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 Proc. IX European Signal Processing Conference (EUSIPCO-98),
Sept. 1998, Rhodes, Greece, pp. 1245-1248PERFORMANCE LIMITATIONS OF SUBBANDADAPTIVE FILTERSS. Wei�, R.W. StewartSignal Processing Division, Dept. of EEEUniversity of StrathclydeGlasgow G1 1XW, Scotlandfweiss,bobg@spd.eee.strath.ac.uk A. Stenger, R. RabensteinLehrstuhl f�ur NachrichtentechnikUniversit�at Erlangen-N�urnbergErlangen, Germanyfstenger,rabeg@nt.e-technik.uni-erlangen.deABSTRACTIn this paper, we evaluate the performance limitationsof subband adaptive �lters in terms of achievable �nalerror terms. The limiting factors are the aliasing level inthe subbands, which poses a distortion and thus presentsa lower bound for the minimum mean squared error ineach subband, and the distortion function of the over-all �lter bank, which in a system identi�cation setuprestricts the accuracy of the equivalent fullband model.Using a generalized DFT modulated �lter bank for thesubband decomposition, both errors can be stated interms of the underlying prototype �lter. If a sourcemodel for coloured input signals is available, it is alsopossible to calculate the power spectral densities in bothsubbands and reconstructed fullband. The predictedlimits of error quantities compare favourably with sim-ulations presented.1 INTRODUCTIONAdaptive �ltering in subbands is widely used for prob-lems where an adaptive system is required to identifyvery long impulse responses, since it enables to pro-cess in decimated subbands with decreased complexity[4, 2], which is e.g. exploited in acoustic echo cancella-
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synthesisFig. 1: Subband adaptive �lter structure in a systemidenti�cation setup.tion. Performance characteristics of subband adaptive

�lters (SAF) as shown in Fig. 1 due to the subbandsplitting have mainly been addressed in terms of con-vergence speed. Investigations into the achievable �nalconvergence errors are mainly made in terms of trunca-tion errors and non-causality [4, 9], while there are littlehints for the inuence of distortions introduced by the�lter banks [5, 8].In the following, we discuss convergence error limitsof subband adaptive �ltering in dependency on a gen-eralized DFT (GDFT) modulated �lter bank used forsubband decomposition, which will be briey reviewedin Sec. 2. In Sec. 3, we then introduce a method toobtain the power spectral density (PSD) of the alias-ing terms, which sets the lower limit for the adaptationerror. This limit can be approximated by a stopband at-tenuation measure of the prototype �lter. A second partthen discusses the error inherent in the fullband modelof the adapted subband �lters. Simulations supportingour results are presented in Sec. 4.2 GDFT MODULATED FILTER BANKS2.1 ModulationA general structure of a K band �lter bank with deci-mation by a factor N � K is shown in Fig. 2. The anal-ysis �lters hk[n] are derived from a real valued lowpassprototype FIR �lter p[n] of length Lp by a generalizeddiscrete Fourier transform (GDFT),hk[n] = ej 2�K (k+k0)(n+n0) � p[n]; k; n 2 N: (1)
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πFig. 3: Required frequency response of the real valuedprototype �lter p[n] for aK channel oversampled GDFT�lter bank with decimation by N .The term generalized DFT [1] stems from o�sets k0 andn0 introduced into the frequency and time indices. Withk0 = 1=2, it is su�cient for real valued input x[n] toprocess the �rst K=2 subbands covering the frequencyinterval [0;�], while the remaining subbands are redun-dant. Together with conditions on p[n], the time o�setn0 can be set appropriately to ensure useful propertiessuch as linear phase. The synthesis �lters gk[n] can beobtained by time reversion and complex conjugation ofthe analysis �lters, i.e. gk[n] = ~hk[n] = h�k[Lp�n+1]. Themodulation approach allows for both low memory con-sumption for storing �lter coe�cients and an e�cientpolyphase implementation [7].2.2 Prototype DesignThrough the above modulation, the �lter bank designreduces to an appropriate choice of the prototype �l-ter, which has to ful�ll two criteria. Firstly, the �lters'attenuation in the stopband ranging from [�=N ;�], asindicated in Fig. 3, has to be su�ciently large. Everyfrequency of the input signal in the interval [�=N ;�] willbe aliased into the baseband after �ltering and decima-tion, and cause a distortion of the subband signal.A second constraint on the design is the perfect re-construction condition. If stopband attenuation of theprototype �lter is high enough to su�ciently suppressaliasing, this condition reduces to the consideration ofinaccuracies in power complementarity [6]:K�1Xk=0 jHk(ej
