386 research outputs found

    Subband adaptive filtering for acoustic echo control using allpass polyphase IIR filterbanks

    No full text
    Published versio

    Performance limitations of subband adaptive filters

    Get PDF
    In this paper, we evaluate the performance limitations of subband adaptive filters in terms of achievable final error terms. The limiting factors are the aliasing level in the subbands, which poses a distortion and thus presents a lower bound for the minimum mean squared error in each subband, and the distortion function of the overall filter bank, which in a system identification setup restricts the accuracy of the equivalent fullband model. Using a generalized DFT modulated filter bank for the subband decomposition, both errors can be stated in terms of the underlying prototype filter. If a source model for coloured input signals is available, it is also possible to calculate the power spectral densities in both subbands and reconstructed fullband. The predicted limits of error quantities compare favourably with simulations presented

    On the optimality of subband adaptive filters

    Get PDF
    In this paper, we derive a polyphase analysis to determine the optimum filters in a subband adaptive filter (SAF) system. The structure of this optimum solution deviates from the standard SAF approach and presents its best possible solution only as an approximation. Besides this new insight into SAF error sources, the discussed analysis allows to calculate the optimum subband responses and the standard SAF approximation. Examples demonstrating the validity of our analysis and its use for determining SAF errors are presented

    Adaptive frequency domain identification for ANC systems using non-stationary signals

    Get PDF
    The problem of identification of secondary path in active noise control applications is dealt with fundamentally using time-domain adaptive filters. The use of adaptive frequency domain subband identification as an alternative has some significant advantages which are overlooked in such applications. In this paper two different delayless subband adaptive algorithms for identification of an unknown secondary path in an ANC framework are utilized and compared. Despite of reduced computational complexity and increase convergence rate this approach allows us to use non-stationary audio signals as the excitation input to avoid injection of annoying white noise. For this purpose two non-stationary music and speech signals are used for identification. The performances of the algorithms are measured in terms of minimum mean square error and convergence speed. The results are also compared to a fullband algorithm for the same scenario. The proposed delayless algorithms have a closed loop structure with DFT filterbanks as the analysis filter. To eliminate the delay in the signal path two different weights transformation schemes are compared

    Efficient time delay estimation and compensation applied to the cancellation of acoustic echo

    Get PDF
    The system identification problem is notably dealt with using adaptive filtering approaches. In many applications the unknown system response consists of an initial sequence of zero-valued coefficients that precedes the active part of the response. The presence of these coefficients introduces a flat delay in the incoming signals which can take significantly large values. When most adaptive approaches attempt to model such a system, the presence of flat delay impairs their operation and performance. The approach introduced in this thesis aims to model the flat delay and active part of the unknown system separately. An efficient system for time delay estimation (TDE) is introduced to estimate the flat delay of an unknown system. The estimated delay is then compensated within the adaptive system thus allowing the latter to cover the active part ofthe unknown system. The proposed system is applied to the Acoustic Echo Cancellation (ABC) problem

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis
    • …
    corecore