962 research outputs found

    نقش شبیه سازها در رژیونال آنستزی واقدامات مداخله ای درد

    Get PDF
    اين مقاله به معرفي شبيه سازهاي پزشكي در آموزش رژيونال آنستزي و اقدامات مداخلهاي درد و روش استفاده از آن درمحي طهاي مجازي مي پردازد. ساختمانهاي طراحي شده به گونهاي پردازش شدهاند كه بازتابي واقعي از آناتومي بدن انسان باشند. سهم اصلي اين شبيهسازها، تقليد انتقال ايمپالس الكتريكي از طريق بافت نرم و طناب نخاعي است. استفاده از شبيهسازها سبب تعاملي قابل قبول، تجسم و احساسي اطمينان بخش به پزشك ميگردد. استفاده از شبيهسازها توسط دستياران تخصصي ارزيابي و نتايج رضايتبخشي داشته است. بعنوان مثال، سناريوي بلوك اندام تحتاني و شبكه سلياك توضيح داده ميشود

    Effectiveness analysis of traditional and mixed reality simulations in medical training: a methodological approach for the assessment of stress, cognitive load and performance

    Get PDF
    La simulazione nell'educazione in medicina è considerata un metodo di formazione in grado di migliorare le competenze cliniche e il comportamento degli operatori sanitari e, di conseguenza, la qualità dell'assistenza per il paziente. Inoltre, l'utilizzo di nuove tecnologie come la Realtà Aumentata, offre ai discenti l'opportunità di esercitarsi in un ambiente immersivo. L'opportunità di sperimentare questo innovativo metodo didattico è efficace non solo nel ridurre il rischio di errori e approcci sbagliati ma anche nel provare ansia e stress simili a quelli avvertiti nella pratica reale. La sfida sta nel trovare il giusto equilibrio. I discenti devono infatti provare lo stesso stress che avvertirebbero lavorando ad un vero caso clinico ma, allo stesso tempo, devono essere controllati ed evitati possibili disturbi da stress post-traumatico, verificabili soprattutto nel campo della gestione delle emergenze (pronto soccorso). Inoltre, è fondamentale anche ottenere alte prestazioni e un apprendimento adeguato, evitando sovraccarichi cognitivi che influenzerebbero negativamente l’apprendimento. Tuttavia, ad oggi mancano ancora studi approfonditi sull'impatto che le simulazioni mediche hanno su stress, frustrazione, carico cognitivo e apprendimento dei discenti. Per questo motivo, l'obiettivo principale di questo studio è valutare l'efficacia del training tramite simulazione, analizzando prestazioni, ansia, stress e carico cognitivo durante simulazioni cliniche tradizionali (con manichino) ed avanzate (in realtà mista). A questo scopo, è stato sviluppato un approccio metodologico strutturato e completo per valutare le prestazioni, le condizioni emotive e cognitive degli studenti. Questo comprende l'acquisizione e l'analisi di parametri psicologici (valutazione soggettiva), segnali biometrici (valutazione oggettiva) e prestazioni. Questa indagine consente di evidenziare i punti deboli delle simulazioni e offre l'opportunità di definire utili linee guida per la riprogettazione e l'ottimizzazione delle stesse. La metodologia è stata applicata su tre casi studio: il primo si riferisce a simulazioni ad alta fedeltà per la gestione del paziente in pronto soccorso, il secondo si riferisce a simulazioni a bassa fedeltà per la pratica della rachicentesi. Per il terzo caso studio, è stato progettato e sviluppato un prototipo di simulatore in realtà mista per la rachicentesi, con l'obiettivo di migliorare il senso di realismo e immersione della simulazione a bassa fedeltà. 148 studenti sono stati coinvolti nei primi due casi studio osservazionali, mentre soltanto 36 studenti hanno preso parte allo studio pilota sulla simulazione in realtà mista. In tutti i casi di studio sono state effettuate analisi descrittive delle prestazioni, degli stati cognitivi ed emotivi. Per le simulazioni ad alta e bassa fedeltà, le analisi di regressione statistica hanno evidenziato quali variabili influenzano le prestazioni, lo stress e il carico cognitivo degli studenti. Per lo studio pilota sulla realtà mista, l'analisi della user experience ha sottolineato i limiti tecnici della nuova tecnologia.Simulation in medical education is considered a training method capable of improving clinical competence and practitioners’ behaviour, and, consequently quality of care and patient’s outcome. Moreover, the use of new technologies, such as augmented reality, offers to the learners the opportunity to engage themselves in an immersive environment. The opportunity to experiment with this innovative instructional method is effective not only in reducing the risk of errors and wrong approaches but also in experiencing anxiety and stress as in real practice. The challenge is to find the right stress balance: learners have to feel as if they were practicing in the real stressful clinical case, and, at the same time, post-traumatic stress disorders, verifiable especially in the emergency field, must be controlled and avoided. Moreover, it is fundamental also to obtain high performance and learning, thus avoiding cognitive overloads. However, extensive researches about the impact of medical simulations on students’ stress, frustration, cognitive load, and learning are still lacking. For this reason, the main objective of this study is to assess simulation training effectiveness by analysing performance, anxiety, stress, and cognitive load during traditional (with manikin) and advanced (with augmented reality) clinical simulations. A structured and comprehensive methodological approach to assess performance, emotional and cognitive conditions of students has been developed. It includes the acquisition and analysis of psychological parameters (subjective assessment), biometric signals (objective assessment), and task performance. This investigation allows to point out simulations’ weaknesses and offers the opportunity to define useful optimisation guidelines. The methodology has been applied to three case studies: the first one refers to high-fidelity simulations, for the patient management in the emergency room, the second one refers to low-fidelity simulation for rachicentesis. For the third case study, a prototype of a mixed reality simulator for the rachicentesis practice has been designed and developed aiming at improving the sense of realism and immersion of the low-fidelity simulation. While 148 students have been enrolled in the first two case studies, only 36 students have taken part in the pilot study about mixed reality simulation. Descriptive analysis about performance, cognitive and emotional states have been done in all the case studies. For the high-fidelity and low-fidelity simulations, the statistical regression analysis has pointed out which variables affect students’ performance, stress, and cognitive load. For the pilot study about mixed reality, the user experience analysis highlighted the technical limitations of the new technology

