd(yd) = 1 in the weighted Hamming loss
are equivalent to the basic Hamming loss.

Partial labels. Another case that we would like to men-
tion is annotation with partial labels, e.g., in an image
segmentation application, the bounding boxes of the
images are given. Then denote ygiven as the set of
given labels. In this setup the marginal probabilities
become conditional ones q(yd|ygiven) and to approxi-
mate this we need to solve several conditional MAP-
inference problems. The objective function `2(w) =∑
d

∑
yd∈{0,...,K}

qd(yd|ygiven) logP (w, yd|xd, ygiven) re-

mains feasible to optimize.

5 EXPERIMENTS

The experimental evaluation consists of two parts: Section
5.1 is dedicated to the chain model problem, where we
compare the different algorithms for supervised learning;
Section 5.2 is focused on evaluating our approach for the
pairwise model on a weakly-supervised problem.

5.1 OCR dataset

The given OCR dataset from Taskar et al. (2003) consists
of handwritten words which are separated in letters in
a chain manner. The OCR dataset contains 10 folds of
∼ 6000 words overall. The average length of the word is
∼ 9 characters. Two traditional setups of these datasets
are considered: 1) “small” dataset when one fold is con-
sidered as a training data and the rest is for test, 2) “large”
dataset when 9 folds of 10 compose the train data and
the rest is the test data. We perform cross-validation over
both setups and present results in Table 2.

As the MAP oracle we use the dynamic programming al-
gorithm of Viterbi (1967). The chain structure also allows
us to calculate the partition function and marginal proba-
bilities exactly. Thus, the CRF approach can be applied.
We compare its performance with the structured SVM
from Osokin et al. (2016), perturb-and-MAP (Hazan and
Jaakkola, 2012) and the one we propose for marginal
perturb-and-MAP (as Hamming loss is used for evalua-
tion).

The goal of this experiment is to demonstrate that the CRF
approach with exact marginals shows a slightly worse
performance as the proposed one with approximated
marginals but correct Hamming loss.

Table 2: OCR Dataset. Performance Comparison.

method small dataset large dataset
CRF 19.5± 0.4 13.1± 0.8

S-SVM+BCFW 19.5± 0.4 12.0± 1.1
perturb&MAP 19.1± 0.3 12.5± 1.1

marg. perturb&MAP 19.1± 0.3 12.8± 1.2



For the OCR dataset, we performed 10-fold cross-
validation and the numbers of Table 2 correspond to the
averaged loss function (Hamming loss) values over the 10
folds. As we can see from the result in Table 2, the approx-
imate probabilistic approaches slightly outperforms the
CRF on both datasets. The Gumbel approximation (with
or without marginal likelihoods) does lead to a better esti-
mation for the Hamming loss. Note that S-SVM performs
better in the case of a larger dataset, which might be ex-
plained by stronger effects of model misspecification that
hurts probabilistic models more than S-SVM (Pletscher
et al., 2011).

5.2 HorseSeg dataset

The problem of interest is foreground/background super-
pixel segmentation. We consider a training set of images
{xn}n=1...N that contain different numbers of superpix-
els. A hard segmentation of the image is expressed by
an array yn ∈ {0, 1}Dn

, where Dn is the number of
superpixels for the n-th image.

The HorseSeg dataset was created by Kolesnikov et al.
(2014) and contains horse images. The “small” dataset
has images with manually annotated labels and contains
147 images. The second “medium” dataset is partially
annotated (only bounding boxes are given) and contains
5974 images. The remaining “large” one has 19317 im-
ages with no annotations at all. A fully annotated hold
out dataset was used for the test stage. It consists of 241
images.

The graphical model is a pairwise model with loops. We
consider log-supermodular distribution and thus, the max
oracle is available as the graph cut algorithm by Boykov
and Kolmogorov (2004). Note that CRFs with exact in-
ference cannot be used here.

Following Kolesnikov et al. (2014), for the performance
evaluation the weighted Hamming loss is used, where
the weight is governed by the superpixel size and fore-
ground/background ratio in the particular image.

That is, lh(y, ŷ) = 1
D

∑D
d=1 θd(yd)[yd 6= ŷd], where

θd(yd) =


Vd

2Vforeground
, if yd = 1.

Vd
2Vbackground

, if yd = 0.

Vd is the size of superpixel d, Vbackground and
Vforeground are the sizes of the background and the fore-
ground respectively. In this way smaller object sizes have
more penalized mistakes.

Since we incorporate θ(y) into the learning process and
for its evaluation we need to know the background and
foreground sizes of the image, this formulation is only
applicable for the supervised case, where yd is given for

(a) original image (b) marginal inf. (c) MAP inf.

Figure 1: Example of the marginal and MAP inference for
an image from the HorseSeg database Kolesnikov et al.
(2014).

Table 3: HorseSeg Dataset. Performance Comparison.

method “small” “medium” “large”
S-SVM+BCFW 12.3 10.9 10.9
perturb&MAP 20.9 21.0 20.9

w.m. perturb&MAP 11.6 10.9 10.9

all superpixels. However, in this dataset we have plenty
of images with partial or zero annotation. For these set of
images D2 = {xl}Ll=1, we handle approximate marginal
probabilities qld associated to the unknown labels. Using
them we can approximate the foreground and background
volumes: V lforeground ≈

∑Dl

d=1 q
l
d and V lbackground ≈∑Dl

d=1(1− qld).

