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This thesis comprises of two related but distinct components: Coding

arguments for communication channels and information-theoretic analysis for

haplotype assembly. The common thread for both problems is utilizing in-

formation and coding theoretic principles in understanding their underlying

mechanisms.

For the first class of problems, I study two practical challenges that

prevent optimal discrete codes utilizing in real communication and compression

systems, namely, coding over analog alphabet and fading. In particular, I use

an expansion coding scheme to convert the original analog channel coding and

source coding problems into a set of independent discrete subproblems. By

adopting optimal discrete codes over the expanded levels, this low-complexity

coding scheme can approach Shannon limit perfectly or in ratio. Meanwhile, I

design a polar coding scheme to deal with the unstable state of fading channels.

This novel coding mechanism of hierarchically utilizing different types of polar
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codes has been proved to be ergodic capacity achievable for several fading

systems, without channel state information known at the transmitter.

For the second class of problems, I build an information-theoretic view

for haplotype assembly. More precisely, the recovery of the target pair of hap-

lotype sequences using short reads is rephrased as the joint source-channel

coding problem. Two binary messages, representing haplotypes and chromo-

some memberships of reads, are encoded and transmitted over a channel with

erasures and errors, where the channel model reflects salient features of high-

throughput sequencing. The focus is on determining the required number of

reads for reliable haplotype reconstruction.
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Chapter 1

Introduction

This thesis deals with two application domains: communication over

channels and DNA sequencing. Although at first glance, these two domains

appear unrelated, the tools we utilize to analyze them are similar: using in-

formation and coding theoretic principles in understanding their underlying

mechanisms.

1.1 On the Way to Practical Coding Schemes

The field of information theoretical study on data transmission and

compression is started with Shannon’s famous theorem proposed in 1948 [1],

which says channel capacity is the tightest upper bound on the amount of in-

formation that can be reliably transmitted over a noisy communication chan-

nel, and rate distortion limit is the tightest lower bound on the amount of

information that can be compressed from a source within particular distor-

tion constraint. After that, seeking for practical coding schemes that could

approach channel capacity or rate distortion limit became a central objective

for researchers. On the way from theory to practice, many coding schemes

are proposed. Different types of codes emerge in improving the performance,

1



giving consideration to the trade-off between coding complexity and rate per-

formance.

The history of channel coding traces back to the era of algebraic cod-

ing, including the well-known Hamming codes [2], Golay codes [3], Reed-Muller

codes [4][5], Reed-Solomon codes [6], lattice codes [7], and others [8]. How-

ever, although making significant achievements, algebraic coding still could

not prove to be the way to approach the Shannon limit. The next era of prob-

abilistic coding concerned more with optimizing performance as a function of

coding complexity. This line of development included convolutional codes [9],

and concatenated codes [10] at earlier times, as well as turbo codes [11] and

low-density parity-check (LDPC) codes [12][13] afterwards. Recently, a new

class of block codes, polar codes [14] (also see Appendix 1.A for a brief intro-

duction), has been proved to achieve Shannon limit of symmetric binary-input

discrete memoryless channels (B-DMC) with low encoding and decoding com-

plexity. In another recent study [15][16], a new type of rateless code, spinal

codes, is proposed to achieve the capacity of binary symmetric channels.

For discrete-valued “finite-alphabet” source coding problems, the as-

sociated coding theorem [17] and practically-meaningful coding schemes are

well known. Trellis based quantizers [18] are the first to achieve the rate dis-

tortion trade-off, but with encoding complexity scaling exponentially with the

constraint length. Later, Matsunaga and Yamamoto [19] show that a low

density parity check (LDPC) ensemble, under suitable conditions on ensemble

structure, can achieve the rate distortion bound using an optimal decoder. Af-
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ter that, [20] shows that low density generator matrix (LDGM) codes, as the

dual of LDPC codes, with suitably irregular degree distributions, empirically

perform close to the Shannon rate-distortion bound with message-passing al-

gorithms. More recently, polar codes [14], are the first provably rate distortion

limit achievable codes with low encoding and decoding complexity [21][22][23].

However, when utilizing these optimal codes to a practical communica-

tion or compression system, new challenges come out. In general, these afore-

mentioned optimal codes are designed on a discrete alphabet, but in practice,

the channels and sources we meet are always continuous-valued. Hence, how

to design practical coding schemes to bridge the gap from discrete alphabet

to analog alphabet is totally nontrivial and meaningful. Besides, in practical

communication systems, like wireless systems, channel state is not stable due

to the influence of environment. To this end, fading always exists, and the va-

riety of channel states impacts the performance of optimal codes, which forms

the second challenge for practical utilization of theoretically optimal codes.

1.2 Information-Theoretical Analysis of DNA Sequenc-
ing

A novel branch of information theory is to investigate its application to

other research domains, utilizing its inherent ability to reveal the information

principle. DNA sequencing and haplotyping are typical instances of those

domains.

Current DNA sequencing technology, i.e., next generation sequencing,
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aims to enable fast and affordable sequencing tasks. However, various imper-

fections and uncertainties in the processes employed by the current technolo-

gies impose limitations on the achievable read lengths. The read lengths pro-

vided by next generation sequencing platforms are much shorter than those

provided by the conventional Sanger method [24], while the error rates are

higher. In shotgun sequencing [25], a long sequence of DNA is broken up

randomly into numerous small reads. Computer programs then use the in-

formation of overlapping ends from different reads to assemble them into a

continuous sequence [26]. At this point, there is an inherent redundancy due

to sequencing a base position multiple times as parts of different reads. This

naturally motivates our interest to know how much redundancy is required

to obtain a certain level of accuracy, where the accuracy level requirement is

often dictated by the downstream application [27].

One of the recently developed genomic techniques based on new gener-

ation DNA sequencing is haplotype assembly. A haplotype is the collection of

SNPs on a single chromosome within a homologous pair from diploid organ-

isms, and it is believed to contain essential genomic information determining

the characteristic and diseases. However, direct analysis and identification

of a haplotype is generally challenging, costly, and time and labor intensive.

Alternatively, single individual haplotypes can be assembled from short reads

provided by high-throughput DNA sequencing systems.

To this end, DNA sequencing and haplotype assembly problems essen-

tially aim to determine the particular order of nucleotides or single nucleotide
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polymorphisms, which can be naturally included into the study of information

theory and coding theory. Information theoretic view will give a much better

explanation of how to find an algorithm free analysis, and reveal the relation-

ship between minimum coverage number and recovery accuracy, while coding

scheme will provide a wider horizon for exploring advanced sequencing and

assembling schemes.

1.3 Main Contributions of the Thesis

1.3.1 Part I: Expansion Coding for Data Transmission and Com-
pression

A general method of coding over expansion is proposed, which allows

one to reduce the highly non-trivial problems of coding over analog channels

and compressing analog sources to a set of much simpler subproblems, cod-

ing over discrete channels and compressing discrete sources. More specifically,

our focus is on coding over additive exponential noise (AEN) channels, and

lossy compression of exponential and Laplacian sources. Due to the essential

decomposable property of these channels and sources, the proposed expansion

method allows for mapping of these problems (either perfectly or approxi-

mately) to coding over parallel subproblems, where each level is modeled as

an independent coding problem over discrete alphabets. Any feasible solu-

tion to the optimization problem after expansion corresponds to an achievable

scheme of the original problem. In this mapping, for the cases where finding

the optimal solutions is hard to characterize, it is shown that expansion cod-
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ing scheme still presents a good performance by specific choices of parameters.

More specifically, theoretical analysis and numerical results reveal that expan-

sion coding achieves the capacity of AEN channel in the high SNR regime. It

is also shown that for lossy compression, the achievable rate distortion pair

by expansion coding approaches the Shannon limit in the low distortion re-

gion. Remarkably, by using capacity-achieving codes with low encoding and

decoding complexity that are originally designed for discrete alphabets, for in-

stance polar codes, the proposed expansion coding scheme allows for designing

low-complexity codes for analog channel coding and source coding.

1.3.2 Part II: Hierarchical Polar Coding Scheme for Fading Chan-
nels

The main contribution of this part is to propose polar coding schemes

for fading channels. More specifically, the focus is on fading binary symmetric

channels, fading additive exponential noise channels, as well as fading wiretap

channels.

For fading binary symmetric channels, to overcome the variability of

channel states, a coding scheme of hierarchically employing polar codes is pro-

posed. For a two state binary symmetric channel, a polar code designed for the

superior fading state is used for each fading block. The receiver, utilizing its

channel state information, declares a channel output as erasure whenever its

corresponding fading block is at degraded state and its corresponding channel

index is a good state of the underlying polar code. Then, an outer polar code,
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designed for the corresponding erasure model, is utilized to recover from these

erasures by coding over fading blocks. This scheme is generalized to fading sce-

narios with multiple channel states, and it is shown that the proposed coding

scheme, without instantaneous channel state information at the transmitter,

achieves the capacity of the fading binary symmetric channel.

For fading additive exponential noise channels, expansion coding is used

to convert the problem of coding over these analog fading channels into cod-

ing over discrete fading channels. The previously proposed hierarchical polar

coding approach is then adopted to resolve these discrete coding problems.

Theoretical analysis and numerical results are given, showing that the pro-

posed scheme achieves the ergodic capacity of fading additive exponential noise

channel in the high SNR regime.

For fading wiretap channels, a polar coding scheme is proposed to

achieve reliability as well as security. Specifically, a block fading model is

considered for the wiretap channel that consists of a transmitter, a receiver,

and an eavesdropper; and only the information regarding the statistics of the

channel state information is assumed at the transmitter. For this model, the

aforementioned hierarchical polar coding scheme is combined with the exist-

ing polar coding scheme to guarantee security. Message bits are transmitted

such that they may be reliably decoded at the receiver, and random bits are

introduced to exhaust the leakage seen by the eavesdropper. It is found that

this coding scheme is secure capacity achieving for the corresponding fading

binary symmetric wiretap channel.
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Overall, utilizing polar codes in such a novel (hierarchical) way enables

coding without the knowledge of instantaneous channel state information at

the transmitter, a practically important scenario in wireless systems.

1.3.3 Part III: Information-Theoretic Analysis for Haplotype As-
sembly

An information-theoretic analysis is proposed for the haplotype assem-

bly problem. A haplotype is a sequence of nucleotide bases on a chromosome

that differ from the bases in the corresponding positions on the other chromo-

some in a homologous pair. Haplotypes of diploids are typically bi-allelic and

hence may conveniently be represented by binary strings. Information about

the order of bases in a genome is readily inferred using short reads provided by

high-throughput DNA sequencing technologies. Associating reads that cover

variant positions with specific chromosomes in a homologous pairs, which en-

ables haplotype assembly, is challenging due to limited lengths of the reads

and presence of sequencing errors.