    A comprehensive description of the competencies required for the performance of an ultrasound-guided axillary brachial plexus blockade

    Get PDF
    We addressed four research questions, each relating to the training and assessment of the competencies associated with the performance of ultrasound-guided axillary brachial plexus blockade (USgABPB). These were: (i) What are the most important determinants of learning of USgABPB? (ii) What is USgABPB? What are the errors most likely to occur when trainees learn to perform this procedure? (iii) How should end-user input be applied to the development of a novel USgABPB simulator? (iv) Does structured simulation based training influence novice learning of the procedure positively? We demonstrated that the most important determinants of learning USgABPB are: (a) Access to a formal structured training programme. (b) Frequent exposure to clinical learning opportunity in an appropriate setting (c) A clinical learning opporunity requires an appropriate patient, trainee and teacher being present at the same time, in an appropriate environment. We carried out a comprehensive description of the procedure. We performed a formal task analysis of USgABPB, identifying (i) 256 specific tasks associated with the safe and effective performance of the procedure, and (ii) the 20 most critical errors likely to occur in this setting. We described a methodology for this and collected data based on detailed, sequential evaluation of prototypes by trainees in anaesthesia. We carried out a pilot randomised control trial assessing the effectiveness of a USgABPB simulator during its development. Our data did not enable us to draw a reliable conclusion to this question; the trail did provide important new learning (as a pilot) to inform future investigation of this question. We believe that the ultimate goal of designing effective simulation-based training and assessment of ultrasound-guided regional anaesthesia is closer to realisation as a result of this work. It remains to be proven if this approach will have a positive impact on procedural performance, and more importantly improve patient outcomes