We provide an example of the marginal and MAP in-
ference in Figure 1. The difference of the information
compression between these two approaches is visually
comparable. We believe that the smoother and accurate
marginal approach should have a positive impact on the
result, as the uncertainty about the prediction is well prop-
agated.

As an example of the max-margin approaches we take
S-SVM+BCFW from the paper of Osokin et al. (2016)
which is well adapted to large-scale problems. For S-
SVM+BCFW and perturb-and-MAP methods we use
MAP-inference for labelling unlabelled data using w1

(see Section 4).

For the HorseSeg dataset (Table 3), the numbers cor-
respond to the averaged loss function (weighted Ham-
ming loss) values over the hold out test dataset. The
results of the experiment in Table 3 demonstrate that the
approaches taking into account the weights of the loss
θd(·) (S-SVM+BCFW and w.m. perturb&MAP) give a
much better accuracy than the regular perturb&MAP. S-
SVM+BCFW uses loss-augmented inference and thereby
augments the weighted loss structure into the learning
phase. Weighted marginal perturb-and-MAP plugs the
weights of the weighted Hamming loss inside the objec-
tive log-likelihood function. Basic perturb-and-MAP does



Table 4: Reduced HorseSeg Dataset. Performance Com-
parison.

method 10% of “medium” “medium”
“small” with bbox w/o bbox

S-SVM+BCFW 17.3 14.0 16.1
perturb&MAP 23.2 23.4 23.0
w.m. p.&MAP 18.1 13.7 14.4

not use the weights θd(·) and loses a lot of accuracy. This
shows us that the predefined loss for performance evalua-
tion has a significant influence on the result and should
be taken into account.

Small dataset size influence. We now investigate the
effect of the reduced “small” dataset. We preserve the
setup from the previous section and the only thing that
we change is N , the size of the “small” fully-annotated
dataset D1 = {(xn, yn)}Nn=1. The new “small” dataset
is 10% the size of the initial one, i.e., only 14 images.
By taking a small labelled dataset, we test the limit of
supervised learning when few labels are present.

For the HorseSeg dataset (Table 4), the numbers corre-
spond to the averaged loss function (weighted Hamming
loss) values over the hold out test dataset. The results of
this experiments are presented in Table 4. In this setup, the
probabilistic approach “weighted marginal perturb-and-
MAP” gains more than max-margin “S-SVM+BCFW”.
This could happen because of very limited fully super-
vised data. The learned parameter w1 gives a noisy model
and this noisy model produces a lot of noisy labels for
the unlabeled data, while weighted perturb-and-MAP is
more cautious as it uses probabilities that contain more
information (see Figure 1).

5.2.1 Acceleration trick impact

We now compare the execution time of the algorithm
with and without our acceleration techniques (namely
Dynamic Cuts [DC] and Gumbel Reduction[ GR]) to
get an idea on how helpful they are. Table 5 shows the
execution time for calculating all y∗B (Algorithm 2) for
different numbers of iterations on the HorseSeg small
dataset. We conclude that the impact of DC does not
depend on the total number of iterations always leading to
acceleration around 1.3. For GR, acceleration goes from
3.5 for 100 iterations to 7.6 for one million iterations.
Overall, we get acceleration of factor around 10 for one
million iterations.

5.3 Experiments analysis
The experiments results mainly show that not taking into
account the right loss in the learning procedure is detri-
mental to probabilistic technique such as CRFs, while

method \ it 100 103 104 105 106

basic 0.9 9.2 89.5 900 8993
DC 0.7 6.9 69.0 696 7171
GR 0.3 2.1 15.5 133.4 1186

DC+GR 0.2 1.5 10.9 83.5 727

Table 5: Execution time comparison in seconds. HorseSeg
small dataset.

taking it into account (our novelty) improves results. Also,
Tables 2 and 3 show that the proposed methods achieves
(and sometimes surpasses) the level performance of the
max-margin approach (with loss-augmented inference).

Further, we observed that the size of the training set influ-
ences the SSVM and perturb-and-MAP approaches differ-
ently. For smaller datasets, the max-margin approaches
tend to lose information due to usage of the hard estimates
for the unlabelled data (e.g. in Table 4: 16.1 against 14.4
for “medium” dataset without bounding boxes labeling).

Table 4 reports an experiment about using weakly-labeled
data at the training stage (the results on the partially an-
notated “medium” dataset). This experiment studied the
impact on the final prediction quality of the training set
of “medium” size on top of the reduced “small” fully-
labelled set. The results of Table 4 mean that the usage
of our approach adopted to the correct test measure out-
performs the default perturb-and-MAP by a large margin.
Our approach also significantly outperformed the compa-
rable baseline of SSVM due to reduced size of the “small”
fully-labelled set.

6 CONCLUSION

In this paper, we have proposed an approximate learn-
ing technique for problems with non-trivial losses. We
were able to make marginal weighted log-likelihood for
perturb-and-MAP tractable. Moreover, we used it for
semi-supervised and weakly-supervised learning. Finally,
we have successfully demonstrated good performance
of the marginal-based and weighted-marginal-based ap-
proaches on the middle-scale experiments. As a future
direction, we can go beyond the graph cuts and image seg-
mentation application and consider other combinatorial
problems with feasible MAP-inference, e.g., matching.
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