From the view of information theory, the recovery of the target pair of

haplotype sequences using short reads is rephrased as the joint source-channel

coding problem. Two binary messages, representing haplotypes and chro-

mosome memberships of reads, are encoded and transmitted over a channel

with erasures and errors, where the channel model reflects salient features of

high-throughput sequencing. The focus here is on determining the required

number of reads for reliable haplotype reconstruction. Both the necessary and
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sufficient conditions are presented with order-wise optimal bounds.

1.4 Organization of the Thesis

The proposed research is covered from Chapter 2 to Chapter 8. Chap-

ter 2 and 3 present the expansion coding schemes for data transmission and

compression respectively. Chapter 4, 5 and 6 present the hierarchical polar

coding scheme for fading channels, where the focus ranges from fading binary

symmetric channels, to fading additive exponential noise channels, and then to

fading wiretap channels. Chapter 7 presents the information-theoretic analysis

of haplotype assembly problem. Finally, Chapter 8 concludes the thesis.

1.5 Notations

n and N are both examples of scalars. a1:n or a = (a1, . . . , an) is a

vector with length n. A is a matrix and, aij is its i-th row and j-th column

element. A is a set, and |A| is the cardinality of set A. X is a random

variable, and X1:n is a random vector. 1{·} is the indicator function. Pr{·}

is the probability measure and E[·] is the expectation. H(·) is the discrete

entropy (in bits), and h(·) is the differential entropy (in bits).
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1.A Introduction to Polar Codes

The construction of polar code is based on a phenomenon referred to

as channel polarization. Consider a binary-input discrete memoryless channel

WB-DMC : X → Y , where X = {0, 1}. Define

F =

[
1 0
1 1

]
.

Let BN be the bit-reversal operator as defined in [14], where N = 2n. By ap-

plying the transform GN = BNF
⊗n (F⊗n denotes the nth Kronecker product

of F ) to u1:N , the encoding is given by x1:N = u1:N ·GN , which is transmit-

ted through N independent copies of WB-DMC. Now, consider N binary-input

coordinate channels W (i)
N : X → YN × X i−1, where, for i ∈ {1, . . . , N}, the

transition probability is given by

W(i)
N (y1:N , u1:i−1|ui) ,

∑
ui+1:N

1

2N−1
WN

B-DMC(y1:N |u1:N ·GN).

Remarkably, as N → ∞, the channels W(i)
N polarize to either noiseless or

pure-noisy, and the fraction of noiseless channels is close to I(WB-DMC), the

symmetric capacity of channel WB-DMC [14].

Given this polarization phenomenon, polar codes can be considered as

GN -coset codes with parameters (N,K,A, uAc), where uAc ∈ XN−K is frozen

vector (can be set to all-zeros for binary symmetric channels [14]), and the

information set A is chosen as a K-element subset of {1, . . . , N} such that

the Bhattacharyya parameters satisfy Z(W(i)
N ) ≤ Z(W(j)

N ) for all i ∈ A and

j ∈ Ac, i.e., A denotes good channels (that are noiseless in the limit). We use
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permutations (namely, π and ϕ in the sequel) to denote the increasing order of

Bhattacharyya parameter values for the polarization of underlying channels.

(For instance, for block lengthN , π(1) gives the most reliable polarized channel

index.)

A decoder for a polar code is the successive cancelation (SC) decoder,

which gives an estimate û1:N of u1:N given knowledge of A, uAc , and y1:N by

computing

ûi =

{
1, if i ∈ A, and

W(i)
N (y1:N ,û1:i−1|1)

W(i)
N (y1:N ,û1:i−1|0)

≥ 1,

0, otherwise,

in the order i from 1 to N . It has been shown that, by adopting an SC decoder,

polar codes achieve any rate R < I(WB-DMC) with a decoding error scaling as

O(2−Nβ
), where β < 1/2. Moreover, the complexity for both encoding and

decoding is O(N logN).
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Chapter 2

Expansion Coding for Data Transmission

2.1 Problem Background and Related Work

The problem of coding over analog noise channels is highly non-trivial

in general. To this end, a method of modulation is commonly utilized to map

discrete inputs to analog signals for transmission through the physical channel

[28]. In this paper, we focus on designing and coding over such mappings. In

particular, we propose a new coding scheme for general analog channels with

moderate coding complexity based on an expansion technique, where channel

noise is perfectly or approximately represented by a set of independent dis-

crete random variables (see Figure 2.1). Via this representation, the problem

of coding over an analog noise channel is reduced to that of coding over paral-

lel discrete channels. We focus on additive exponential noise (AEN) channels,

and we show that the Shannon limit, i.e., the capacity, is achievable in the

high SNR regime. The main advantage of the proposed method lies on its

complexity inheritance property, where the encoding and decoding complexi-

ties of the proposed schemes follow that of the embedded capacity achieving

codes designed for discrete channels, for instance polar codes and spinal codes.

Multilevel coding is a general coding method designed for analog noise
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Figure 2.1: Illustration of expansion channel coding framework. An
analog noise channel is expanded into a set of discrete channels with index
from −L1 to L2. Channel noise is considered as its binary expansion z =
· · · zL2 · · · z1z0.z−1 · · · z−L1 · · · , and similar expansions are adopted to channel
input and output. Carries exist between neighboring levels.

channel with a flavor of expansion [29]. In particular, a lattice partition chain

Λ1/ · · · /Λr−1/Λr is utilized to represent the channel input, and together with a

shaping technique, the reconstructed codeword is transmitted to the channel.

It has been shown that optimal latices achieving Shannon limit exist, however,

the encoding and decoding complexity is high in general. In the sense of

representing the channel input, our scheme is coincident with multilevel coding

by choosing Λ1 = q−L1Z, . . . , Λr = qL2Z, for some L1, L2 ∈ Z+, where coding

of each level is over q-ary finite field (see Figure 2.2). The difference in the
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Figure 2.2: Illustration of multilevel coding framework. In this example,
multilevel coding scheme is illustrated. Comparing to expansion coding in
Figure 2.1, only channel input is expressed by multi-levels, but not the channel
noise.

proposed method is that besides representing the channel input in this way, we

also “expand” the channel noise, such that the coding problem for each level

is more suitable to solve by adopting existing discrete coding schemes with

moderate coding complexity. Moreover, by adapting the underlying codes

to the channel realization dependent variables, such as carries, the Shannon

limit is shown to be achievable by expansion coding with moderate number of

expanded levels.

Deterministic model, proposed in [30], is another framework to study

analog noise channel coding problems, where the basic idea is to construct

an approximate channel for which the transmitted signals are assumed to be

noiseless above the noise level. This approach is proved to be very effective in

analyzing the capacity of networks. In particular, it has been testified that this

framework perfectly represents and helps to characterize degrees of freedom of
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Figure 2.3: Comparison of noise models between expansion coding
and deterministic model. The noise models of each level for expansion
coding and deterministic model are illustrated. Deterministic model cut the
noise to a certain level, and expansion coding has a smooth transaction regime.

point-to-point AWGN channels, as well as some multi-user channels of concern.

In this sense, our expansion coding scheme can be seen as a generalization of

these deterministic approaches. Here, the effective noise in the channel is

carefully calculated and the system takes advantage of coding over the noisy

levels at any SNR. This generalized channel approximation approach can be

useful in reducing the large gaps reported in the previous works, because the

noise approximation in our work is much closer to the actual distribution as

compared to that of the deterministic model (see Figure 2.3).

There have been many attempts in utilizing discrete codes for analog
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channels (beyond simple modulation methods). For example, after the intro-

duction of polar codes, a considerable attention is directed towards utilizing

their low complexity property for analog channel coding. A very straight-

forward way is by central limit theorem, which says certain combination of

i.i.d. discrete random variables tends to Gaussian distribution. As reported in

[16] and [31], the capacity of AWGN channel can be achieved by coding over

large number of BSCs, however, the convergence rate is linear, which limits

its application in practice. To this end, [32] proposes a MAC based scheme to

improve the rate to exponential, at the expense of having a much larger field

size. A newly published result in [33] attempts to combine polar codes with

multilevel coding, however many aspects of this optimization of polar-coded

modulation still remain open. Along the direction of this research, we also

try to utilize capacity achieving discrete codes to approximately achieve the

capacity of analog channels.

2.2 Expansion Channel Coding: Theoretical Framework

In general, expansion channel coding is a scheme of reducing the prob-

lem of coding over a analog channel to coding over a set of discrete channels.

In particular, we consider the additive noise channel given by

Yi = Xi + Zi, i = 1, · · · , N, (2.1)

where Xi are channel inputs with alphabet X (possibly having channel input

requirements, such as certain moment constraints); Yi are channel outputs; Zi
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are additive noises independently and identically distributed with continuous

probability density function; N is blocklength.

When communicating, the transmitter conveys one of the messages,

M, which is uniformly distributed in M , {1, · · · , 2NR}; and it does so by

mapping the message to the channel input using encoding function ψ(·) : M →

XN such that X1:N(M) = ψ(M). The decoder uses the decoding function φ(·)

to map its channel observations to an estimate of the message. Specifically,

φ(·) : YN → M, where the estimate is denoted by M̂ , φ(Y1:N). A rate R is

said to be achievable, if the average probability of error defined by

Pe ,
1

|M|
∑
M∈M

Pr{M̂ ̸= M| M is sent.}

can be made arbitrarily small for large N . The capacity of this channel is

denoted by C, which is the maximum achievable rate R, and its corresponding

optimal input distribution is denoted as f ∗
X(x).

Our proposed coding scheme is based on the idea that by “expanding”

the channel noise (i.e., representing it by its q-ary expansion), an approximate

channel can be constructed, and proper coding schemes can be adopted to

each level in this representation. If the approximation is close enough, then the

coding schemes that are optimal for each level can be translated to an effective

one for the original channel. More formally, consider the original noise Z and

its approximation Ẑ, which is defined by the truncated q-ary expansion of Z.

For this moment, we simply take q = 2 (i.e., considering binary expansion),
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and leave the general case for later discussion.

Ẑ , Zsign

L2∑
l=−L1

2lZl,

where Zsign represents the sign of Z, taking a value from {−,+}; Zl’s are

mutually independent Bernoulli random variables. By similarly expanding

the channel input, we convert the problem of coding over analog channels to

coding over a set of binary discrete channels. This mapping is highly advanta-

geous, as capacity achieving discrete codes can be adopted for coding over the

constructed binary channels. Assume the input distributions for sign channel

and discrete channel at l are represented by Xsign and Xl correspondingly, then

an achievable rate (via random coding) for the approximated channel is given

by

R̂ , I(X̂; X̂+ Ẑ),

where

X̂ , Xsign

L2∑
l=−L1

2lXl.

By adopting the same coding scheme over the original channel, one can achieve

a rate given by

R , I(X̂; X̂+ Z).

