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Abstract
Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computa-
tionally limited streaming client (the verifier) hands over a large data set to an untrusted server
(the prover) in the cloud and the two parties run a protocol to confirm the correctness of result
with high probability. SIPs are particularly interesting for problems that are hard to solve (or
even approximate) well in a streaming setting. The most notable of these problems is finding
maximum matchings, which has received intense interest in recent years but has strong lower
bounds even for constant factor approximations. In this paper, we present efficient streaming
interactive proofs that can verify maximum matchings exactly. Our results cover all flavors of
matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming veri-
fiers for approximate metric TSP. In particular, these are the first efficient results for weighted
matchings and for metric TSP in any streaming verification model.
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1 Introduction

The shift from direct computation to outsourcing in the cloud has led to new ways of thinking
about massive scale computation. In the verification setting, computational effort is split
between a computationally weak client (the verifier) who owns the data and wants to solve a
desired problem, and a more powerful server (the prover) which performs the computations.
Here the client has only limited (streaming) access to the data, as well as a bounded ability
to talk with the server (measured by the amount of communication), but wishes to verify the
correctness of the prover’s answers. This model can be viewed as a streaming modification
of a classic interactive proof system (a streaming IP, or SIP), and has been the subject of
a number of papers [26, 47, 23, 17, 22, 16, 38, 39] that have established sublinear (verifier)
space and communication bounds for classic problems in streaming and data analysis.

In this paper, we present streaming interactive proofs for graph problems that are
traditionally hard for streaming, such as for the maximum matching problem (in bipartite
and general graphs, both weighted and unweighted) as well for approximating the traveling
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3:2 Streaming Verification of Graph Properties

Table 1 Our Results. All bounds expressed in bits, upto constant factors. For the matching
results, ρ = min(n,C) where C is the cardinality of the optimal matching (weighted or unweighted).
Note that for the MST, the verification is for a (1 + ε)-approximation. For the TSP, the verification
is for a (3/2 + ε)-approximation. (*) γ′ is a linear function of γ and is strictly more than 1 as long
as γ is a sufficiently large constant.

logn rounds γ = O(1) rounds
Problem Verifier Space Communication Verifier Space Communication

Triangle Counting log2 n log2 n logn n1/γ logn
Matchings (all versions) log2 n (ρ+ logn) logn logn (ρ+ n1/γ′

) logn (*)
Connectivity log2 n n logn logn n logn

Minimum Spanning Tree log2 n n log2 n/ε logn n log2 n/ε

Travelling Salesperson log2 n n log2 n/ε logn n log2 n/ε

salesperson problem. In particular, we present protocols that verify a matching exactly in
a graph using polylogarithmic space and polylogarithmic communication apart from the
matching itself. In all our results, we consider the input in the dynamic streaming model,
where graph edges are presented in arbitrary order in a stream and we allow both deletion
and insertion of edges. All our protocols use either logn rounds of communication or (if the
output size is sufficiently large or we are willing to tolerate superlogarithmic communication)
constant rounds of communication.

To prove the above results, we also need SIPs for sub-problems like connectivity, minimum
spanning tree and triangle counting. While it is possible to derive similar (and in some
cases better) results for these subroutines using known techniques [30], we require explicit
protocols that return structures that can be used in the computation pipeline for the TSP.
Furthermore, our protocols for these problems are much simpler than what can be obtained
by techniques in [30], which require some effort to obtain precise bounds on the size and depth
of the circuits corresponding to more complicated parallel algorithms. We summarize our
results in Table 1. Due to space constraints subproblems like triangle counting, connectivity,
bipartiteness and MST are presented in the full version [1].

Significance of our Results

While the streaming model of computation has been extremely effective for processing
numeric and matrix data, its ability to handle large graphs is limited, even in the so-called
semi-streaming model where the streaming algorithm is permitted to use space quasilinear
in the number of vertices. Recent breakthroughs in graph sketching [43] have led to space-
efficient approximations for many problems in the semi-streaming model but canonical graph
problems like matchings have been shown to be provably hard.