    A comprehensive method to design and assess mixed reality simulations

    Get PDF
    AbstractThe scientific literature highlights how Mixed Reality (MR) simulations allow obtaining several benefits in healthcare education. Simulation-based training, boosted by MR, offers an exciting and immersive learning experience that helps health professionals to acquire knowledge and skills, without exposing patients to unnecessary risks. High engagement, informational overload, and unfamiliarity with virtual elements could expose students to cognitive overload and acute stress. The implementation of effective simulation design strategies able to preserve the psychological safety of learners and the investigation of the impacts and effects of simulations are two open challenges to be faced. In this context, the present study proposes a method to design a medical simulation and evaluate its effectiveness, with the final aim to achieve the learning outcomes and do not compromise the students' psychological safety. The method has been applied in the design and development of an MR application to simulate the rachicentesis procedure for diagnostic purposes in adults. The MR application has been tested by involving twenty students of the 6th year of Medicine and Surgery of Università Politecnica delle Marche. Multiple measurement techniques such as self-report, physiological indices, and observer ratings of performance, cognitive and emotional states of learners have been implemented to improve the rigour of the study. Also, a user-experience analysis has been accomplished to discriminate between two different devices: Vox Gear Plus® and Microsoft Hololens®. To compare the results with a reference, students performed the simulation also without using the MR application. The use of MR resulted in increased stress measured by physiological parameters without a high increase in perceived workload. It satisfies the objective to enhance the realism of the simulation without generating cognitive overload, which favours productive learning. The user experience (UX) has found greater benefits in involvement, immersion, and realism; however, it has emphasized the technological limitations of devices such as obstruction, loss of depth (Vox Gear Plus), and narrow FOV (Microsoft Hololens)

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Ultrasound Guidance in Perioperative Care

    Get PDF

    A Virtual University Infrastructure For Orthopaedic Surgical Training With Integrated Simulation

    No full text
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed

    Validation and determination of the influence of a virtual simulator on the acquisition of ultrasound skills and comparison of learning curves of those using simulation- supported training with a conventional training approach

    Get PDF
    Delivery of ultrasound training remains a challenge. This thesis presents a series of projects that investigated a new approach in acquiring transvaginal ultrasound skills (TVS) in obstetrics and gynaecology using a novel virtual reality simulator (ScanTrainer®, Medaphor plc, Cardiff, Wales). Aims and objectives:(1) To evaluate the validity and reliability of the simulator,(2)to assess the learning curves of trainees’ competence in performing TVS, and (3) to define potential benefits and limitations of simulation training from the trainee’s perspective. These were achieved by undertaking the following studies (1) face, content and construct validity of the simulator, (2) reliability of scoring systems developed for the assessment of ultrasound in obstetrics and gynaecology, (3) validation of simulation scoring system against experts, and (4) evaluating the role of simulation on TVUS skill acquisition (learning curve) in the clinical training environment. Methods: The projects included observational, comparative and semi-qualitative studies and randomised controlled trial (RCT) comparing conventional with simulation supported training. Results: (1) Face and content validity study demonstrated high acceptability of the simulator. (2) Construct validity study showed significant differences between inovices and experts’ performances, p0.75). (4) In the RCT, the overall analysis according to the randomisation arm showed no statistically significant difference between the intervention and control groups. (5) Fifty-seven percent of trainees agreed that simulation was a flexible learning platform in practicing TVUS as an adjunct to clinical training. Conclusion: The ScanTrainer® simulator has high face, content and constructs' validity that support the research hypotheses. It also has a potential role in the assessment of clinical skills. However, the impact of simulation on the learning curves requires further evaluation

    Computer Assisted Learning in Obstetric Ultrasound

    Get PDF
    Ultrasound is a dynamic, real-time imaging modality that is widely used in clinical obstetrics. Simulation has been proposed as a training method, but how learners performance translates from the simulator to the clinic is poorly understood. Widely accepted, validated and objective measures of ultrasound competency have not been established for clinical practice. These are important because previous works have noted that some individuals do not achieve expert-like performance despite daily usage of obstetric ultrasound. Underlying foundation training in ultrasound was thought to be sub-optimal in these cases. Given the widespread use of ultrasound and the importance of accurately estimating the fetal weight for the management of high-risk pregnancies and the potential morbidity associated with iatrogenic prematurity or unrecognised growth restriction, reproducible skill minimising variability is of great importance. In this thesis, I will investigate two methods with the aim of improving training in obstetric ultrasound. The initial work will focus on quantifying operational performance. I collect data in the simulated and clinical environment to compare operator performance between novice and expert performance. In the later work I developed a mixed reality trainer to enhance trainee’s visualisation of how the ultrasound beam interacts with the anatomy being scanned. Mixed reality devices offer potential for trainees because they combine real-world items with items in the virtual world. In the training environment this allows for instructions, 3-dimensional visualisations or workflow instructions to be overlaid on physical models. The work is important because the techniques developed for the qualification of operator skill could be combined in future work with a training programme designed around educational theory to give trainee sonographers consistent feedback and instruction throughout their training
    corecore