The following result provides a theoretical basement for expansion coding.

(Here,
d.→ denotes convergence in distribution.)

Theorem 2.1. If Ẑ
d.→ Z and X̂

d.→ X∗, as L1, L2 → ∞, where X∗ ∼ f ∗
X(x),

i.e., the optimal input distribution for the original channel, then R → C.
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Figure 2.4: System model for AEN channel. The noise of AEN channel
is independent and distributed as exponential distribution, and channel input
is restricted to positive with mean constraint.

The proof of this theorem follows from the continuity property of mu-

tual information. In words, if the approximation channel is close to original

channel, and the distribution we adopt is close to optimal input distribution,

then expansion coding scheme could achieve the capacity of the channel in

concern.

2.3 Expansion Channel Coding: AEN Channel

The particular channel example considered in this section is additive ex-

ponential noise (AEN) channel, which models worst-case noise given a mean

and a non-negativity constraint on noise [34]. In addition, the AEN model

naturally arises in non-coherent communication settings, and in optical com-

munication scenarios. (We refer to [34] and [35] for an extensive discussion on

the AEN channel.)

Martinez proposed the pulse energy modulation scheme in [35], which

can be seen as a generalization of amplitude modulation for the Gaussian

channels. In this scheme, the constellation symbols are chosen as c(i− 1)l, for
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i = 1, · · · , 2M with a constant c, and it is shown that the information rates

obtained from this constellation can achieve an energy (SNR) loss of 0.76 dB

(with the best choice of l = 1
2
(1 +

√
5)) compared to the capacity in the

high SNR regime. Another constellation technique for this coded modulation

approach is recently considered in [36], where it is shown that log constellations

are designed such that the real line is divided into (2M − 1) equally probable

intervals. M of the centroids of these intervals are chosen as constellation

points, and, by a numerical computation of the mutual information, it is shown

that these constellations can achieve within a 0.12 dB SNR gap in the high

SNR regime.

In contrast, our expansion coding approach achieves arbitrarily close to

the capacity of the channel, such that it outperforms these previously proposed

modulation techniques.

2.3.1 Problem Setup for AEN Channel Coding

More precisely, the model for additive exponential noise (AEN) channel

is illustrated in Figure 2.4, where the channel noise Zi in (2.1) are indepen-

dently and identically distributed according to an exponential density with

mean EZ, i.e., omitting the index i, noise has the following density:

fZ(z) =
1

EZ
e
− z

EZ · u(z), (2.2)
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where u(z) = 1 for z ≥ 0 and u(z) = 0 otherwise. Moreover, channel input Xi

in (2.1) is restricted to be non-negative and satisfies mean constraint

1

N

N∑
i=1

E[Xi] ≤ EX. (2.3)

The capacity of AEN channel is given by [34],

CAEN = log(1 + SNR), (2.4)

where SNR , EX/EZ, and the capacity achieving input distribution is given

by

f∗
X(x) =

EX

(EX + EZ)2
e

−x
EX+EZ · u(x) + EZ

EX + EZ
· δ(x), (2.5)

where δ(x) = 1 if and only if x = 0. Here, the optimal input distribution

is not exponentially distributed, but a mixture of an exponential distribution

with a delta function. However, we observe that in the high SNR regime, the

optimal distribution gets closer to an exponential distribution with mean EX,

since the weight of delta function approaches to 0 as SNR tends to infinity.

2.3.2 Binary Expansion of Exponential Distribution

The basis of the proposed coding scheme is the expansion of analog

random variables to discrete ones, and the exponential distribution emerges

as a first candidate due to its decomposition property. We show the following

lemma, which allows us to have independent Bernoulli random variables in the

binary expansion of an exponential random variable.
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Lemma 2.2. Let Bl’s be independent Bernoulli random variables with param-

eters given by bl, i.e., Pr{Bl = 1} , bl, and consider the random variable

defined by

B ,
∞∑

l=−∞

2lBl.

Then, the random variable B is exponentially distributed with mean λ−1, i.e.,

its pdf is given by

fB(b) = λe−λb, b ≥ 0,

if and only if the choice of bl is given by

bl =
1

1 + eλ2l
.

Proof. See Appendix 2.A.

This lemma reveals one can reconstruct exponential random variable

from a set of independent Bernoulli random variables perfectly. Figure 2.5

illustrates that the distribution of recovered random variable from expanded

levels (obtained from the statistics of 100000 independent samples) is a good

approximation of original exponential distribution.

A set of typical numerical values of bls by fixing λ = 1 is shown in

Figure 2.6. It is evident that bl approaches 0 for the “higher” levels and

approaches 0.5 for what we refer to as “lower” levels. Hence, the primary

non-trivial levels within which coding is meaningful are the so-called “middle”

ones, which provides the basis for truncating the number of levels to a finite

value without a significant loss in performance.
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Figure 2.5: Distribution of recovered random variable from expanded
levels, comparing with original exponential distribution (λ = 1).
100000 samples are generated from the expansion form of discrete random
variables, where expansion levels are truncated from −10 to 10.

2.3.3 Expansion Coding for AEN Channel

We consider the binary expansion of the channel noise

Ẑi ,
L2∑

l=−L1

2lZi,l, (2.6)

where Zi,l are i.i.d. Bernoulli random variables with parameters

ql , Pr{Zl = 1} =
1

1 + e2l/EZ
, l = −L1, . . . , L2. (2.7)

By Lemma 2.2, Ẑi
d.→ Zi as L1, L2 → ∞. In this sense, we approximate

the exponentially distributed noise perfectly by a set of discrete Bernoulli
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Figure 2.6: Numerical results for a set of bl with λ = 1. X-axis is the level
index for binary expansion (e.g. value −2 means the weight of corresponding
level is 2−2), and Y-axis shows the corresponding probability of taking value
1 at each level, i.e., bl.

distributed noises. Similarly, we also expand channel input and output as in

the following,

X̂i ,
L2∑

l=−L1

2lXi,l, (2.8)

Ŷi ,
L2∑

l=−L1

2lYi,l, (2.9)

where Xi,l and Yi,l are also Bernoulli random variables with parameters Pr{Xl =

1} , pl and Pr{Yl = 1} , rl correspondingly. Here, the channel input is cho-

sen as zero for levels l /∈ {−L1, · · · , L2}. Noting that the summation in the

original channel is a sum over real numbers, we do not have a binary symme-
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try channel (BSC) at each level (from Xls to Yls). If we could replace the real

sum by modulo-2 sum such that at each level l we have an independent coding

problem, then any capacity achieving BSC code can be utilized over this chan-

nel. (Here, instead of directly using the capacity achieving input distribution

of each level, we can use its combination with the method of Gallager [37]

to achieve a rate corresponding to the one obtained by the mutual informa-

tion I(Xl;Yl) evaluated with an input distribution Bernoulli with parameter

pl. This helps to approximate the optimal input distribution of the original

channel.) However, due to the addition over real numbers, carries exist be-

tween neighboring levels, which further implies that levels are not independent

(see Figure 2.7). Every level, except for the lowest one, is impacted by carry

from lower levels. In order to alleviate this issue, two schemes are proposed in

the following to ensure independent operation of the levels. In these models

of coding over independent parallel channels, the total achievable rate is the

summation of individual achievable rates over all levels.

2.3.3.1 Considering carries as noise

Denoting the carry seen at level l as Ci,l, which is also a Bernoulli

random variable with parameter Pr{Ci,l = 1} , cl, the remaining channels

can be represented with the following,

Yi,l = Xi,l ⊕ Z̃i,l, i = 1, · · · , N,
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Figure 2.7: Expansion coding for AEN channel. Original AEN channel is
expanded into a set of BSCs, where carries are considered between neighboring
levels.

where the effective noise, Z̃i,l, is a Bernoulli random variable obtained by the

convolution of the actual noise and the carry, i.e.

q̃l , Pr{Z̃i,l = 1} = ql ⊗ cl,

where the convolution ⊗ is defined as ql ⊗ cl , ql(1− cl) + cl(1− ql), and the

carry probability is given by the following recursion relationship:

1) For level l = −L1,

c−L1 = 0;

2) For level l > −L1,

cl+1 = plql(1− cl) + pl(1− ql)cl + (1− pl)qlcl + plqlcl.
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Figure 2.8: Illustration of decoding carries in expansion coding
scheme. An example to show the mechanism of decoding carries is described,
where the decoding process starts from the lowest level and initializes with 0.

Using capacity achieving codes for BSC, e.g., polar codes or spinal

codes, combined with the Gallager’s method, expansion coding achieves the

following rate by considering carries as noise.

Theorem 2.3. Expansion coding, by considering carries as noise, achieves

the rate for AEN channel given by

R̂1 =

L2∑
l=−L1

R̂1,l =

L2∑
l=−L1

[H(pl ⊗ q̃l)−H(q̃l)] , (2.10)

for any L1, L2 > 0, where pl ∈ [0, 0.5] is chosen to satisfy constraint (2.3),

i.e.,

1

N

N∑
i=1

E[X̂i] =
1

N

N∑
i=1

L2∑
l=−L1

2lE[Xi,l] =

L2∑
l=−L1

2lpl ≤ EX.

2.3.3.2 Decoding carries

In this scheme, let us consider decoding starting from the lowest level

l = −L1. The receiver will obtain the correct Xi,−L1 for i = 1, · · · , N by

using powerful discrete coding at this level. As the receiver has the knowledge

of Yi,−L1 , it is simple to determine the correct noise sequence Zi,−L1 for i =
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1, · · · , N . With this knowledge, the receiver can directly obtain each Ci,−L1+1

for i = 1, · · · , N , which is the carry from level l = −L1 to level l = −L1 + 1.

This way (see a particular example in Figure 2.7), by iterating to higher levels,

the receiver can recursively subtract off the impact of carry bits. Therefore,

when there is no decoding error at each level, the effective channel that the

receiver will see is given by

Yi,l = Xi,l ⊕ Zi,l, i = 1, · · · , N,

for l = −L1, · · · , L2. We remark that with this decoding strategy, the effective

channels will no longer be a set of independent parallel channels, as decoding

in one level affects the channels at higher levels. However, if the utilized coding

method is strong enough (e.g., if the error probability decays to 0 exponentially

with N), then decoding error due to carry bits can be made insignificant by

increasing N for a given number of levels. We state the rate resulting from

this approach in a theorem.