It is known [36] that no better than a 1− 1/e approximation to the maximum cardinality
matching is possible in the streaming model, even with space Õ(n). It was also known that
even allowing limited communication (effectively a single message from the prover) required
a space-communication product of Ω(n2) [16, 22]. Our results show that even allowing a
few more rounds of communication dramatically improves the space-communication tradeoff
for matching, as well as yielding exact verification. We note that streaming algorithms for
matching vary greatly in performance and complexity depending in whether the graph is
weighted or unweighted, bipartite or nonbipartite. In contrast, our results apply to all forms
of matching. Interestingly, the special case of perfect matching, by virtue of being in RNC [37],
admits an efficient SIP via results by Goldwasser, Kalai and Rothblum [30] and Cormode,
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Thaler and Yi [23]. Similarly for triangle counting, the best streaming algorithm [5] yields
an additive εn3 error estimate in polylogarithmic space, and again in the annotation model
(effectively a single round of communication) the best result yields a space-communication
tradeoff of n2 log2 n, which is almost exponentially worse than the bound we obtain. We
note that counting triangles is a classic problem in the sublinear algorithms literature, and
identifying optimal space and communication bounds for this problem was posed as an open
problem by Graham Cormode in the Bertinoro sublinear algorithms workshop [21]. Our
bound for verifying a 3/2+ ε approximation for the TSP in dynamic graphs is also interesting:
a trivial 2-approximation in the semi-streaming model follows via the MST, but it is open to
improve this bound (even on a grid) [46].

In general, our results can be viewed as providing further insight into the tradeoff between
space and communication in sublinear algorithms. The annotation model of verification
provides Ω(n2) lower bounds on the space-communication product for the problems we
consider: in that light, the fact that we can obtain polynomially better bounds with only
constant number of rounds demonstrates the power of just a few rounds of interaction. We
note that as of this paper, virtually all of the canonical hard problems for streaming algorithms
(Index [17], Disjointness [9, 10], Boolean Hidden Matching [28, 15, 40]) admit efficient
SIPs. A SIP for Index was presented in [17] and we present SIPs for Disjointness and
Boolean Hidden Matching in the full version [1]. Our model is also different from a
standard multi-pass streaming framework, since communication must remain sublinear in
the input and in fact in all our protocols the verifier still reads the input exactly once.

From a technical perspective, our work continues the sketching paradigm for designing
efficient graph algorithms. All our results proceed by building linear sketches of the input
graph. The key difference is that our sketches are not approximate but algebraic: based on
random evaluation of polynomials over finite fields. Our sketches use higher dimensional
linearization (“tensorization”) of the input, which might itself be of interest. They also
compose: indeed, our solutions are based on building a number of simple primitives that we
combine in different ways.

2 Related Work

Outsourced computation

Work on outsourced computation comes in three other flavors in addition to SIPs: firstly,
there is work on reducing the verifier and prover complexity without necessarily making the
verifier a sublinear algorithm [30, 29, 35], in some cases using cryptographic assumptions
to achieve their bounds. Another approach is the idea of rational proofs [8, 19, 32, 31], in
which the verifier uses a payment function to give the prover incentive to be honest. Moving
to sublinear verifiers, there has been research on designing SIPs where the verifier runs in
sublinear time [33, 45].

Streaming Graph Verification

All prior work on streaming graph verification has been in the annotation model, which in
practice resembles a 1-round SIP (a single message from prover to verifier after the stream
has been read). In recent work, Thaler [47] gives protocols for counting triangles, and
computing maximum cardinality matching with both n logn space and communication cost.
For matching, Chakrabarti et al. [16] show that any annotation protocol with space cost
O(n1−δ) requires communication cost Ω(n1+δ) for any δ > 0. They also show that any
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3:4 Streaming Verification of Graph Properties

annotation protocol for graph connectivity with space cost O(n1−δ) requires communication
cost Ω(n1+δ) for any δ > 0.

It is also proved that every protocol for this problem in the annotation model requires Ω(n2)
product of space and communication. This is optimal upto logarithmic factors. Furthermore,
they conjecture that achieving smooth tradeoffs between space and communication cost is
impossible, i.e. it is not known how to reduce the space usage to o(n logn) without blowing
the communication cost up to Ω(n2) or vice versa [16, 47]. Note that in all our protocols,
the product of space and communication is O(n poly logn).

