5 research outputs found

    Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

    Get PDF
    A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of n points in the Euclidean plane (R^2) and the goal is to find an rectilinear Steiner tree for T of smallest possible total length. A rectilinear Steiner arborecence for a set T of points and root r in T is a rectilinear Steiner tree S for T such that the path in S from r to any point t in T is a shortest path. In the Rectilinear Steiner Arborescense problem the input is a set T of n points in R^2, and a root r in T, the task is to find an rectilinear Steiner arborescence for T, rooted at r of smallest possible total length. In this paper, we give the first subexponential time algorithms for both problems. Our algorithms are deterministic and run in 2^{O(sqrt{n}log n)} time

    Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

    Get PDF
    A rectilinear Steiner tree for a set K of points in the plane is a tree that connects k using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K={z1,z2,…, zn} of n points in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for k of smallest possible total length. A rectilinear Steiner arborescence for a set k of points and a root r ∈ K is a rectilinear Steiner tree T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K, and the task is to find a rectilinear Steiner arborescence for K, rooted at r of smallest possible total length. In this article, we design deterministic algorithms for these problems that run in 2O(√ nlog n) time

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where hnh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table

    Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions)

    Get PDF
    (see paper for full abstract) Given a vertex-weighted directed graph G=(V,E)G=(V,E) and a set T={t1,t2,tk}T=\{t_1, t_2, \ldots t_k\} of kk terminals, the objective of the SCSS problem is to find a vertex set HVH\subseteq V of minimum weight such that G[H]G[H] contains a titjt_{i}\rightarrow t_j path for each iji\neq j. The problem is NP-hard, but Feldman and Ruhl [FOCS '99; SICOMP '06] gave a novel nO(k)n^{O(k)} algorithm for the SCSS problem, where nn is the number of vertices in the graph and kk is the number of terminals. We explore how much easier the problem becomes on planar directed graphs: - Our main algorithmic result is a 2O(k)nO(k)2^{O(k)}\cdot n^{O(\sqrt{k})} algorithm for planar SCSS, which is an improvement of a factor of O(k)O(\sqrt{k}) in the exponent over the algorithm of Feldman and Ruhl. - Our main hardness result is a matching lower bound for our algorithm: we show that planar SCSS does not have an f(k)no(k)f(k)\cdot n^{o(\sqrt{k})} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. The following additional results put our upper and lower bounds in context: - In general graphs, we cannot hope for such a dramatic improvement over the nO(k)n^{O(k)} algorithm of Feldman and Ruhl: assuming ETH, SCSS in general graphs does not have an f(k)no(k/logk)f(k)\cdot n^{o(k/\log k)} algorithm for any computable function ff. - Feldman and Ruhl generalized their nO(k)n^{O(k)} algorithm to the more general Directed Steiner Network (DSN) problem; here the task is to find a subgraph of minimum weight such that for every source sis_i there is a path to the corresponding terminal tit_i. We show that, assuming ETH, there is no f(k)no(k)f(k)\cdot n^{o(k)} time algorithm for DSN on acyclic planar graphs.Comment: To appear in SICOMP. Extended abstract in SODA 2014. This version has a new author (Andreas Emil Feldmann), and the algorithm is faster and considerably simplified as compared to conference versio
    corecore