Theorem 2.4. Expansion coding, by decoding the carries, achieves the rate

for AEN channel given by

R̂2 =

L2∑
l=−L1

R̂2,l =

L2∑
l=−L1

[H(pl ⊗ ql)−H(ql)] , (2.11)

for any L1, L2 > 0, where pl ∈ [0, 0.5] is chosen to satisfy constraint (2.3),

i.e.,

1

N

N∑
i=1

E[X̂i] =
1

N

N∑
i=1

L2∑
l=−L1

2lE[Xi,l] =

L2∑
l=−L1

2lpl ≤ EX.
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Compared to the previous case, the optimization problem is simpler

here as the rate expression is simply the sum of the rates obtained from a set

of parallel channels. Having these two theoretical achievable rates in hand, it

remains to choose proper values for pl. Note that the optimization problems

given by Theorem 2.3 and 2.4 are not easy to solve in general. Here, instead of

searching for the optimal solutions directly, we utilize the information from the

optimal input distribution of the original channel. Recall that the distribution

in (2.5) can be approximated by an exponential distribution with mean EX at

high SNR. Hence, one can simply choose pl from the binary expansion of the

exponential distribution with mean EX as an achievable scheme, i.e.,

pl , Pr{Xl = 1} =
1

1 + e2l/EX
, l = −L1, . . . , L2. (2.12)

We now show that this proposed scheme achieves the capacity of AEN

channel in the high SNR regime for a sufficiently high number of levels. For

this purpose, we first characterize the asymptotic behavior of entropy at each

level for ql and q̃l correspondingly, where the later one is closely related to

carries.

Lemma 2.5. The entropy of noise seen at level l, H(ql), is bounded by

H(ql) < 3 log e · 2−l+η for l > η, (2.13)

H(ql) > 1− log e · 2l−η for l ≤ η, (2.14)

where η , logEZ.

Proof. See Appendix 2.B.

29



Lemma 2.6. The entropy of equivalent noise at level l, H(q̃l), is bounded by

H(q̃l) < 6 log e · (l − η) · 2−l+η for l > η, (2.15)

H(q̃l) > 1− log e · 2l−η for l ≤ η, (2.16)

where η , logEZ.

Proof. See Appendix 2.C.

The intuitions behind these lemmas are given by the example scenario

in Figure 2.9, which says the tail’s bounds of noises are both exponential. Now

we are ready to obtain the main result for capacity gap of expansion coding

scheme over AEN channel.

Theorem 2.7. For any positive constant ϵ < 1, if

• L1 ≥ − log ϵ− logEZ;

• L2 ≥ − log ϵ+ logEX;

• SNR ≥ 1/ϵ, where SNR = EX/EZ,

then, with the choice of pl as (2.12),

1. by considering carries as noise, the achievable rate given by (2.10) satisfies

R̂1 ≥ CAEN − c,

where c is a constant not related to SNR or ϵ;
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2. by decoding carries, the achievable rate given by (2.11) satisfies

R̂2 ≥ CAEN − 5 log e · ϵ.

Proof. The proof of this theorem is based on the observation that the sequence

of pl is a left-shifted version of ql at high SNR regime. As limited by power

constraint, the number of levels shifted is at most log(1+SNR), which further

implies the rate we gain is roughly log(1 + SNR) as well, when carries are

decoded. If considering carries as noise, then there is apparent gap between two

version of noises, which leads to a constant gap for achievable rate. Figure 2.9

helps to illustrate key steps of the intuition, and a detailed proof with precise

calculation is given in Appendix 2.D.

By Lemma 2.2, Ẑ
d.→ Z, and combined with the argument in Theo-

rem 2.1, we have R̂2 → R as L1, L2 → ∞. Hence, the coding scheme also

works well for the original AEN channel. More precisely, expansion coding

scheme achieves the capacity of AEN channel at high SNR region using mod-

erate large number of expansion levels.

2.3.4 Numerical results

We calculate the rates obtained from the two schemes above (R̂1 as

(2.10) and R̂2 as (2.11)) with input probability distribution given by (2.12).

Numerical results are given in Figure 2.10. It is evident from the figure

(and also from the analysis given in Theorem 2.7) that the proposed technique
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pl ⊗ ql, q̃l, pl ⊗ q̃l and rates at each level are shown. In this example, EX = 215

and EZ = 20, which further implies pl is a left-shifted version of ql by 15 levels.
The coding scheme with L1 = 5 and L2 = 20 covers the significant portion of
the rate obtained by using all of the parallel channels.

of decoding carries, when implemented with sufficiently large number of levels,

achieves channel capacity at high SNR regime.

Another point is that neither of the two schemes works well in low SNR

regime, which mainly results from the fact that input approximation is only

perfect for sufficiently high SNR. Nevertheless, the scheme (the rate obtained

by decoding carries) performs close to optimal in the moderate SNR regime

as well.
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2.3.5 Generalization

Up to now, only binary expansion is considered. Generalization to q-ary

expansion with q ≥ 2 is discussed here. Note that this change does not impact

the expansion coding framework, whereas the only difference lies that each level

after expansion should be modeled as a q-ary discrete memoryless channel. For

this, we need to characterize the q-ary expansion of exponential distribution.

Mathematically, the parameters of expanded levels for an exponential random
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variable B with parameter λ can be calculated as follow:

bl,s , Pr{Bl = s}

=
∞∑
k=0

Pr{ql(qk + s) ≤ B < ql(qk + s+ 1)}

=
∞∑
k=0

[
e−λql(qk+s) − e−λql(qk+s+1)

]

=

(
1− e−λql

)
e−λqls

1− e−λql+1 ,

where l ∈ {−L1, . . . , L2} and s ∈ {0, . . . , q − 1}.

Based on this result, consider channel input and noise expansions as

pl,s , Pr{Xl = s} =

(
1− e−ql/EX

)
e−qls/EX

1− e−ql+1/EX
,

and

ql,s , Pr{Zl = s} =

(
1− e−ql/EZ

)
e−qls/EZ

1− e−ql+1/EZ
.

Then, the achievable rate by decoding carries (note that in q-ary expansion

case, carries are still Bernoulli distributed) can be expressed as

R̂2 =

L2∑
l=−L1

[H(pl,0:q−1 ⊗ ql,0:q−1)−H(ql,0:q−1)] , (2.17)

where pl,0:q−1 and ql,0:q−1 denote the distribution of expanded random vari-

ables at level l for input and noise respectively; ⊗ represents for the vector

convolution.

When implemented with enough number of levels in coding, the achiev-

able rates given by (2.17) can still achieve the capacity of AEN channel. More

34



−10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

SNR (dB)

R
a
te

s
 (

b
it
s
)

CAEN

q = 2

q = 5

q = 10

q = 20

q = 50

Figure 2.11: Numerical results for q-ary expansion. The achievable rates
using q-ary expansion coding by decoding carries are illustrated in the figure.

precisely, from the numerical result shown in Figure 2.11, expansion coding

with larger q can achieve higher rate (although this enhancement becomes

insignificant when q is greater than 10).

2.4 Summary

Here, the method of expansion coding is proposed to construct good

codes for analog channel coding. With a perfect or approximate decomposition

of channel noises, we consider coding over independent parallel representations,

which provides a foundation for reducing the original problems to a set of par-

allel simpler subproblems. In particular, via expansion channel coding, we
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consider coding over q-ary channels for each expanded level. This approxima-

tion of the original channel together with capacity achieving codes for each

level (to reliably transmit messages over each channel constructed) and Gal-

lager’s method (to achieve desired communication rates for each channel) allow

for constructing near-capacity achieving codes for the original channel.

One significant benefit from expansion coding is coding complexity.

As indicated in theoretical analysis (Theorem 2.7), approximately −2 log ϵ +

log SNR number of levels are sufficient for the channel coding schemes. Thus,

by choosing “good” low complexity optimal codes within each level (such as

polar codes [14], [21]), the overall complexity of the coding scheme can be made

small for the original continuous-valued channel coding problems (polynomial

of block length N and log SNR).

Although the discussion in this section focuses on AEN channels, ex-

pansion coding scheme is a more general framework and its applications are

not limited to such scenarios. Towards this end, any channel noise with decom-

posable distribution could fit into the range of expansion coding. Moreover,

the idea of expansion could also be generalized to network information theory,

where it can play a similar role like deterministic models [30]. However, the

expanded channels are not totally deterministic in our case, but with different

noise levels, which may help to construct a more precise models for network

analyses.
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2.A Proof of Lemma 2.2

The “if” part follows by extending the one given in [38], which considers

the expansion of a truncated exponential random variable. We show the result

by calculating the moment generating function of B. Using the assumption

that {Bl}l∈Z are mutually independent, we have

MB(t) = E
[
etB
]
=

∞∏
l=−∞

E
[
et2

lBl

]
.

Noting that Bl are Bernoulli random variables, we have

E
[
et2

lBl

]
=

et2
l

1 + eλ2l
+

(
1− 1

1 + eλ2l

)
=

1 + e(t−λ)2l

1 + e−λ2l
.

Then, using the fact that for any constant α ∈ R,

n∏
l=0

(1 + eα2
l

) =
1− e2

n+1α

1− eα
,

we can obtain the following for t < λ,

∞∏
l=0

E
[
et2

lBl

]
= lim

n→∞

n∏
l=0

1 + e(t−λ)2l

1 + e−λ2l
=

1− e−λ

1− et−λ
. (2.18)

Similarly, for the negative part, we have

−1∏
l=−n

(1 + eα2
l

) =
1− eα

1− eα2−n ,

which further implies that

−1∏
l=−∞

E
[
et2

lBl

]
= lim

n→∞

1− et−λ

1− e(t−λ)2−n

1− e−λ2−n

1− e−λ
=

λ(1− et−λ)

(λ− t)(1− e−λ)
. (2.19)
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Thus, finally for any t < λ, combining equations (2.18) and (2.19), we get

MB(t) =
λ

λ− t
.

The observation that this is the moment generation function for an exponen-

tially distributed random variable with parameter λ concludes the proof.

The independence relationships between levels in “only if” part can be

simply verified using memoryless property of exponential distribution. Here

we just need to show the parameter for Bernoulli random variable at each

level. Observe that for any l ∈ Z,

Pr{Bl = 1} = Pr{B ∈ ∪k∈N[2
l(2k − 1), 2l(2k))}

=
∑
k∈N

Pr{2l(2k − 1) ≤ B < 2l(2k)}. (2.20)

Using cdf of exponential distribution, we obtain

Pr{2l(2k − 1) ≤ B < 2l(2k)} = e−λ2l(2k−1) − e−λ2l(2k) = e−λ2l(2k)
(
eλ2

l − 1
)
.

Putting this back to (2.20) we have

Pr{Bl = 1} =
∞∑
k=1

e−λ2l(2k)
(
eλ2

l − 1
)
=

1

eλ2l + 1
.

2.B Proof of Lemma 2.5

From (2.7), and η , logEZ, we have

ql =
1

1 + e2l/EZ
=

1

1 + e2l−η .
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By definition of entropy, we obtain

H(ql) = −ql log ql − (1− ql) log(1− ql)

= − 1

1 + e2l−η log
1

1 + e2l−η − e2
l−η

1 + e2l−η log
e2

l−η

1 + e2l−η .