Streaming Graph Algorithms

In the general dynamic streaming model, poly log 1/ε-pass streaming algorithms [2, 3] give
(1+ε)-approximate answers and require Õ(n) space in one pass. The best results for matching
are [20] (a parametrized algorithm for computing a maximal matching of size k using Õ(nk)
space) and [7, 42] which gives a streaming algorithm for recovering an nε-approximate
maximum matching by maintaining a linear sketch of size Õ(n2−3ε) bits. In the single-pass
insert-only streaming model, Epstein et al. [27] give a constant (4.91) factor approximation for
weighted graphs using O(n logn) space. Crouch and Stubbs [24] give a (4 + ε)-approximation
algorithm which is the best known result for weighted matchings in this model. Triangle
counting in streams has been studied extensively [11, 13, 14, 34, 44]. For dynamic graphs,
the most space-efficient result is the one by [5] that provides the aforementioned additive εn3

bound in polylogarithmic space. The recent breakthrough in sketch-based graph streaming [4]
has yielded Õ(n) semi-streaming algorithms [43] for computing the connectivity, bipartiteness
and minimum spanning trees of dynamic graphs.

3 Preliminaries

We will work in the streaming interactive proof (SIP) model first proposed by Cormode et
al. [23]. In this model, there are two players, the prover P and the verifier V. The input
consists of a stream τ of items from a universe U . Let f be a function mapping τ to any
finite set S. A k-message SIP for f works as follows:
1. V and P read the input stream and perform some computation on it.
2. V and P then exchange k messages, after which V either outputs a value in S ∪ {⊥},

where ⊥ denotes that V is not convinced that the prover followed the prescribed protocol.
V is randomized. There must exist a prover strategy that causes the verifier to output
f(τ) with probability 1− εc for some εc ≤ 1/3. Similarly, for all prover strategies, V must
output a value in {f(τ),⊥} with probability 1− εs for some εs ≤ 1/3. The values εc and
εs are respectively referred to as the completeness and soundness errors of the protocol.
The protocols we design here will have perfect completeness (εc = 0).1 We note that the
annotated stream model of Chakrabarti et al. [16] essentially corresponds to one-message
SIPs.2

1 The constant 1/3 appearing in the completeness and soundness requirements is chosen by convention
[6]. The constant 1/3 can be replaced with any other constant in (0, 1) without affecting the theory in
any way.

2 Technically, the annotated data streaming model allows the annotation to be interleaved with the stream
updates, while the SIP model does not allow the prover and verifier to communicate until after the
stream has passed. However, almost all known annotated data streaming protocols do not utilize the
ability to interleave the annotation with the stream, and hence are actually 1-message SIPs, but without
any interaction from the verifier to prover side.
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Input Model

We will assume the input is presented as stream updates to a vector. In general, each element
of this stream is a tuple (i, δ), where each i lies in a universe U of size u, and δ ∈ {+1,−1}.
The data stream implicitly defines a frequency vector a = (a1, . . . , au), where ai is the sum
of all δ values associated with i in the stream. The stream update (i, δ) is thus the implicit
update a[i]← a[i] + δ. In this paper, the stream consists of edges drawn from U = [n]× [n]
along with weight information as needed. As is standard, we assume that edge weights are
drawn from [nc] for some constant c. We allow edges to be inserted and deleted but the final
edge multiplicity is 0 or 1, and also mandate that the length of the stream is polynomial in n.
Finally, for weighted graphs, we further constrain that the edge weight updates be atomic,
i.e. that an edge along with its full weight be inserted or deleted at each step.

There are three parameters that control the complexity of our protocols: the vector
length u, the length of stream s and the maximum size of a coordinate M = maxiai. In the
protocols discussed in this paper M will always be upper bounded by some polynomial in
u, i.e. logM = O(log u). All algorithms we present use linear sketches, and so the stream
length s only affects verifier running time. In full version of the paper [1] we discuss how to
reduce the verifier update time to polylogarithmic on each step.

Costs

A SIP has two costs: the verifier space, and the total communication, expressed as the
number of bits exchanged between V and P. We will use the notation (A,B) to denote a SIP
with verifier space O(A) and total communication O(B). We will also consider the number of
rounds of communication between V and P. The basic versions of our protocols will require
logn rounds, and we later show how to improve this to a constant number of rounds while
maintaining the same space and similar communication cost otherwise.

4 Overview of our Techniques

For all the problems that we discuss the input is a data stream of edges of a graph where for
an edge e an element in the stream is of the form (i, j,∆). Now all our protocols proceed as
follows. We define a domain U of size u and a frequency vector a ∈ Zu whose entries are
indexed by elements of U . A particular protocol might define a number of such vectors, each
over a different domain. Each stream element will trigger a set of indices from U at which
to update a. For example in case of matching, we derive this constraint universe from the
LP certificate, whereas for counting triangles our universe is derived from all O(n3) possible
three-tuples of the vertices.

