19 research outputs found

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201

    Almost-Smooth Histograms and Sliding-Window Graph Algorithms

    Full text link
    We study algorithms for the sliding-window model, an important variant of the data-stream model, in which the goal is to compute some function of a fixed-length suffix of the stream. We extend the smooth-histogram framework of Braverman and Ostrovsky (FOCS 2007) to almost-smooth functions, which includes all subadditive functions. Specifically, we show that if a subadditive function can be (1+ϵ)(1+\epsilon)-approximated in the insertion-only streaming model, then it can be (2+ϵ)(2+\epsilon)-approximated also in the sliding-window model with space complexity larger by factor O(ϵ1logw)O(\epsilon^{-1}\log w), where ww is the window size. We demonstrate how our framework yields new approximation algorithms with relatively little effort for a variety of problems that do not admit the smooth-histogram technique. For example, in the frequency-vector model, a symmetric norm is subadditive and thus we obtain a sliding-window (2+ϵ)(2+\epsilon)-approximation algorithm for it. Another example is for streaming matrices, where we derive a new sliding-window (2+ϵ)(\sqrt{2}+\epsilon)-approximation algorithm for Schatten 44-norm. We then consider graph streams and show that many graph problems are subadditive, including maximum submodular matching, minimum vertex-cover, and maximum kk-cover, thereby deriving sliding-window O(1)O(1)-approximation algorithms for them almost for free (using known insertion-only algorithms). Finally, we design for every d(1,2]d\in (1,2] an artificial function, based on the maximum-matching size, whose almost-smoothness parameter is exactly dd

    Dynamic Graph Stream Algorithms in o(n)o(n) Space

    Get PDF
    In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Ω(n)\Omega(n) space, where nn is the number of vertices, existing works mainly focused on designing O~(n)\tilde{O}(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. nn is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n)o(n) space algorithms for estimating the number of connected components with additive error εn\varepsilon n and (1+ε)(1+\varepsilon)-approximating the weight of minimum spanning tree, for any small constant ε>0\varepsilon>0. The latter improves previous O~(n)\tilde{O}(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are ε\varepsilon-far from having the property. We consider the problem of testing kk-edge connectivity, kk-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly O~(n1ε)\tilde{O}(n^{1-\varepsilon}) space, which is o(n)o(n) for any constant ε\varepsilon. To complement our algorithms, we present Ω(n1O(ε))\Omega(n^{1-O(\varepsilon)}) space lower bounds for these problems, which show that such a dependence on ε\varepsilon is necessary.Comment: ICALP 201

    Streaming Verification of Graph Properties

    Get PDF
    Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computationally limited streaming client (the verifier) hands over a large data set to an untrusted server (the prover) in the cloud and the two parties run a protocol to confirm the correctness of result with high probability. SIPs are particularly interesting for problems that are hard to solve (or even approximate) well in a streaming setting. The most notable of these problems is finding maximum matchings, which has received intense interest in recent years but has strong lower bounds even for constant factor approximations. In this paper, we present efficient streaming interactive proofs that can verify maximum matchings exactly. Our results cover all flavors of matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming verifiers for approximate metric TSP. In particular, these are the first efficient results for weighted matchings and for metric TSP in any streaming verification model.Comment: 26 pages, 2 figure, 1 tabl

    Optimal lower bounds for universal relation, and for samplers and finding duplicates in streams

    Full text link
    In the communication problem UR\mathbf{UR} (universal relation) [KRW95], Alice and Bob respectively receive x,y{0,1}nx, y \in\{0,1\}^n with the promise that xyx\neq y. The last player to receive a message must output an index ii such that xiyix_i\neq y_i. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly Θ(min{n,log(1/δ)log2(nlog(1/δ))})\Theta(\min\{n,\log(1/\delta)\log^2(\frac n{\log(1/\delta)})\}) for failure probability δ\delta. Our lower bound holds even if promised support(y)support(x)\mathop{support}(y)\subset \mathop{support}(x). As a corollary, we obtain optimal lower bounds for p\ell_p-sampling in strict turnstile streams for 0p<20\le p < 2, as well as for the problem of finding duplicates in a stream. Our lower bounds do not need to use large weights, and hold even if promised x{0,1}nx\in\{0,1\}^n at all points in the stream. We give two different proofs of our main result. The first proof demonstrates that any algorithm A\mathcal A solving sampling problems in turnstile streams in low memory can be used to encode subsets of [n][n] of certain sizes into a number of bits below the information theoretic minimum. Our encoder makes adaptive queries to A\mathcal A throughout its execution, but done carefully so as to not violate correctness. This is accomplished by injecting random noise into the encoder's interactions with A\mathcal A, which is loosely motivated by techniques in differential privacy. Our second proof is via a novel randomized reduction from Augmented Indexing [MNSW98] which needs to interact with A\mathcal A adaptively. To handle the adaptivity we identify certain likely interaction patterns and union bound over them to guarantee correct interaction on all of them. To guarantee correctness, it is important that the interaction hides some of its randomness from A\mathcal A in the reduction.Comment: merge of arXiv:1703.08139 and of work of Kapralov, Woodruff, and Yahyazade
    corecore