When l ≤ η, we obtain a lower bound as

H(ql) =
1

1 + e2l−η log
(
1 + e2

l−η
)
+

e2
l−η

1 + e2l−η log

(
1 + e2

l−η

e2l−η

)

= log
(
1 + e2

l−η
)
− e2

l−η

1 + e2l−η log e · 2l−η

(a)
> log(1 + 1)− log e · 2l−η

= 1− log e · 2l−η,

where (a) is due to e2
l−η

> 1 and −e2l−η
/(1 + e2

l−η
) > −1.

On the other hand, when l > η, we have

H(ql) =
1

1 + e2l−η log
(
1 + e2

l−η
)
+

e2
l−η

1 + e2l−η log

(
1 + e2

l−η

e2l−η

)
(b)
<

1

1 + e2l−η log
(
2e2

l−η
)
+ log

(
1 + e−2l−η

)
(c)
<

1 + 2l−η · log e
1 + e2l−η + e−2l−η · log e

(d)
<

1 + 2l−η · log e
1 + 1 + 2l−η + 22(l−η)/2

+
log e

1 + 2l−η

(e)
< 2η−l+1 · log e+ 2η−l · log e

= 3 log e · 2η−l,

where
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(b) is from 1 < e2
l−η

and e2
l−η
/(1 + e2

l−η
) < 1;

(c) is from log(1 + α) < log e · α for any 0 < α < 1;

(d) is from eα > 1 + α+ α2/2 > 1 + α for any α > 0;

(d) is from 1 + 2l−η · log e < (2 + 2l−η + 22(l−η)/2)(2η−l+1 · log e) and 1 <

(1 + 2l−η)2η−l for any l and η.

2.C Proof of Lemma 2.6

By definition, q̃l = cl ⊗ ql, so its behavior is closely related to carries.

Note that for any l, we have

q̃l = cl(1− ql) + ql(1− cl) = ql + cl(1− 2ql) ≥ ql,

where the last inequality holds due to ql < 1/2 and cl ≥ 0. Then, for l ≤ η,

we have

H(q̃l) ≥ H(ql) > 1− log e · 2l−η,

where the first inequality holds due to monotonicity of entropy, and the last

inequality is due to (2.14) in Lemma 2.5. For the l > η part, we need to

characterize carries first. We have the following assertion:

cl < 2η−l+1 − 2

1 + e2l−η , for l > η, (2.21)

and the proof is based on the following induction analysis. For l = η + 1, this

is simply true, because cl < 1/2 for any l. Assume (2.21) is true for level l > η,
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then at the l + 1 level, we have

cl+1 = plql(1− cl) + pl(1− ql)cl + (1− pl)qlcl + plqlcl

= pl(cl + ql − 2qlcl) + qlcl

(a)
<

1

2
(cl + ql − 2qlcl) + qlcl

=
1

2
(cl + ql)

(b)
<

1

2

(
2η−l+1 − 2

1 + e2l−η +
1

1 + e2l−η

)
(c)
< 2−(l−η+1)+1 − 2

1 + e2l−η+1 ,

where

(a) is due to pl < 1/2 and cl + ql − 2qlcl = cl(1− 2ql) + ql > 0;

(b) is due to the assumption (2.21) for level l;

(c) is due to the fact that 1/[2(1+e2
l−η

)] > 2/(1+e2
l−η+1

) holds for any l > η.

To this end, the assertion also holds for level l + 1, and this completes the

proof of (2.21).

Using (2.21), we obtain that for any l > η

q̃l = ql + cl(1− 2ql)

<
1

1 + e2l−η +

(
2η−l+1 − 2

1 + e2l−η

)(
1− 2

1 + e2l−η

)
= 2η−l+1 − 1 + 2η−l+2

1 + e2l−η +
4

(1 + e2l−η)2

< 2η−l+1, (2.22)
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where the last inequality holds due to (1+2η−l+2)(1+ e2
l−η

) > 4 for any l > η.

Finally, we obtain

H(q̃l)
(d)
< H(2η−l+1)

= −2η−l+1 log(2η−l+1)− (1− 2η−l+1) log(1− 2η−l+1)

(e)
< (l − η − 1) · 2η−l+1 + (1− 2η−l+1) · 2 log e · 2η−l+1

(f)
< (l − η) · 2η−l+1 + (l − η) · 2 log e · 2η−l+1

< 3 log e · (l − η) · 2η−l+1

= 6 log e · (l − η) · 2η−l,

where

(d) is from (2.22) and the monotonicity of entropy;

(e) is from − log(l − η − α) < 2 log e · α for any α ≤ 1/2;

(f) is from 1− 2η−l+1 < l − η for any l > η.

From the proof, the information we used for pl is that pl < 1/2, so this

bound is irrelative to SNR, i.e. this upper bound is a uniform one for any

SNR.

2.D Proof of Theorem 2.7

We first prove that R̂2 achieves capacity. Denote ξ = logEX and η =

logEZ. Then, we have an important observation that

pl =
1

1 + e2l/2ξ
= ql+η−ξ, (2.23)

42



which means channel input is a shifted version of noise with respect to expan-

sion levels (see Figure 2.9 for intuition). Based on this, we have

R̂2 =

L2∑
l=−L1

[H(pl ⊗ ql)−H(ql)]

(a)

≥
L2∑

l=−L1

[H(pl)−H(ql)]

(b)
=

L2∑
l=−L1

[H(ql+η−ξ)−H(ql)]

=

L2+η−ξ∑
l=−L1+η−ξ

H(ql)−
L2∑

l=−L1

H(ql)

(c)
=

−L1−1∑
l=−L1+η−ξ

H(ql)−
L2∑

l=L2+η−ξ+1

H(ql)

≥
−L1−1∑

l=−L1+η−ξ

[
1− log e · 2l−η

]
−

L2∑
l=L2+η−ξ+1

3 log e · 2η−l

(d)

≥ (ξ − η)− log e · 2−L1−η − 3 log e · 2−L2+ξ

(e)

≥ log

(
EX

EZ

)
− log e · ϵ− 3 log e · ϵ

(f)

≥ log

(
1 +

EX

EZ

)
− log e · EZ

EX
− 4 log e · ϵ

(g)

≥ log

(
1 +

EX

EZ

)
− 5 log e · ϵ, (2.24)

where

(a) is due to pl ⊗ ql = pl(1− q)+ (1− pl)ql ≥ pl, and monotonicity of entropy;

(b) follows from (2.23);

(c) follows from (2.13) and (2.14) in Lemma 2.5;
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(d) holds as
−L1−1∑

l=−L1+η−ξ

2l−η ≤
−L1−1∑
l=−∞

2l−η = 2−L1−η,

and
L2+η−ξ+1∑

l=L2

2η−l ≤
L2+η−ξ+1∑

l=∞

2η−l = 2−L2+ξ;

(e) is due to the assumptions that L1 ≥ − log ϵ− η, and L2 ≥ − log ϵ+ ξ;

(f) is due to the fact that

log

(
1 +

EX

EZ

)
− log

(
EX

EZ

)
= log

(
1 +

EZ

EX

)
≤ log e · EZ

EX
,

as log(1 + α) ≤ log e · α for any α ≥ 0;

(g) is due to the assumption that SNR = EX/EZ ≥ 1/ϵ.

Next, we show the result for R̂1. Observe that

R̂1 =

L2∑
l=−L1

[H(pl ⊗ q̃l)−H(q̃l)]

(h)

≥
L2∑

l=−L1

[H(pl ⊗ ql)−H(q̃l)]

=

L2∑
l=−L1

[H(pl ⊗ ql)−H(ql)] +

L2∑
l=−L1

[H(ql)−H(q̃l)]

= R̂2 −
L2∑

l=−L1

[H(q̃l)−H(ql)]

(i)

≥ R̂2 −
η∑

−L1

[
1−

(
1− log e · 2l−η

)]
−

L2∑
η+1

[
6 log e · (l − η)2−l+η − 0

]
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= R̂2 −
η∑

−L1

log e · 2l−η −
L2∑
η+1

6 log e · (l − η)2−l+η

(j)

≥ R̂2 − 2 log e− 12 log e

(k)

≥ log

(
1 +

EX

EZ

)
− 5 log e · ϵ− 14 log e,

where

(h) is due to q̃l ≥ ql, which further implies pl ⊗ q̃l ≥ pl ⊗ ql;

(i) follows from (2.14) and (2.15), together with the fact that H(q̃l) ≤ 1 and

H(ql) ≥ 0 for any l;

(j) follows from the observations that

η∑
−L1

log e · 2l−η ≤ log e · 2−η ·
η∑

−∞

2l = 2 log e,

and

L2∑
η+1

6 log e · (l − η) · 2−l+η ≤ 6 log e ·
∞∑
η+1

(l − η) · 2−l+η = 12 log e;

(k) is due to (2.24).

Thus, choosing c = 19 log e completes the proof. Note that, in the

course of providing these upper bounds, the actual gap might be enlarged. A

precise value of the gap is much smaller, i.e., as shown in Figure 2.10, numerical

result for the capacity gap is around 1.72 bits.
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Chapter 3

Expansion Coding for Data Compression

3.1 Problem Background and Related Work

Another well-studied (and practically valuable) research direction in in-

formation theory is the problem of compression of continuous-valued sources.

Given the increased importance of voice, video and other multimedia, all

of which are typically “analog” in nature, the value associated with low-

complexity algorithms to compress continuous-valued data is likely to remain

significant in the years to come.

Although both practical coding schemes as well as theoretical analysis

are very heavily studied, a very limited literature exists that connects the

theory with low-complexity codes. The most relevant literature in this context

is on lattice compression and its low-density constructions [39]. Yet, this

literature is also limited in scope and application.

In the domains of image compression and speech coding, Laplacian

and exponential distributions are widely adopted as natural models of corre-

lation between pixels and amplitude of voice [37]. Exponential distribution

is also fundamental in characterizing continuous-time Markov processes [34].

Although the rate distortion functions for both have been known for decades,
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there is still a gap between theory and existing low-complexity coding schemes.

Some schemes have been proposed, primarily for the medium to high distor-

tion regime, such as the classical scalar and vector quantization schemes [40],

and Markov chain Monte Carlo (MCMC) based approach in [41]. However,

the understanding of low-complexity coding schemes, especially for the low-

distortion regime, remains limited. To this end, our expansion source coding

scheme aims to approach the rate distortion limit with practical encoding and

decoding complexity. By expanding the sources into independent levels, and

using the decomposition property of exponential distribution, the problem has

been remarkably reduced to a set of simpler subproblems, compression for

discrete sources.