The key idea in all our protocols is that since we cannot maintain a explicitly due
to limited space, we instead maintain a linear sketch of a that varies depending on the
problem being solved. This sketch is computed as follows. We will design a polynomial
that acts as a low-degree extension of f over an extension field F and can be written as
p(x1, . . . , xd) =

∑
u∈U a[u]gu(x1, x2, . . . , xd). The crucial property of this polynomial is that

it is linear in the entries of a. This means that polynomial evaluation at any fixed point
r = (r1, r2, . . . , rd) is easy in a stream: when we see an update a[u]← a[u] + ∆, we merely
need to add the expression ∆gu(r) to a running tally. Our sketch will always be a polynomial
evaluation at a random point r. Once the stream has passed, V and the prover P will engage
in a conversation that might involve further sketches as well as further updates to the current
sketch. In our descriptions, we will use the imprecise but convenient shorthand “increment
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3:6 Streaming Verification of Graph Properties

a[u]” to mean “update a linear sketch of some low-degree extension of a function of a”. It
should be clear in each context what the specific function is.

As mentioned earlier, a single stream update of the form (i, j,∆) might trigger updates
in many entries of a, each of which will be indexed by a multidimensional vector. We will
use the wild-card symbol ’∗’ to indicate that all values of that coordinate in the index should
be considered. For example, suppose U ⊆ [n]× [n]× [n]. The instruction “update a[(i, ∗, j)]”
should be read as “update all entries a[t] where t ∈ {(i, s, j) | s ∈ [n], (i, s, j) ∈ U}”. We show
later how to do these updates implicitly, so that verifier time remains suitably bounded.

5 Some Useful Protocols

We will make use of two basic tools in our algorithms: Reed-Solomon fingerprints for testing
vector equality, and the streaming SumCheck protocol of Cormode et al. [23]. We summarize
the main properties of these protocols here: for more details, the reader is referred to the
original papers.

Multi-Set Equality (MSE)

We are given streaming updates to the entries of two vectors a,a′ ∈ Zu and wish to check
a = a′. Reed-Solomon fingerprinting is a standard technique to solve MSE using only
logarithmic space.

I Theorem 1 (MSE, [22]). Suppose we are given stream updates to two vectors a,a′ ∈ Zu
guaranteed to satisfy |ai|, |a′i| ≤M at the end of the data stream. Let t = max(M,u). There
is a streaming algorithm using O(log t) space, satisfying the following properties: (i) If a = a′,
then the streaming algorithm outputs 1 with probability 1. (ii) If a 6= a′, then the streaming
algorithm outputs 0 with probability at least 1− 1/t2.

The SumCheck Protocol

We are given streaming updates to a vector a ∈ Zu and a univariate polynomial h : Z→ Z.
The Sum Check problem (SumCheck) is to verify a claim that

∑
i h(ai) = K.

I Lemma 2 (SumCheck, [23]). There is a SIP to verify that
∑
i∈[u] h(ai) = K for

some claimed K. The total number of rounds is O(log u) and the cost of the protocol
is (log(u) log |F|, deg(h) log(u) log |F|).

Here are the two other protocols that act as building blocks for our graph verification
protocols.

Inverse Protocol (Finv)

Let a ∈ Zu be a (frequency) vector. The inverse frequency function F−1
k for a fixed k is the

number of elements of a that have frequency k: F−1
k (a) = |{i | ai = k}|. Let hk(i) = 1 for

i = k and 0 otherwise. We can then define F−1
k (a) =

∑
i hk(ai). Note that the domain of hk

is [M ] where M = maxi ai. We will refer to the problem of verifying a claimed value of F−1
k

as Finv. By using Lemma 2, there is a simple SIP for Finv. We restate the related results
here [23].

I Lemma 3 (Finv, [23]). Given stream updates to a vector a ∈ Zu such that maxi ai = M

and a fixed integer k there is a SIP to verify the claim F−1
k (a) = K with cost (log2 u,M log2 u)

in log u rounds.
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Remark 1. Note that the same result holds if instead of verifying an inverse query for
a single frequency k, we wish to verify it for a set of frequencies. Let S ⊂ [M ] and let
F−1
S = |{i|ai ∈ S}|. Then using the same idea as above, there is a SIP for verifying a claimed

value of F−1
S with costs given by Lemma 3.

