5 research outputs found

    Subjectively Interesting Subgroup Discovery on Real-valued Targets

    Get PDF
    Deriving insights from high-dimensional data is one of the core problems in data mining. The difficulty mainly stems from the fact that there are exponentially many variable combinations to potentially consider, and there are infinitely many if we consider weighted combinations, even for linear combinations. Hence, an obvious question is whether we can automate the search for interesting patterns and visualizations. In this paper, we consider the setting where a user wants to learn as efficiently as possible about real-valued attributes. For example, to understand the distribution of crime rates in different geographic areas in terms of other (numerical, ordinal and/or categorical) variables that describe the areas. We introduce a method to find subgroups in the data that are maximally informative (in the formal Information Theoretic sense) with respect to a single or set of real-valued target attributes. The subgroup descriptions are in terms of a succinct set of arbitrarily-typed other attributes. The approach is based on the Subjective Interestingness framework FORSIED to enable the use of prior knowledge when finding most informative non-redundant patterns, and hence the method also supports iterative data mining.Comment: 12 pages, 10 figures, 2 tables, conference submissio

    Learning subjectively interesting data representations

    Get PDF

    Interactive visual data exploration with subjective feedback : an information-theoretic approach

    Get PDF
    Visual exploration of high-dimensional real-valued datasets is a fundamental task in exploratory data analysis (EDA). Existing methods use predefined criteria to choose the representation of data. There is a lack of methods that (i) elicit from the user what she has learned from the data and (ii) show patterns that she does not know yet. We construct a theoretical model where identified patterns can be input as knowledge to the system. The knowledge syntax here is intuitive, such as "this set of points forms a cluster", and requires no knowledge of maths. This background knowledge is used to find a Maximum Entropy distribution of the data, after which the system provides the user data projections in which the data and the Maximum Entropy distribution differ the most, hence showing the user aspects of the data that are maximally informative given the user's current knowledge. We provide an open source EDA system with tailored interactive visualizations to demonstrate these concepts. We study the performance of the system and present use cases on both synthetic and real data. We find that the model and the prototype system allow the user to learn information efficiently from various data sources and the system works sufficiently fast in practice. We conclude that the information theoretic approach to exploratory data analysis where patterns observed by a user are formalized as constraints provides a principled, intuitive, and efficient basis for constructing an EDA system

    Robust subgroup discovery

    Get PDF
    We introduce the problem of robust subgroup discovery, i.e., finding a set of interpretable descriptions of subsets that 1) stand out with respect to one or more target attributes, 2) are statistically robust, and 3) non-redundant. Many attempts have been made to mine either locally robust subgroups or to tackle the pattern explosion, but we are the first to address both challenges at the same time from a global modelling perspective. First, we formulate the broad model class of subgroup lists, i.e., ordered sets of subgroups, for univariate and multivariate targets that can consist of nominal or numeric variables, and that includes traditional top-1 subgroup discovery in its definition. This novel model class allows us to formalise the problem of optimal robust subgroup discovery using the Minimum Description Length (MDL) principle, where we resort to optimal Normalised Maximum Likelihood and Bayesian encodings for nominal and numeric targets, respectively. Second, as finding optimal subgroup lists is NP-hard, we propose SSD++, a greedy heuristic that finds good subgroup lists and guarantees that the most significant subgroup found according to the MDL criterion is added in each iteration, which is shown to be equivalent to a Bayesian one-sample proportions, multinomial, or t-test between the subgroup and dataset marginal target distributions plus a multiple hypothesis testing penalty. We empirically show on 54 datasets that SSD++ outperforms previous subgroup set discovery methods in terms of quality and subgroup list size.Comment: For associated code, see https://github.com/HMProenca/RuleList ; submitted to Data Mining and Knowledge Discovery Journa

    Mining and modeling graphs using patterns and priors

    No full text
    corecore