3.2 Expansion Source Coding: Theoretical Framework

Expansion source coding is a scheme of reducing the problem of com-

pressing analog sources to compressing a set of discrete sources. In particular,

consider an i.i.d. source X1,X2, . . . ,XN . A (2NR, N)-rate distortion code con-

sists of an encoding function φ : RN → M, where M , {1, . . . , 2NR}, and a

decoding function ς : M → RN , which codes X1:N to an estimate X̃1:N . Then,

a rate and distortion pair (R,D) is said to be achievable if there exists a se-

quence of (2NR, N)-rate distortion codes with lim
N→∞

E[d(X1:N , X̃1:N)] ≤ D for a

given distortion measure of interest d(·, ·). The rate distortion function R(D)
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is the infimum of such rates, and by Shannon’s theorem [17], we have:

R(D) = min
fX̃|X(x̃|x):E[d(X1:N ,X̃1:N )]≤D

1

N
I(X1:N ; X̃1:N),

where the optimal conditional distribution is given by f ∗
X̃|X(x̃|x).

The expansion source coding scheme proposed here is based on the ob-

servation that by expanding the original analog source into a set of independent

discrete random variables, proper source coding schemes could be adopted for

every expanded level. If this approximation in expansion is close enough, then

the overall distortion obtained from expansion coding scheme is also close to

the original distortion. More formally, consider the original analog source X

and its approximation X̂ given by (omitting index i)

X̂ , Xsign

L2∑
l=−L1

2lXl, (3.1)

where Xsign represents the sign of X̂, and takes values from {−,+}; Xl is the

expanded Bernoulli random variable at level l. Similarly, if we expand the

estimate by

ˆ̃X , X̃sign

L2∑
l=−L1

2lX̃l, (3.2)

where X̃sign represents the sign of ˆ̃X, random variable taking values from

{−,+}, and X̃l is independent Bernoulli random variable at level l after ex-

pansion.

Here, we reduce the original problem to a set of source coding sub-

problems over levels −L1 to L2. Similar to the channel coding case analyzed
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in Chapter 2, if X̂
d.→ X, and ˆ̃X

d.→ X̃∗, as L1, L2 → ∞, then the achieved

rate distortion pair approximates the original one. Note that, in general, the

decomposition may not be sufficiently close for most of the sources, and the

distribution for the estimate may not be sufficiently approximated, which both

add more distortion and result in a gap from the theoretical limit.

3.3 Expansion Source Coding: Exponential Source

In this section, a particular lossy compression example is introduced to

illustrate the effectiveness of expansion source coding.

3.3.1 Problem Setup for Exponential Source Coding

Consider an i.i.d. exponential source sequence X1, . . . ,XN , i.e., omitting

index i, each variable has a pdf given by

fX(x) = λe−λx, x ≥ 0,

where λ−1 is the mean of X. Distortion measure of concern is the “one-sided

error distortion”, i.e.

d(x1:N , x̃1:N) =

 1
N

N∑
i=1

(xi − x̃i), if x1:N < x̃1:N ,

∞, otherwise,

where < means xi ≥ x̃i for every i ∈ {1, . . . , N}. This setup is equivalent to

the one in [34], where another distortion measure is considered.

Lemma 3.1 ([34]). The rate distortion function for an exponential source with
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the one-sided error distortion is given by

R(D) =

{
− log(λD), 0 ≤ D ≤ 1

λ
,

0, D > 1
λ
.

(3.3)

Moreover, the optimal conditional distribution to achieve the limit is given by

f∗
X|X̃(x|x̃) =

1

D
e−(x−x̃)/D, x ≥ x̃ ≥ 0. (3.4)

Proof. Proof is given in [34], and it is based on the observation that among

the ensemble of all probability density functions with positive support set and

mean constraint, exponential distribution maximizes the differential entropy.

By designing a test channel from X̃ to X, with additive noise distributed as

exponential with parameter 1/D, both the infimum mutual information and

optimal conditional distribution can be characterized. Details can be found in

Appendix 3.A.

3.3.2 Expansion Coding for Exponential Source

Using Lemma 2.2, we reconstruct the exponential distribution by a

set of discrete Bernoulli random variables. In particular, the expansion of

exponential source over levels ranging from −L1 to L2 can be expressed as

X̂i =

L2∑
l=−L1

2lXi,l, i = 1, 2, . . . , N,

where Xi,l are Bernoulli random variables with parameter

pl , Pr{Xi,l = 1} =
1

1 + eλ2l
. (3.5)
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This expansion perfectly approximates exponential source by letting L1, L2 →

∞. Consider a similar expansion of the source estimate, i.e.

ˆ̃Xi =

L2∑
l=−L1

2lX̃i,l, i = 1, 2, . . . , N,

where X̃i,l is the resulting Bernoulli random variable with parameter p̃l ,

Pr{X̃i,l = 1}. Utilizing the expansion method, the original problem of coding

for a continuous source can be translated to a problem of coding for a set of

independent binary sources. This transformation, although seemingly obvious,

is valuable as one can utilize powerful coding schemes over discrete sources to

achieve rate distortion limits with low complexity. In particular, we design

two schemes for the binary source coding problem at each level.

3.3.2.1 Coding with one-sided distortion

In order to guarantee x ≥ x̃, we formulate each level as a binary source

coding problem under the binary one-sided distortion constraint: dO(xl, x̃l) =

1{xl>x̃l}. Denoting the distortion at level l as dl, an asymmetric test channel

(Z-channel) from X̃l to Xl can be constructed, where

Pr{Xl = 1|X̃l = 0} =
dl

1− pl + dl
,

Pr{Xl = 0|X̃l = 1} = 0.

Based on this, we have pl − p̃l = dl, and the achievable rate at a single level l

is given by

RZ,l = H(pl)− (1− pl + dl)H

(
dl

1− pl + dl

)
. (3.6)
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Due to the decomposability property as stated previously, the coding scheme

provided is over a set of parallel discrete levels indexed by l = −L1, . . . , L2.

Thus, by adopting rate distortion limit achieving codes over each level, expan-

sion coding scheme readily achieves the following result:

Theorem 3.2. For an exponential source, expansion coding achieves the rate

distortion pair given by

R1 =

L2∑
l=−L1

RZ,l, (3.7)

D1 =

L2∑
l=−L1

2ldl + 2−L2+1/λ2 + 2−L1−1, (3.8)

for any L1, L2 > 0, and dl ∈ [0, 0.5] for l ∈ {−L1, · · · , L2}, where pl is given

by (3.5).

Proof. See Appendix 3.B. Note that, the last two terms in (3.8) are resulting

from the truncation and vanish in the limit of large number of levels. In later

parts of this section, we characterize the number of levels required in order to

bound the resulting distortion within a constant gap.

3.3.2.2 Successive encoding and decoding

Note that it is not necessary to make sure xl ≥ x̃l for every l to guaran-

tee x ≥ x̃. To this end, we introduce successive coding scheme, where encoding

and decoding start from the highest level L2 to the lowest. At a certain level,

if all higher levels are encoded as equal to the source, then we must model

this level as binary source coding with the one-sided distortion. Otherwise,

52



level L2 − 2

1

0 0

1 1

0 0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0 0

1

· · ·

· · ·

· · ·

· · ·

level L2 level L2 − 1

Figure 3.1: Illustration of successive encoding and decoding. Encoding
and decoding start from the highest level. A lower level is modeled as one-side
distortion (test channel is Z-channel) if and only if estimates in all higher levels
are decoded as equal to the source. In this illustration, red arrows represent
for decoded as equal, while blue ones represent for decoded as unequal.

we formulate this level as binary source coding with the symmetric distortion

(see Figure 3.1 for an illustration of this successive coding scheme). In par-

ticular for the later case, the distortion of concern is Hamming distortion, i.e.

dH(xl, x̃l) = 1{xl ̸=x̃l}. Denoting the equivalent distortion at level l as dl, i.e.

E[Xl − X̃l] = dl, then the symmetric test channel from X̂l to Xl is modeled as

Pr{Xl = 1|X̂l = 0} = Pr{Xl = 0|X̃l = 1} =
dl

1− 2pl + 2dl
.

Hence, the achievable rate at level l is given by

RX,l = H(pl)−H

(
dl

1− 2pl + 2dl

)
. (3.9)

53



Based on these, we have the following achievable result:

Theorem 3.3. For an exponential source, applying successive coding, expan-

sion coding achieves the rate distortion pairs

R2 =

L2∑
l=−L1

[ρlRZ,l + (1− ρl)RX,l] , (3.10)

D2 =

L2∑
l=−L1

2ldl + 2−L2+1/λ2 + 2−L1−1, (3.11)

for any L1, L2 > 0, and dl ∈ [0, 0.5] for l ∈ {−L1, · · · , L2}. Here, pl is given

by (3.5), and the values of ρl are determined by:

1) For l = L2,

ρL2 = 1;

2) For l < L2,

ρl =

L2∏
k=l+1

(1− dk).

Proof. See Appendix 3.C.

In this sense, the achievable pairs in both theorems are given by op-

timization problems over a set of parameters {d−L1 , . . . , dL2}. However, the

problems are not convex, so an effective theoretical analysis may not be per-

formed here for the optimal solution. But, by a heuristic choice of dl, we

can still get a good performance. Inspired by the fact that the optimal scheme
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models noise as exponential with parameter 1/D in the test channel, we design

dl as the expansion parameter from this distribution, i.e.

dl =
1

1 + e2l/D
. (3.12)

We note that higher levels get higher priority and lower distortion with

this choice, which is consistent with the intuition. This choice of dl may not

guarantee any optimality, although simulation results imply that it can be a

local optimum. In the following, we show that the proposed expansion coding

scheme achieves within a constant gap to the rate distortion function (at each

distortion value).

Theorem 3.4. For any D ∈ [0, 1/λ], there exists a constant c > 0 (not related

to λ or D), such that if

• L1 ≥ − logD,

• L2 ≥ − log λ2D,

then, with a choice of dl as in (3.12), the achievable rate pairs obtained from

expansion coding schemes are both within c bit gap to Shannon rate distortion

function, i.e.

R1 −R(D1) ≤ c,

R2 −R(D2) ≤ c.

Proof. See Appendix 3.D.
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Remark 3.5. We remark that the requirement for highest level is much more

restricted than channel coding case. The reason lies that number of levels

should be large enough to contain the main part of both rate and distortion.

From the proof of Appendix 3.D, it is evident that L2 ≥ − log λ is enough

to bound the rate, however, another − log λD is required to approximate the

distortion closely (if only concerning relative distortion, these extra levels may

not be essential).

3.3.3 Numerical Results

Numerical results showing achievable rates along with the rate distor-

tion limit are given in Figure 3.2. It is evident that both forms of expansion

coding perform within a constant gap of the limit over the whole distortion

region, which outperforms existing linear and non-linear scalar quantization

technique especially in the low distortion regime (since samples are indepen-

dent, the simulations for vector quantization are expected to be close to scalar

quantization and omitted in this result).