Remark 2. Note that in the protocols presented in this paper later, the input to the Finv
is not the graph edges itself, but instead the Finv is applied to the derived stream updates
triggered by each input stream elements. As stated before, a single stream update of the
form (i, j,∆) might trigger updates in many entries of vector a, which is defined based on
the problem.

Subset Protocol

We now present a new protocol for a variant of the vector equality test described in Theorem 1.
While this problem has been studied in the annotation model, it requires space-communication
product of Ω(u2) communication in that setting.

I Lemma 4 (Subset). Let E ⊂ [u] be a set of elements, and let S ⊂ [u] be another set
owned by P. There is a SIP to verify a claim that S ⊂ E with cost (log2 u, (|S|+ log u) log u)
in log u rounds.

Proof. Consider a vector ā with length u, in which the verifier does the following updates:
for each element in set E, increment the corresponding value in vector ā by +1 and for each
element in set S, decrements the corresponding value in vector ā by −1. Let the vector
a ∈ {0, 1}u be the characteristic vector of E, and let a′ be the characteristic vector of S.
Thus, ā = a − a′. By applying F−1

−1 protocol on ā, verifier can determine if S ⊂ E or not.
Note that in vector ā, M = 1. Then the protocol cost follows by Lemma 3. J

6 SIP for MAX-MATCHING in Bipartite Graphs

We now present a SIP for maximum cardinality matching in bipartite graphs. The prover P
needs to generate two certificates: an actual matching, and a proof that this is optimal. By
König’s theorem [41], a bipartite graph has a maximum matching of size k if and only if it
has a minimum vertex cover of size k. Therefore, P’s proof consists of two parts:
(a) Send the claimed optimal matching M ⊂ E of size k.
(b) Send a vertex cover S ⊂ V of size k.
V has three tasks:
(i) Verify that M is a matching and that M ⊂ E.
(ii) Verify that S covers all edges in E.
(iii) Verify that |M | = |S|.
We describe protocols for first two tasks and the third task is trivially solvable by counting
the length of the streams and can be done in logn space. V will run the three protocols in
parallel.

Verifying a Matching

Verifying that M ⊂ E can be done by running the Subset protocol from Lemma 4 on E
and the claimed matching M . A set of edges M is a matching if each vertex has degree at
most 1 on the subgraph defined by M . Interpreted another way, let τM be the stream of
endpoints of edges in M . Then each item in τM must have frequency 1. This motivates the
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3:8 Streaming Verification of Graph Properties

following protocol, based on Theorem 1. V treats τM as a sequence of updates to a frequency
vector a ∈ Z|V | counting the number of occurrences of each vertex. V then asks P to send a
stream of all the vertices incident on edges of M as updates to a different frequency vector
a′. V then runs the MSE protocol to verify that these are the same.

Verifying that S is a Vertex Cover

The difficulty with verifying a vertex cover is that V no longer has streaming access to E.
However, we can once again reformulate the verification in terms of frequency vectors. S is a
vertex cover if and only if each edge of E is incident to some vertex in S. Let a,a′ ∈ Z(n

2)
be vectors indexed by U = {(i, j), i, j ∈ V, i < j}. On receiving the input stream edge
e = (i, j,∆), i < j, V increments a[(i, j)] by ∆.

For each vertex i ∈ S that P sends, we increment all entries a′[(i, ∗)] and a′[(∗, i)]. Now
it is easy to see that S is a vertex cover if and only there are no entries in a − a′ with value
1 (because these entries correspond to edges that have not been covered by a vertex in S).
This yields the following verification protocol.
1. V processes the input edge stream for the F−1

1 protocol, maintaining updates to a vector
a.

2. P sends over a claimed vertex cover S of size c∗ one vertex at a time. For each vertex
i ∈ S, V decrements all entries a[(i, ∗)] and a[(∗, i)] .

3. V runs Finv to verify that F−1
1 (a) = 0.

The bounds for this protocol follow from Lemmas 3, 4 and Theorem 1.

I Theorem 5. Given an input bipartite graph with n vertices, there exists a streaming
interactive protocol for verifying the maximum-matching with logn rounds of communication,
and cost (log2 n, (c∗ + logn) logn), where c∗ is the size of the optimal matching.

