2,391 research outputs found

    Minimum-Variance Importance-Sampling Bernoulli Estimator for Fast Simulation of Linear Block Codes over Binary Symmetric Channels

    Full text link
    In this paper the choice of the Bernoulli distribution as biased distribution for importance sampling (IS) Monte-Carlo (MC) simulation of linear block codes over binary symmetric channels (BSCs) is studied. Based on the analytical derivation of the optimal IS Bernoulli distribution, with explicit calculation of the variance of the corresponding IS estimator, two novel algorithms for fast-simulation of linear block codes are proposed. For sufficiently high signal-to-noise ratios (SNRs) one of the proposed algorithm is SNR-invariant, i.e. the IS estimator does not depend on the cross-over probability of the channel. Also, the proposed algorithms are shown to be suitable for the estimation of the error-correcting capability of the code and the decoder. Finally, the effectiveness of the algorithms is confirmed through simulation results in comparison to standard Monte Carlo method

    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View

    Full text link
    These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on `Complex Systems' in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as `large graphical models'. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field.Comment: Lectures at Les Houches Summer School on `Complex Systems', July 2006, 44 pages, 25 ps figure

    Development of Simulation Components for Wireless Communication

    Get PDF
    abstract: This thesis work present the simulation of Bluetooth and Wi-Fi radios in real life interference environments. When information is transmitted via communication channels, data may get corrupted due to noise and other channel discrepancies. In order to receive the information safely and correctly, error correction coding schemes are generally employed during the design of communication systems. Usually the simulations of wireless communication systems are done in such a way that they focus on some aspect of communications and neglect the others. The simulators available currently will either do network layer simulations or physical layer level simulations. In many situations, simulations are required which show inter-layer aspects of communication systems. For all such scenarios, a simulation environment, WiscaComm which is based on time-domain samples is built. WiscaComm allows the study of network and physical layer interactions in detail. The advantage of time domain sampling is that it allows the simulation of different radios together which is better than the complex baseband representation of symbols. The environment also supports study of multiple protocols operating simultaneously, which is of increasing importance in today's environment.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Unequal Error Protection Querying Policies for the Noisy 20 Questions Problem

    Full text link
    In this paper, we propose an open-loop unequal-error-protection querying policy based on superposition coding for the noisy 20 questions problem. In this problem, a player wishes to successively refine an estimate of the value of a continuous random variable by posing binary queries and receiving noisy responses. When the queries are designed non-adaptively as a single block and the noisy responses are modeled as the output of a binary symmetric channel the 20 questions problem can be mapped to an equivalent problem of channel coding with unequal error protection (UEP). A new non-adaptive querying strategy based on UEP superposition coding is introduced whose estimation error decreases with an exponential rate of convergence that is significantly better than that of the UEP repetition coding introduced by Variani et al. (2015). With the proposed querying strategy, the rate of exponential decrease in the number of queries matches the rate of a closed-loop adaptive scheme where queries are sequentially designed with the benefit of feedback. Furthermore, the achievable error exponent is significantly better than that of random block codes employing equal error protection.Comment: To appear in IEEE Transactions on Information Theor

    Interactive Channel Capacity Revisited

    Full text link
    We provide the first capacity approaching coding schemes that robustly simulate any interactive protocol over an adversarial channel that corrupts any ϵ\epsilon fraction of the transmitted symbols. Our coding schemes achieve a communication rate of 1O(ϵloglog1/ϵ)1 - O(\sqrt{\epsilon \log \log 1/\epsilon}) over any adversarial channel. This can be improved to 1O(ϵ)1 - O(\sqrt{\epsilon}) for random, oblivious, and computationally bounded channels, or if parties have shared randomness unknown to the channel. Surprisingly, these rates exceed the 1Ω(H(ϵ))=1Ω(ϵlog1/ϵ)1 - \Omega(\sqrt{H(\epsilon)}) = 1 - \Omega(\sqrt{\epsilon \log 1/\epsilon}) interactive channel capacity bound which [Kol and Raz; STOC'13] recently proved for random errors. We conjecture 1Θ(ϵloglog1/ϵ)1 - \Theta(\sqrt{\epsilon \log \log 1/\epsilon}) and 1Θ(ϵ)1 - \Theta(\sqrt{\epsilon}) to be the optimal rates for their respective settings and therefore to capture the interactive channel capacity for random and adversarial errors. In addition to being very communication efficient, our randomized coding schemes have multiple other advantages. They are computationally efficient, extremely natural, and significantly simpler than prior (non-capacity approaching) schemes. In particular, our protocols do not employ any coding but allow the original protocol to be performed as-is, interspersed only by short exchanges of hash values. When hash values do not match, the parties backtrack. Our approach is, as we feel, by far the simplest and most natural explanation for why and how robust interactive communication in a noisy environment is possible

    Polar Codes: Finite Length Implementation, Error Correlations and Multilevel Modulation

    Get PDF
    Shannon, in his seminal work, formalized the transmission of data over a communication channel and determined its fundamental limits. He characterized the relation between communication rate and error probability and showed that as long as the communication rate is below the capacity of the channel, error probability can be made as small as desirable by using appropriate coding over the communication channel and letting the codeword length approach infinity. He provided the formula for capacity of discrete memoryless channel. However, his proposed coding scheme was too complex to be practical in communication systems. Polar codes, recently introduced by Arıkan, are the first practical codes that are known to achieve the capacity for a large class of channel and have low encoding and decoding complexity. The original polar codes of Arıkan achieve a block error probability decaying exponentially in the square root of the block length as it goes to infinity. However, it is interesting to investigate their performance in finite length as this is the case in all practical communication schemes. In this dissertation, after a brief overview on polar codes, we introduce a practical framework for simulation of error correcting codes in general. We introduce the importance sampling concept to efficiently evaluate the performance of polar codes with finite bock length. Next, based on simulation results, we investigate the performance of different genie aided decoders to mitigate the poor performance of polar codes in low to moderate block length and propose single-error correction methods to improve the performance dramatically in expense of complexity of decoder. In this context, we also study the correlation between error events in a successive cancellation decoder. Finally, we investigate the performance of polar codes in non-binary channels. We compare the code construction of Sasoglu for Q-ary channels and classical multilevel codes. We construct multilevel polar codes for Q-ary channels and provide a thorough comparison of complexity and performance of two methods in finite length

    D11.2 Consolidated results on the performance limits of wireless communications

    Get PDF
    Deliverable D11.2 del projecte europeu NEWCOM#The report presents the Intermediate Results of N# JRAs on Performance Limits of Wireless Communications and highlights the fundamental issues that have been investigated by the WP1.1. The report illustrates the Joint Research Activities (JRAs) already identified during the first year of the project which are currently ongoing. For each activity there is a description, an illustration of the adherence and relevance with the identified fundamental open issues, a short presentation of the preliminary results, and a roadmap for the joint research work in the next year. Appendices for each JRA give technical details on the scientific activity in each JRA.Peer ReviewedPreprin
    corecore