391 research outputs found

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    A general approach to backwards-compatible delivery of high dynamic range images and video

    Full text link

    The Space and Earth Science Data Compression Workshop

    Get PDF
    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system

    An overview of JPEG 2000

    Get PDF
    JPEG-2000 is an emerging standard for still image compression. This paper provides a brief history of the JPEG-2000 standardization process, an overview of the standard, and some description of the capabilities provided by the standard. Part I of the JPEG-2000 standard specifies the minimum compliant decoder, while Part II describes optional, value-added extensions. Although the standard specifies only the decoder and bitstream syntax, in this paper we describe JPEG-2000 from the point of view of encoding. We take this approach, as we believe it is more amenable to a compact description more easily understood by most readers.

    The 1993 Space and Earth Science Data Compression Workshop

    Get PDF
    The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed

    Approximate trigonometric expansions with applications to signal decomposition and coding

    Get PDF
    Signal representation and data coding for multi-dimensional signals have recently received considerable attention due to their importance to several modern technologies. Many useful contributions have been reported that employ wavelets and transform methods. For signal representation, it is always desired that a signal be represented using minimum number of parameters. The transform efficiency and ease of its implementation are to a large extent mutually incompatible. If a stationary process is not periodic, then the coefficients of its Fourier expansion are not uncorrelated. With the exception of periodic signals the expansion of such a process as a superposition of exponentials, particularly in the study of linear systems, needs no elaboration. In this research, stationary and non-periodic signals are represented using approximate trigonometric expansions. These expansions have a user-defined parameter which can be used for making the transformation a signal decomposition tool. It is shown that fast implementation of these expansions is possible using wavelets. These approximate trigonometric expansions are applied to multidimensional signals in a constrained environment where dominant coefficients of the expansion are retained and insignificant ones are set to zero. The signal is then reconstructed using these limited set of coefficients, thus leading to compression. Sample results for representing multidimensional signals are given to illustrate the efficiency of the proposed method. It is verified that for a given number of coefficients, the proposed technique yields higher signal to noise ratio than conventional techniques employing the discrete cosine transform technique

    Optimal exposure compression for high dynamic range content

    Get PDF
    High dynamic range (HDR) imaging has become one of the foremost imaging methods capable of capturing and displaying the full range of lighting perceived by the human visual system in the real world. A number of HDR compression methods for both images and video have been developed to handle HDR data, but none of them has yet been adopted as the method of choice. In particular, the backwards-compatible methods that always maintain a stream/image that allow part of the content to be viewed on conventional displays make use of tone mapping operators which were developed to view HDR images on traditional displays. There are a large number of tone mappers, none of which is considered the best as the images produced could be deemed subjective. This work presents an alternative to tone mapping-based HDR content compression by identifying a single exposure that can reproduce the most information from the original HDR image. This single exposure can be adapted to fit within the bit depth of any traditional encoder. Any additional information that may be lost is stored as a residual. Results demonstrate quality is maintained as well, and better, than other traditional methods. Furthermore, the presented method is backwards-compatible, straightforward to implement, fast and does not require choosing tone mappers or settings

    Perceptual compression of magnitude-detected synthetic aperture radar imagery

    Get PDF
    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp

    The JPEG2000 still image compression standard

    Get PDF
    The development of standards (emerging and established) by the International Organization for Standardization (ISO), the International Telecommunications Union (ITU), and the International Electrotechnical Commission (IEC) for audio, image, and video, for both transmission and storage, has led to worldwide activity in developing hardware and software systems and products applicable to a number of diverse disciplines [7], [22], [23], [55], [56], [73]. Although the standards implicitly address the basic encoding operations, there is freedom and flexibility in the actual design and development of devices. This is because only the syntax and semantics of the bit stream for decoding are specified by standards, their main objective being the compatibility and interoperability among the systems (hardware/software) manufactured by different companies. There is, thus, much room for innovation and ingenuity. Since the mid 1980s, members from both the ITU and the ISO have been working together to establish a joint international standard for the compression of grayscale and color still images. This effort has been known as JPEG, the Join
    corecore