Theorem 3.4 shows that this gap is bounded by a constant. Here,

numerical results show that the gap is not necessarily as wide as predicted

by the theoretical analysis. Especially for the low distortion region, the gap

is numerically found to correspond to 0.24 bits and 0.43 bits for each coding

scheme respectively.
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Figure 3.2: Achievable rate distortion pairs using expansion coding
for exponential distribution with one-sided error distortion. In this
numerical result, we set λ = 1. R(D) (red) is rate distortion limit; (D1, R1)
(purple) is given by Theorem 3.2; (D2, R2) (blue) is given by Theorem 3.3.
Linear and non-linear scalar quantization methods are simulated for compar-
ison.

3.4 Expansion Source Coding: Laplacian Source

In this section, we move on to introduce another example, where ex-

pansion source coding can be effectively adopted.

3.4.1 Problem Setup for Laplacian Source Coding

Consider an i.i.d. Laplacian source sequence X1,X2, . . . ,XN , i.e., omit-

ting index i, the probability density function is given by

fX(x) =
λ

2
e−λ|x|, x ∈ R,
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where λ−1 is the magnitude’s mean of Laplace distribution, i.e., E[|X|] = 1/λ.

Distortion measure here is the absolute value error distortion, i.e.

d(x1:N , x̃1:N) =
1

N

N∑
i=1

|xi − x̃i|.

Lemma 3.6 ([42]). The rate distortion function for Laplacian source with

absolute error distortion is given by

R(D) =

{
− log(λD), 0 ≤ D ≤ 1

λ
,

0, D > 1
λ
.

(3.13)

Moreover, the optimal conditional distribution is

f ∗
X|X̃(x|x̃) =

1

2D
e−|x−x̃|/D, ∀ x, x̃ ∈ R. (3.14)

Proof. The proof is given by [42], where the noise in test channel is given by

Laplacian with parameter 1/D. See also Appendix 3.E.

3.4.2 Expansion Coding for Laplacian Source

By noting that Laplacian is symmetric and two-sided exponential, the

expansion of source and its estimate over levels ranging from −L1 to L2 can

be expressed as

X̂i = Xsign
i

L2∑
l=−L1

2lXi,l, i = 1, 2, . . . , N, (3.15)

ˆ̃Xi = X̃sign
i

L2∑
l=−L1

2lX̃i,l, i = 1, 2, . . . , N, (3.16)

where Xsign
i and X̃sign

i represent the sign of X̂i and
ˆ̃Xi correspondingly, both

random variables uniformly distributed from {−1,+1}.
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In a manner similar to exponential source coding case, expansion re-

duces the original problem to coding for a set of independent binary sources.

However, particularly for Laplacian case, we let Xsign = X̃sign, i.e. using 1 bit

to perfectly recover the sign bit. This scheme is more significant and efficient

in the low distortion region, since a decoding error of sign bit leads to huge

distortion. Then, for the other levels, we formulate each as a binary source

coding with Hamming distortion, i.e., dH(xl, x̃l) = 1{xl ̸=x̃l}. In particular, for

level l, we design a symmetric test channel from X̃l to Xl, where the cross

probability is given by

dl =
pl − p̃l
1− 2p̃l

,

which also implies E[|X− X̃|] = dl.

Hence, the achievable rate at level l is given by

Rl = H(pl)−H(dl). (3.17)

Due to the decomposability of exponential distribution, the levels after expan-

sion are independent. Based on this property, we have the following result.

Theorem 3.7. For Laplacian source X, expansion source coding, where the

estimate X̃ is constructed as in the form of (3.16), achieves the rate distortion

pair (R,D) with

R = 1 +

L2∑
l=−L1

[H(pl)−H(dl)] ,

for any L1, L2 > 0 and dl such that E[|X− X̃|] ≤ D.
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Note that the absolute value error distortion E[|X− X̃|] cannot be writ-

ten as a form of simple weighted sum from Hamming distortions of expanded

levels. In fact, we have to use an induction method to characterize the com-

plicated relation. Denote

∆k , E

[∣∣∣∣∣
k∑

l=−L1

2l(Xl − X̃l)

∣∣∣∣∣
]
, (3.18)

for any −L1 ≤ k ≤ L2, which represents the accumulative distortion up to

level k.

1) Initialization: at level −L1,

∆−L1 = 2−L1d−L1 .

2) Induction: for levels −L1 + 1 ≤ k ≤ L2,

∆k =∆k−1(1− dk) + 2kdk

+
2kdk(1− 2pk)

1− 2dk

k−1∑
l=−L1

2ldl(1− 2pl)

1− 2dl
.

To this end, the expansion based coding scheme can be clearly expressed

as an optimization problem with variables {d−L1 , . . . , dL2}, but not convex.

We have to step back to heuristically choose the value of dls in order to get

a suboptimal result. More precisely, targeting a distortion D, we construct a

set of distortions dl at each level as

dl =
1

1 + e2l/D
. (3.19)
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Then, by Theorem 3.7 and via the iterative algorithm above, we claim the rate

distortion pair (R1, D1) is achievable, where

R1 = 1 +

L2∑
l=−L1

[H(pl)−H(dl)] , (3.20)

D1 = ∆L2 . (3.21)

Evidently, this coding scheme may not behave well at high distortion

region, since R1 is at least 1 (which is utilized to represent the sign bit). In the

high-distortion regime, precisely compressing the sign bit seems inefficient. To

this end, a time sharing scheme is utilized to reduce the gap in high distortion

region. More precisely, for any ρ ∈ [0, 1], we compress ρ fraction of source

sequences into codeword 0 (whose corresponding distortion is 1/λ), then the

following rate distortion pair is found to be achievable:

R2 = (1− ρ)R1, (3.22)

D2 = (1− ρ)D1 + ρ/λ. (3.23)

The following theorem provides an upper bound on rate distortion gap

of expansion coding scheme.

Theorem 3.8. For any D ∈ [0, 1/λ], there exists a constant c′ > 0 (not related

to λ or D), such that if

• L1 ≥ − logD,

• L2 ≥ − log λ2D,
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then, with a choice of dl as in (3.19), the achievable rate pairs obtained from

expansion coding schemes are both within c′ bit gap to Shannon rate distortion

function, i.e.

R1 −R(D1) ≤ c′,

R2 −R(D2) ≤ c′.

Proof. See Appendix 3.F.

3.4.3 Numerical Results

We find that the expansion coding scheme is provably within 1 bit

constant gap of the rate distortion function. At this point, the calculation of

R1 is fairly tight, however, the upper bound on D1 can be loose, especially in

the low distortion regime. As the calculation of D1 from dls is non-trivial, it is

hard to characterize the extent to which the overall distortion is overestimated

by the bound. Here, we numerically analyze this gap, and found it to be 0.52

bits in the low distortion regime. (See Figure 3.3.)

3.5 Summary

Similar to the case of channel coding, we utilize expansion source coding

to adopt discrete source codes achieving rate distortion limit on each level

after expansion, and design codes achieving near-optimal performance for the

original source. Theoretical analysis and numerical results are provided to

detail performance guarantees of the proposed expansion coding scheme.
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Figure 3.3: Achievable rate distortion pairs using expansion coding. In
this numerical result, we set λ = 1. R(D) (red) is rate distortion limit; (D1, R1)
(purple) is achievable rate using expansion coding: and (D2, R2) (blue) is
achievable rate using expansion coding and time sharing.

From the analyses in Chapter 2 and Chapter 3, expansion coding is

proved to be an effective coding scheme for both data transmission over analog

noise channel, and data compression of analog sources. The advantages of

expansion coding scheme lie in its ability to shoot for near optimal rate, and

to guarantee coding complexities tractable at the same time. Although only

two examples are illustrated to show the effectiveness of expansion coding, it

is believed to be a uniform coding framework for general coding problems.
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3.A Proof of Lemma 3.1

Note that the maximum entropy theorem implies that the distribution

maximizing differential entropy over all probability densities fX on support set

R+ satisfying∫ ∞

0

fX(x)xdx = 1,

∫ ∞

0

fX(x)xdx = 1/λ,

is exponential distribution with parameter λ. Based on this result, in order

to satisfy E[d(X, X̃)] ≤ D, where d(X, X̃) = ∞ for X < X̃, we have to restrict

X ≥ X̂ with probability 1. To this end, we have

I(X; X̃) = h(X)− h(X|X̃)

= log(e/λ)− h(X− X̃|X̃)

≥ log(e/λ)− h(X− X̃)

≥ log(e/λ)− log(eE[X− X̃])

≥ log(e/λ)− log(eD)

= − log(λD).

Here, we need X− X̃ to be exponentially distributed and independent with X̃

as well. More specifically, we can consider a test channel from X̃ to X with

additive noise Z = X−X̃ distributed as exponential with parameter 1/D, which

gives the conditional distribution given by (3.4).
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3.B Proof of Theorem 3.2

Due to decomposability of exponential distribution, the levels after ex-

pansion are independent, hence, the achievable rate in this theorem is obtained

by additions of individual rates. On the other hand, for the calculation of dis-

tortion, we have

D1 = E[X− ˆ̃X]

= E

[
∞∑

l=−∞

2lXl −
L2∑

l=−L1

2lX̃l

]
(a)
=

L2∑
l=−L1

2ldl +
∞∑

l=L2+1

2lpl +

−L1−1∑
l=−∞

2lpl

(b)

≤
L2∑

l=−L1

2ldl +
∞∑

l=L2+1

2−l+1/λ2 +

−L1−1∑
l=−∞

2l−1

(c)
=

L2∑
l=−L1

2ldl + 2−L2+1/λ2 + 2−L1−1, (3.24)

where

(a) follows from pl − p̃l = dl;

(b) follows from

pl =
1

1 + eλ2l
≤ 1

1 + (1 + λ2l + λ222l/2)
≤ 1

λ222l/2
= 2−2l+1/λ2,

and pl < 1/2 for any l;

(c) follows from

∞∑
l=L2+1

2−l = 2−L2 , and

−L1−1∑
l=−∞

2l = 2−L1 .
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3.C Proof of Theorem 3.3

By the design of coding scheme, if all higher levels are decoded as

equivalence, then they must be encoded with one-sided distortion. Recall that

for Z-channel, we have

Pr{Xl ̸= X̃l} = Pr{Xl = 1, X̃l = 0} = dl.

Hence, due to independence of expanded levels,

ρl =

L2∏
k=l+1

(1− dk).

Then, at each level, the achievable rate is RZ,l with probability ρl and is RX,l

otherwise. From this, we obtain the expression of R2 given by the theorem. On

the other hand, since in both cases we have pl − p̃l = dl, the form of distortion

remains the same.