7 SIP for Maximum-Weight-Matching in General Graphs

We now turn to the most general setting: of maximum weight matching in general graphs
and the bipartite case is moved to the full version [1]. This of course subsumes the easier
case of maximum cardinality matching in general graphs, and while there is a slightly simpler
protocol for that problem based on the Tutte-Berge characterization of maximum cardinality
matchings [48, 12], we will not discuss it here.

We will use the odd-set based LP-duality characterization of maximum weight matchings
due to Cunningham and Marsh. Let O(V ) denote the set of all odd-cardinality subsets of V .
Let yi ∈ [nc] define non-negative integral weight on vertex vi, zU ∈ [nc] define a non-negative
integral weight on an odd-cardinality subset U ∈ O(V ), wij ∈ [nc] define the weight of an
edge e = (i, j) and c∗ ∈ [nc+1] be the weight of a maximum weight matching on G. We
define y and z to be dual feasible if yi + yj +

∑
U∈O(V )
i,j∈U

zU ≥ wi,j ,∀i, j.

A collection of sets is said to be laminar, if any two sets in the collection are either disjoint
or nested (one is contained in the other). Note that such a family must have size linear in the
size of the ground set. Standard LP-duality and the Cunningham-Marsh theorem state that:

I Theorem 6 ([25]). For every integral set of edge weights W , and choices of dual feasible
integral vectors y and z, c∗ ≤

∑
v∈V yv +

∑
U∈O(V ) zU

⌊ 1
2 |U |

⌋
. Furthermore, there exist

vectors y and z that are dual feasible such that {U : zU > 0} is laminar and for which the
above upper bound achieves equality.
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LI = 1 LI = 2

` = 1 ` = 2` = 3` = 2` = 1

Figure 1 A Laminar family.

We design a protocol that will verify that each dual edge constraint is satisfied by the
dual variables. The laminar family {U : zU > 0} can be viewed as a collection of nested
subsets (each of which we call a claw) that are disjoint from each other. Within each claw, a
set U can be described by giving each vertex v in order of increasing level `(v): the number
of sets v is contained in (see Figure 1).

The prover will describe a set U and its associated zU by the tuple (LI, `, rU , ∂U), where
1 ≤ LI ≤ n is the index of the claw U is contained in, ` = `(U), rU =

∑
U ′⊇U ′ zU ′ and

∂U = U \ ∪U ′′⊂UU
′′. For an edge e = (i, j) let re =

∑
i,j∈U,U∈O(V ) zU represent the weight

assigned to an edge by weight vector z on the laminar family. Any edge whose endpoints
lie in different claws will have re = 0. For a vertex v, let rv = minv∈U rU . For an edge
e = (v, w) whose endpoints lie in the same claw, it is easy to see that re = min(rv, rw),
or equivalently that re = rarg min(`(v),`(w)). For such an edge, let `e,↓ = min(`(u), `(v)) and
`e,↑ = max(`(u), `(v)). We will use LI(e) ∈ [n] to denote the index of the claw that the
endpoints of e belong to.

The Protocol

V prepares to make updates to a vector a with entries indexed by U = U1 ∪ U2. U1 consists
of all tuples of the form {(i, j, w, y, y′, LI, `, `′, r)} and U2 consists of all tuples of the form
{(i, j, w, y, y′, 0, 0, 0, 0)} where i < j, i, j, LI, `, `′ ∈ [n], y, y′, r, w ∈ [nc] and tuples in U1 must
satisfy 1) w ≤ y + y′ + r and 2) it is not simultaneously true that y + y′ ≥ w and r > 0.
Note that a ∈ Zu where u = O(n4c+5) and all weights are bounded by nc.
1. V prepares to process the stream for an F−1

5 query. When V sees an edge update of form
(e, we,∆), it updates all entries a[(e, we, ∗, ∗, ∗, ∗, ∗, ∗)].

2. P sends a list of vertices (i, yi) in order of increasing i. For each (i, yi), V increments by 1
the count of all entries a[(i, ∗, ∗, yi, ∗, ∗, ∗, ∗, ∗] and a[(∗, i, ∗, ∗, yi, ∗, ∗, ∗, ∗)] with indices
drawn from U1. Note that P only sends vertices with nonzero weight, but since they are
sent in increasing order, V can infer the missing entries and issue updates to a as above.
V also maintains the sum of all yi.