)j2 != 1: (2)A prototype �lter approximating these constraints canbe constructed by an iterative least-squares method [7].3 PERFORMANCE LIMITATIONSIn this section, we derive limitations in adaptation as-suming that the only disturbance originates from the�lter banks employed for the subband decomposition.First, we look at the achievable error PSD and the meansquared error (MSE) term, E�e2[n]	, which is importantto minimize in e.g. acoustic echo cancellation. Secondly,
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�HHjAAAAUh+ -v[m]Fig. 4: The identity of the structures (a) and (b) isexploited to calculate the PSD of a decimated signalv[m]for system identi�cation applications, we state a limitfor the error of the identi�ed model.3.1 PSD of Adapted Error SignalLet us interpret the desired signal for the kth adaptive�lter in Fig. 1 as the sum of two components,dk[m] = sk[m] � xk[m] + zk[m] : (3)The �rst summand reects the un-aliased projection ofthe output of the unknown system, the desired signald[n] = s[n]�x[n], into the kth subband. The second sum-mand, zk[m], represents the aliased signal componentscreated in the decimation stage, which can be viewedas a distortion of the LTI system and modelled as ad-ditive noise. Therefore, the Wiener solution of the kthsubband �lter is given by sk[m], while the unidenti�ablepart zk[m] de�nes the minimumMSE (MMSE) by [3]MMSE = E�z2k[m]	 : (4)To �nd an analytical expression for the subband MMSE,we �rst determine the PSD of the aliased signal parts inthe subband signals, making use of two facts:� aliasing can be conveniently pictured as a superposi-tion of spectral intervals;� after decimation, a previously white noise signal re-mains still white with identical variance.The further proceeding is depicted in Fig. 4. Assumingthe knowledge of a source modelL(ej
), which is excitedby a white noise signal u[n], the decimation by N canbe swapped with L(ej
). In each branch of Fig. 4(b)the source model is multipied with a window qi(ej
)and then decimated by N . The windows have adjacentrectangular spectra with bandwidth 2�=N each. Thisdecimated model is then excited by a decimated butotherwise unmodi�ed white noise process, u[n].When we identify v[m] in Fig. 4 with the desired sig-nal dk[m], the source model for the kth subband Lk(ej
)



consists of a noise shaping �lter F (ej
), which repre-sents the source model of the input signal x[n] for ex-citation by white noise of unit variance, the unknownsystem S(ej
), and the analysis �lter Hk(ej
),Lk(ej
) = F (ej
) � S(ej
) �Hk(ej
) : (5)The PSD of dk[m] now consists of the squared sum overall N terms of the kth decimated source model in Fig. 4.The squared sum of N�1 alias-only terms, de�nedby N�1 rectangular windows q1 : : : qN�1 covering thestopband of the kth analysis �lter Hk(ej
), �nally givesthe PSD of the minimum error corresponding to theMMSE,SMMSEekek (ej
) = �����N�1Xi=1 N�1Xn=0 Lk(ej(
+2�n)=N )��qi(ej(
+2�n)=N )���2 : (6)This assumes that all un-aliased signal parts in the sub-band error signal ek[m] have been cancelled by the sub-band adaptive �lter. Thus, due to the Wiener-Khintchi-ne transform, the MMSE can be calculated asMMSE = 12� Z 2�0 SMMSEekek (ej
)d
 : (7)By inclusion of the synthesis �lters Gk(ej
), it is alsopossible to derive the PSD of the reconstructed mini-mum error signal, and state the fullband MMSE analo-gous to (7).Approximations. The advantage of the outlined ap-proach is that for spectrally correlated signals, all cross-terms in the PSDs are considered. However, for weakspectral correlation, we may disregard the cross-termsbetween di�erent aliased spectral intervals, and thusapproximate the PSDs by swapping summations andsquare operations in (6). To obtain a more practicallimit for the performance of SAFs, we calculate the ratiobetween the power levels of un-aliased and aliased sub-band components, creating an SNR-like measure, whichwe refer to as signal-to-alias ratio (SAR),SAR = R �=N0 jP (ej
)j2d
R ��=N jP (ej
)j2d
 : (8)This approximation has been based on the further as-sumption F (ej
) = S(ej
) = 1, such that (8) only de-pends on the magnitude response P (ej
) of the pro-totype �lter p[n]. However, the SAR measure can beshown to yield valid results also for non-white input sig-nals and unknown systems. Note that the denominatorof (8) is a measure of the stopband attenuation discussedin 2.2.

