82 research outputs found

    A permutation coding and OFDM-MFSK modulation scheme for power-line communication

    Get PDF
    Power-line communication offers a networking communication over existing power lines and finds important applications in smart grid, home and business automation and automatic meter reading. However, the power-line channel is one of the harshest known communication channels currently in use and it requires robust forward error correction techniques. Powerful decoding algorithms tend to be complex and increase latency while robust modulation schemes offer lower data rates and reduced spectral efficiency. The presented research is a frequency domain error-correcting scheme that extends the existing narrowband power-line communication forward error correction concatenated scheme of Reed-Solomon and Convolutional codes in the OFDM framework. It introduces a combination of M-ary phase shift keying as an OFDM subcarrier modulation scheme and a permutation sequence encoding between subcarriers to combat narrowband interference and carrier frequency offsets by introducing frequency diversity. The scheme offers improved BER performance over OFDM and OFDM-MFSK in high narrowband disturbance and impulse noise probability channels and improves the performance of OFDM in the presence of carrier frequency offsets

    Performance evaluation of WiMAX/IEEE 802.16 OFDM physical layer

    Get PDF
    Fixed Broadband Wireless Access (BWA) is a promising technology which can offer high speed voice, video and data service up to the customer end. Due to the absence of any standard specification, earlier BWA systems were based on proprietary standard. IEEE 802.16 WirelessMAN standard specifies a Medium Access Control (MAC) layer and a set of PHY layers to provide fixed and mobile Broadband Wireless Access (BWA) in broad range of frequencies. The WiMAX forum has adopted IEEE 802.16 OFDM PHY layer for the equipment manufacturer due to its robust performance in multipath environment. The thesis investigates the simulation performance of IEEE 802.16 OFDM PHY layer. The Stanford University Interim (SUI) channel models are selected for the wireless channel in the simulation. The evaluation was done in simulation developed in MATLAB. Perfect channel estimation is assumed

    Channel Coding in Molecular Communication

    Get PDF
    This dissertation establishes and analyzes a complete molecular transmission system from a communication engineering perspective. Its focus is on diffusion-based molecular communication in an unbounded three-dimensional fluid medium. As a basis for the investigation of transmission algorithms, an equivalent discrete-time channel model (EDTCM) is developed and the characterization of the channel is described by an analytical derivation, a random walk based simulation, a trained artificial neural network (ANN), and a proof of concept testbed setup. The investigated transmission algorithms cover modulation schemes at the transmitter side, as well as channel equalizers and detectors at the receiver side. In addition to the evaluation of state-of-the-art techniques and the introduction of orthogonal frequency-division multiplexing (OFDM), the novel variable concentration shift keying (VCSK) modulation adapted to the diffusion-based transmission channel, the lowcomplex adaptive threshold detector (ATD) working without explicit channel knowledge, the low-complex soft-output piecewise linear detector (PLD), and the optimal a posteriori probability (APP) detector are of particular importance and treated. To improve the error-prone information transmission, block codes, convolutional codes, line codes, spreading codes and spatial codes are investigated. The analysis is carried out under various approaches of normalization and gains or losses compared to the uncoded transmission are highlighted. In addition to state-of-the-art forward error correction (FEC) codes, novel line codes adapted to the error statistics of the diffusion-based channel are proposed. Moreover, the turbo principle is introduced into the field of molecular communication, where extrinsic information is exchanged iteratively between detector and decoder. By means of an extrinsic information transfer (EXIT) chart analysis, the potential of the iterative processing is shown and the communication channel capacity is computed, which represents the theoretical performance limit for the system under investigation. In addition, the construction of an irregular convolutional code (IRCC) using the EXIT chart is presented and its performance capability is demonstrated. For the evaluation of all considered transmission algorithms the bit error rate (BER) performance is chosen. The BER is determined by means of Monte Carlo simulations and for some algorithms by theoretical derivation

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Advanced OFDM systems for terrestrial multimedia links

    Get PDF
    Recently, there has been considerable discussion about new wireless technologies and standards able to achieve high data rates. Due to the recent advances of digital signal processing and Very Large Scale Integration (VLSI) technologies, the initial obstacles encountered for the implementation of Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes, such as massive complex multiplications and high speed memory accesses, do not exist anymore. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard had proved to offer excellent performance for the broadcasting of multimedia streams with bitrates over ten megabits per second in difficult terrestrial propagation channels, for fixed and portable applications. Nevertheless, for mobile scenarios, improving the receiver design is not enough to achieve error-free transmission especially in presence of deep shadow and multipath fading and some modifications of the standard can be envisaged. To address long and medium range applications like live mobile wireless television production, some further modifications are required to adapt the modulated bandwidth and fully exploit channels up to 24MHz wide. For these reasons, an extended OFDM system is proposed that offers variable bandwidth, improved protection to shadow and multipath fading and enhanced robustness thanks to the insertion of deep time-interleaving coupled with a powerful turbo codes concatenated error correction scheme. The system parameters and the receiver architecture have been described in C++ and verified with extensive simulations. In particular, the study of the receiver algorithms was aimed to achieve the optimal tradeoff between performances and complexity. Moreover, the modulation/demodulation chain has been implemented in VHDL and a prototype system has been manufactured. Ongoing field trials are demonstrating the ability of the proposed system to successfully overcome the impairments due to mobile terrestrial channels, like multipath and shadow fading. For short range applications, Time-Division Multiplexing (TDM) is an efficient way to share the radio resource between multiple terminals. The main modulation parameters for a TDM system are discussed and it is shown that the 802.16a TDM OFDM physical layer fulfills the application requirements; some practical examples are given. A pre-distortion method is proposed that exploit the reciprocity of the radio channel to perform a partial channel inversion achieving improved performances with no modifications of existing receivers

    OFDM techniques for multimedia data transmission

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is an efficient parallel data transmission scheme that has relatively recently become popular in both wired and wireless communication systems for the transmission of multimedia data. OFDM can be found at the core of well known systems such as digital television/radio broadcasting, ADSL internet and wireless LANs. Research into the OFDM field continually looks at different techniques to attempt to make this type of transmission more efficient. More recent works in this area have considered the benefits of using wavelet transforms in place of the Fourier transforms traditionally used in OFDM systems and other works have looked at data compression as a method of increasing throughput in these types of transmission systems. The work presented in this thesis considers the transmission of image and video data in traditional OFDM transmission and discusses the strengths and weaknesses of this method. This thesis also proposes a new type of OFDM system that combines transmission and data compression into one block. By merging these two processes into one the complexity of the system is reduced, therefore promising to increase system efficiency. The results presented in this thesis show the novel compressive OFDM method performs well in channels with a low signal-to-noise ratio. Comparisons with traditional OFDM with lossy compression show a large improvement in the quality of the data received with the new system when used in these noisy channel environments. The results also show superior results are obtained when transmitting image and video data using the new method, the high correlative properties of images are ideal for effective transmission using the new technique. The new transmission technique proposed in this thesis also gives good results when considering computation time. When compared to MATLAB simulations of a traditional DFT-based OFDM system with a separate compression block, the proposed transmission method was able to reduce the computation time by between a half to three-quarters. This decrease in computational complexity also contributes to transmission efficiency when considering the new method
    • …
    corecore