3. P sends the description of the laminar family in the form of tuples (LI, `, rU , ∂U), sorted
in lexicographic order by LI and then by `. V performs the following operations.
a. V increments all entries of the form (i, ∗, ∗, yi, ∗, 0, 0, 0, 0) or (∗, i, ∗, ∗, yi, 0, 0, 0, 0) by 2

to account for edges which are satisfied by only vector y.
b. V maintains the sum ΣR of all rU seen thus far. If the tuple is deepest level for a given

claw (easily verified by retaining a one-tuple lookahead) then V adds rU to a running
sum Σmax.

c. V verifies that the entries appear in sorted order and that rU is monotone increasing.
d. V updates the fingerprint structure from Theorem 1 with each vertex in ∂U .
e. For each v ∈ ∂U , V increments (subject to our two constraints on the universe) all

entries of a indexed by tuples of the form (e, we, ∗, ∗, LI, ∗, `, ∗) and all entries indexed
by tuples of the form (e, we, ∗, ∗, LI, `, ∗, rU ), where e is any edge containing v as an
endpoint.
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3:10 Streaming Verification of Graph Properties

f. V ensures all sets presented are odd by verifying that for each LI, all |∂U | except the
last one are even.

4. P sends V all vertices participating in the laminar family in ascending order of vertex
label. V verifies that the fingerprint constructed from this stream matches the fingerprint
constructed earlier, and hence that all the claws are disjoint.

5. V runs a verification protocol for F−1
5 (a) and accepts if F−1

5 (a) = m, returning Σr and
Σmax.

Define cs as the certificate size, which is upper bounded by the matching cardinality.
Then:

I Theorem 7. Given dynamic updates to a weighted graph on n vertices with all weights
bounded polynomially in n, there is a SIP with cost (log2 n, (cs + logn) logn), where cs is
the cardinality of maximum matching, that runs in logn rounds and verifies the size of a
maximum weight matching.

Proof. In parallel, V and P run protocols to verify a claimed matching as well as its optimality.
The correctness and resource bounds for verifying the matching follow from Section 6. We now
turn to verifying the optimality of this matching. The verifier must establish the following
facts:
(i) P provides a valid laminar family of odd sets.
(ii) The lower and upper bounds are equal.
(iii) All dual constraints are satisfied.

Since the verifier fingerprints the vertices in each claw and then asks P to replay all
vertices that participate in the laminar structure, it can verify that no vertex is repeated and
therefore that the family is indeed laminar. Each ∂U in a claw can be written as the difference
of two odd sets, except the deepest one (for which ∂U = U . Therefore, the cardinality of
each ∂U must be even, except for the deepest one. V verifies this claim, establishing that
the laminar family comprises odd sets.

Consider the term
∑
U zUb|U |/2c in the dual cost. Since each U is odd, this can be

rewritten as (1/2)(
∑
u zu|U | −

∑
U zU ). Consider the odd sets U0 ⊃ U1 ⊃ . . . ⊃ Ul in a

single claw. We have rUj =
∑
i≤j zUi , and therefore

∑
j rUj =

∑
j

∑
i≤j zUi . Reordering,

this is equal to
∑
i≤j
∑
j zUi

=
∑
i zUi
|Ui|. Also, rUl

=
∑
i zUi

. Summing over all claws,
Σr =

∑
U zU |U | and Σmax =

∑
U zU . Therefore,

∑
i yi + Σr − Σmax equals the cost of the

dual solution provided by P.
Finally we turn to validating the dual constraints. Consider an edge e = (i, j) whose

dual constraints are satisfied: i.e. P provides yi, yj and zU such that yi + yj + rij ≥ we.
Firstly, consider the case when rij > 0. In this case, the edge belongs to some claw LI.
Let its lower and upper endpoints vertex levels be s, t, corresponding to odd sets US , Ut.
Consider now the entry of a indexed by (e, yi, yj , LI, s, t, rij). This entry is updated when e
is initially encountered and ends up with a net count of 1 at the end of input processing.
It is incremented twice when P sends the (i, yi) and (j, yj). When P sends Us this entry is
incremented because rij = rUs = min(rUS