equivalent fullband model�[n] -- analysisbankunknownsystems[n] ---̀̀̀̀-- adapted�ltersanalysisbank --̀̀̀̀----̀̀̀̀-- synthesisbanksynthesisbank --w[n]�s[n]�t[n]Fig. 5: Separation of system identi�cation structure forreconstruction of equivalent fullband model.3.2 Error of Equivalent Fullband ModelDisregarding any other limiting inuences and assumingadaptation e[n] ! 0 in Fig. 1, an equivalent fullbandmodel can be reconstructed from the adapted subbandimpulse responses wk[n] by sending an impulse throughanalysis bank, adapted �lters and synthesis bank. Ajusti�cation is demonstrated in Fig. 5 by swapping sum-mers for the subband errors with the (linear) synthesisoperation. Ideally, the fullband equivalent model w[n]will match the cross-correlation function between inputand desired signal, which for white noise excitation givesthe unknown system s[n], convolved with the distortionfunction t[n] of the �lter banks [8]. This distortion func-tion characterizes the serial connection of the decimated�lter banks in Fig. 2, x̂[n] = x[n]� t[n]. Thus, any devi-ation from perfect reconstruction will result in an errorin the equivalent fullband model, where the accuracycan be shown to be limited by the reconstruction error(RE), RE = kt[n]� �[n�Lp+1]k22 : (9)4 SIMULATIONS AND RESULTSWe perform adaptive system identi�cation in a set-upas shown in Fig. 1 of a recursive system s[n] with twodominant poles at 
 = 0:1� and 0:45� using an SAFwith K=2 = 8 complex subbands decimated by N = 14.For simulation with an NLMS algorithm and stronglycoloured input signal, Fig. 6 shows the PSDs of desiredsignal d[n] and �nal error e[n] after almost completeadaptation. In contrast, the analytically calculated PSDfor the error signal at the Wiener-Hopf solution is givenin Fig. 7, overlaid with the �nal error PSD of Fig. 6.Apart from deviations due to insu�cient convergenceat the band edges and residual peaks and a raised errorpower spectrum around the positions of the dominantpoles, clearly the predicted PSD is enveloped by the sim-ulated result, and therefore can be regarded as a lowerlimit of the error PSD.Tab. 1 compares the error limits derived in Sec. 3with simulated results for three di�erently designed pro-totypes, PA, PB, and PC. The design method is a leastsquares minimization of stopband energy and the errorin power complementarity, which can be traded o� byintroducing a weighting between the two measures [7].
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Fig. 6: PSD of desired signal and �nal error signal;dashed vertical lines indicate band edges.
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Fig. 7: PSD of �nal error signal and predicted PSDbased on alias components in the reconstructed signal.Tab. 1 states design results in terms of the measures REas de�ned in (9) and the SAR of (8) reecting the stop-band attenuation.For simulations, the set-up in Fig. 1 was employed toidentify a delay using an RLS algorithm with whiteGaussian input. The error norm of the equivalent full-band model kw� sk22, where w is the reconstructed full-band model according to Sec. 3.2, is given in Tab. 1,which together with the reduction in error variance,�2dd=�2ee �ts very closely the predicted values. For theexample in Fig. 6 using coloured input and a rathercomplex unknown system, the MSE reduction �2dd=�2eeof 56.73dB closely agrees with an SAR value of -57.01dBfor the employed prototype �lter in this case.
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