, rUt) and when P sends Ut this entry is incremented
because Ut has level t, returning a final count of 5. If rij = 0 (for example when the edge
crosses a claw), then the entry indexed by (e, we, yi, yj , 0, 0, 0, 0) is incremented when e is
read. It is not updated when P sends (i, yi) or (j, yj). When P sends the laminar family, V
increments this entry by 2 twice (one for each of i and j) because we know that yi + yj ≥ we.
In this case, the entry indexed by (i, j, we, yi, yj , 0, 0, 0, 0) will be exactly 5. Thus, for each
satisfied edge there is exactly one entry of a that has a count of 5.
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Conversely, suppose e is not satisfied by the dual constraints, for which a necessary
condition is that yi + yj < we. Firstly, note that any entry indexed by (i, j, we, ∗, ∗, 0, 0, 0, 0)
will receive only two increments: one from reading the edge, and another from one of yi and yj
but not both. Secondly, consider any entry with an index of the form (i, j, we, ∗, ∗, LI, ∗, ∗, ∗)
for LI > 0. Each such entry gets a single increment from reading e and two increments when
P sends (i, yi) and (j, yj). However, it will not receive an increment from the second of the
two updates in Step 3(e), because yi + yj + rij < we and so its final count will be at most
4. The complexity of the protocol follows from the complexity for Finv, Subset and the
matching verification described in Section 6. J

8 Streaming Interactive Proofs for Approximate Metric TSP

We can apply our protocols to another interesting graph streaming problem: that of computing
an approximation to the min cost travelling salesman tour. The input here is a weighted
complete graph of distances. We briefly recall the Christofides heuristic: compute a MST T

on the graph and add to T all edges of a min-weight perfect matching on the odd-degree
vertices of T. The classical Christofides result shows that the sum of the costs of this MST
and induced min-weight matching is a 3/2 approximation to the TSP cost. In the SIP setting,
we have protocols for both of these problems. The difficulty however is in the dependency:
the matching is built on the odd-degree vertices of the MST, and this would seem to require
the verifier to maintain much more states as in the streaming setting. We show that this is
not the case, and in fact we can obtain an efficient SIP for verifying a (3/2+ ε)-approximation
to the TSP. To summarize our SIP for verifying an approximate MST, here first we state
two main results which are used as subroutine: Connectivity and Bipartiteness.

For establishing the number of connected components in graph G, we devise SIPs to
verify spanning trees, as well as the disjointness and maximality of any claimed connected
components by prover. We show the results here and move full details of the protocols to
the full version [1].

I Lemma 8. Given an input graph G with n vertices, there exists a SIP protocol for
verifying the number of connected components Gi with (logn) rounds of communication, and
(log2 n, n logn) cost.

By applying the verification protocol for connectivity on both the input graph G and the
bipartite double cover [4] of G we obtain the following results for testing bipartiteness:

I Lemma 9. Given an input graph G with n vertices, there exists a SIP protocol for testing
bipartiteness on G with (logn) rounds of communication, and (log2 n, n logn) cost.

Now for MST protocol, we follow a reduction for stratifying graph edges by weight and
counting the number of connected components at each level introduced in [18] and later
generalized to streaming setting [4]. This finally yields us:

I Theorem 10. Given a weighted graph with n vertices, there is a SIP protocol for
verifying MST within (1 + ε)-approximation with (logn) rounds of communication, and
(log2 n, n log2 n/ε) cost.

We note here that while we could have used known parallel algorithms for connectivity and
MST combined with the protocol of Goldwasser et al. [30] and the technique of Cormode,
Thaler and Yi [23] to obtain similar results, we need an explicit and simpler protocol with
an output that we can fit into the overall TSP protocol.
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3:12 Streaming Verification of Graph Properties

What remains is how we verify a min-cost perfect matching on the odd-degree nodes of
the spanning tree. We employ the procedure described in Section 7 for maximum weight
matching along with a standard equivalence to min-cost perfect matching. In addition to
validating all the LP constraints, we also have to make sure that they pertain solely to
vertices in ODD. We do this as above by using the fingerprint for ODD to ensure that we
only count satisfied constraints on edges in ODD. We present the details of TSP in the full
version of the paper [1]. Finally, the approximate TSP cost is the sum of the min-weight
perfect matching on ODD and the MST cost on the graph.

I Theorem 11. Given a weighted complete graph with n vertices, in which the edge weights
satisfy the triangle inequality, there exists a streaming interactive protocol for verifying
optimal TSP cost within ( 3

2 + ε)-approximation with (logn) rounds of communication, and
(log2 n, n log2 n/ε) cost.
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