3.D Proof of Theorem 3.4

Denote γ = − log λ, and ξ = − logD. Then, from D ≤ 1/λ, we have

γ + ξ ≥ 0. (3.25)

By noting that pl and dl are both expanded parameters from exponential

distribution, we have

pl =
1

1 + eλ2l
=

1

1 + e2l−γ ,

dl =
1

1 + e2l/D
=

1

1 + e2l+ξ .
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Hence, pl is shifted version of dl (analog to the channel coding case), i.e.,

dl = pl+γ+ξ. (3.26)

Using this relationship, we obtain

L2∑
l=−L1

[H(pl)−H(dl)]
(a)
=

L2∑
l=−L1

H(pl)−
L2∑

l=−L1

H(pl+γ+ξ)

=

L2∑
l=−L1

H(pl)−
L2+γ+ξ∑

l=−L1+γ+ξ

H(pl)

(b)
=

−L1+γ+ξ−1∑
l=−L1

H(pl)−
L2+γ+ξ∑
l=L2+1

H(pl)

(c)

≤ γ + ξ, (3.27)

where

(a) follows from (3.26);

(b) follows from (3.25) and theorem assumptions;

(c) follows from 0 ≤ H(pl) ≤ 1 for any l.

From the expression of R1, we have

R1 =

L2∑
l=−L1

[
H(pl)− (1− pl + dl)H

(
dl

1− pl + dl

)]

=

L2∑
l=−L1

[H(pl)−H(dl)] +

L2∑
l=−L1

[
H(dl)− (1− pl + dl)H

(
dl

1− pl + dl

)]

≤ γ + ξ +

L2∑
l=−L1

[
H(dl)− (1− pl + dl)H

(
dl

1− pl + dl

)]
, (3.28)
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where (3.27) has been utilized in the last inequality. To this end, we need to

bound

∆l , H(dl)− (1− pl + dl)H

(
dl

1− pl + dl

)
= (1− pl) log(1− pl)− (1− dl) log(1− dl)− (1− pl + dl) log(1− pl + dl).

For this, two cases are considered:

1) For l ≤ −ξ, dl and pl are close and both tend to 0.5. More precisely, we

have

∆l

(d)

≤ −(1− pl + dl) log(1− pl + dl)

(e)

≤ 2 log e · (pl − dl)

(f)

≤ 2 log e ·
[
1

2
−
(
1

2
− 2l+ξ−1

)]
= log e · 2l+ξ, (3.29)

where

(d) follows from the fact that (1 − α) log(1 − α) is a decreasing function

over [0, 0.5], hence, (1− pl) log(1− pl) ≤ (1− dl) log(1− dl);

(e) follows from the observation that −(1 − α) log(1 − α) ≤ 2 log e · α for

any α ∈ [0, 0.5];

(f) follows from the fact that pl ≤ 0.5 and

dl =
1

1 + e2l+ξ ≥ 1

1 + (1 + 2 · 2l+ξ)
≥ 1

2
− 2l+ξ−1,

where the first inequality is due to eα ≤ 1+2α for any α ∈ [0, 1] (2l+ξ ≤ 1

due to l ≤ −ξ), and the last inequality holds for any l.
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2) On the other hand, for l > −ξ, dl tends to 0, so as 1 − pl and 1 − pl + dl

get close. More precisely, we have

∆l

(g)

≤ −(1− dl) log(1− dl)

(h)

≤ 2 log e · dl
(i)

≤ log e · 2−l−ξ, (3.30)

where

(g) follows from the fact (1− pl) log(1− pl) ≤ (1− pl + dl) log(1− pl + dl);

(h) follows from the observation that −(1 − α) log(1 − α) ≤ 2 log e · α for

any α ∈ [0, 0.5];

(i) follows from the fact that

dl =
1

1 + e2l+ξ ≤ 1

e2l+ξ ≤ 1

2 · 2l+ξ
= 2−l−ξ−1,

where the second inequality holds from eα ≥ 2α for any α > 1 (2l+ξ > 1

due to l > −ξ).

Putting (3.29) and (3.30) back to (3.28), we have

R1 ≤ γ + ξ + log e ·
−ξ∑

l=−L1

2l+ξ + log e ·
L2∑

l=−ξ+1

2−l−ξ

≤ γ + ξ + 2 log e+ log e

= R(D) + 3 log e, (3.31)

where we use the definitions of γ and ξ, such that γ + ξ = R(D).
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Finally, using the result from Theorem 3.2 that

D ≤ D1 ≤
L2∑

l=−L1

2ldl +2−L2+1/λ2 +2−L1−1 ≤ D+2−L2+1/λ2 +2−L1−1, (3.32)

we obtain

R(D)
(j)

≤ R(D1) +
log e

D
(D1 −D)

(k)

≤ R(D1) +
log e

D
(2−L2+1/λ2 + 2−L1−1)

(l)

≤ R(D1) + 2.5 log e, (3.33)

where

(j) follows from R(D) is convex such that for any α1 and α2,

R(α1) ≥ R(α2) +R′(α2)(α1 − α2),

where R′(α2) = − log e/α2 is the derivative of R(·), and setting α1 = D1,

α2 = D completes the proof of this step;

(k) follows from (3.32);

(l) follows from theorem assumptions that L1 ≥ − logD and L2 ≥ − log λ2D.

Combining (3.33) with (3.31), we have

R1 ≤ R(D1) + 5.5 log e,

which completes the proof for R1 and D1 by taking c = 5.5 log e.
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For the other part of the theorem, observe that

H

(
dl

1− 2pl + 2dl

)
≥ (1− pl + dl)H

(
dl

1− pl + dl

)
.

Hence, for any −L1 ≤ l ≤ L1, we have RX,l ≤ RZ,l. Thus, we have R2 ≤ R1.

Combing with the observation that D1 = D2, we have R2 ≤ R1 + 5.5 log e.

Note that in the process of providing bounds, the actual gap may be

enlarged. A precise value of the gap can be estimated from numerical results,

which is 0.24 bit and 0.43 bit for each coding scheme respectively.

3.E Proof of Lemma 3.6

Maximum entropy theorem implies that Laplace distribution with pa-

rameter λ has the maximum differential entropy h(fX) over all probability

densities fX on support set R satisfying∫ ∞

−∞
fX(x)xdx = 1,∫ ∞

−∞
fX(x)|x|dx = 1/λ.

Based on this result, it is evident to note that

I(X; X̃) = h(X)− h(X|X̃)

= log

(
2e

λ

)
− h(X− X̂|X̂)

≥ log

(
2e

λ

)
− h(X− X̃)

≥ log

(
2e

λ

)
− log(2e · E[|X− X̂|])
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≥ log

(
2e

λ

)
− log(2eD)

= − log(λD),

where we have used the fact that E[|X− X̃|] ≤ D. Here, we need X− X̃ to be

Laplace distributed and independent with X̃ as well. More specifically, we can

design a test channel from X̃ to X with additive noise Z = X − X̃ distributed

as Laplace with parameter 1/D, as shown in (3.14).

3.F Proof to Theorem 3.7

Note that the expressions of pl and dl are the same as the exponen-

tial case (although the potential test channel models are different), and the

theorem assumptions are identical. Then, from (3.27), we already have

L2∑
l=−L1

[H(pl)−H(dl)] ≤ − log(λD). (3.34)

Moreover, noting that E[|Xl − X̃l|] = dl, we have

D1 = E

[∣∣∣∣∣
∞∑

l=−∞

2lXl −
L2∑

l=−L1

2lX̃l

∣∣∣∣∣
]

≤
L2∑

l=−L1

2lE[|Xl − X̃l|] +
−L1−1∑
l=−∞

2lE[|Xl|] +
∞∑

l=L2+1

2lE[|Xl|]

=

L2∑
l=−L1

2ldl +

−L1−1∑
l=−∞

2lpl +
∞∑

l=L2

2lpl

≤
L2∑

l=−L1

2ldl + 2−L2+1/λ2 + 2−L1−1, (3.35)
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where the last inequality holds analog to (3.24). Hence, following the same

steps in (3.33), we obtain

R(D) ≤ R(D1) + 2.5 log e. (3.36)

Combining the pieces together, we obtain

R1 = 1 +

L2∑
l=−L1

[H(pl)−H(dl)]

(a)

≤ 1− log(λD)

= 1 +R(D)

(b)

≤ 1 +R(D1) + 2.5 log e,

where

(a) is due to (3.34);

(b) is due to (3.36).

Hence, by choosing c′ = 1 + 2.5 log e complete the proof for R1 and D1.

On the other hand, (R2, D2) is obtained by convex combination of

(R1, D1) and (0, 1/λ), which means R2 ≤ R1 and D2 ≥ D1. Thus, utiliz-

ing the result for R1 and D1, we have

R2 ≤ R1 ≤ R(D1) + 1 + 2.5 log e ≤ R(D2) + 1 + 2.5 log e.
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Chapter 4

Polar Coding for Fading BSCs

4.1 Background of Polar Coding for Fading Channels

Polar codes are the first family of provably capacity achieving codes for

symmetric binary-input discrete memoryless channels (B-DMC) with low en-

coding and decoding complexity [14] [43]. These codes polarize the underlying

channel in the sense that, via channel combining and channel splitting stages,

multiple uses of the given channel are transformed into equivalent polarized

ones: either purely noisy (referred to as “bad” channel instances) or noise-

less (referred to as “good” channel instances). Then, information symbols are

mapped to the good instances of polarized channels, whereas channel inputs

corresponding to the bad instances are fixed and shared between the trans-

mitter and receiver. It is shown in [14] that the fraction of the good channel

instances approaches the symmetric capacity of the channel, which is equal to

the capacity of the underlying channel if the channel is symmetric. That is,

polar codes achieve the capacity of symmetric B-DMCs. This phenomenon of

channel polarization has then been generalized to arbitrary discrete memory-

less channels with a construction complexity to the same order and a similar

error probability behavior [44].
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However, the analysis of polar coding for fading channels, with either

discrete-valued or continuous-valued noises, is still limited. Recent work [45]

investigates binary input real number output AWGN fading channel, where

the fading coefficient is assumed to be one of the two states with equal proba-

bilities. These fading coefficients are assumed to follow arbitrary distributions

with the requirement of satisfying some tail probability constraints. For this

setup, the authors proposed polar coding schemes where symbols are multi-

plexed in a specific fashion at the encoder. In particular, the paper analyzes

diagonal, horizontal, and uniform multiplexers; and, the corresponding diver-

sity and outage analysis have been performed. Another recent work [46] fo-

cuses on polar coding schemes for Rayleigh fading channel under two scenarios:

block fading with known channel state information (CSI) at the transmitter

and fast fading with fading distribution known at the transmitter. For the

latter case, the channel is shown to be symmetric, and through quantization

of the channel output, the polar coding scheme is shown to achieve a constant

gap to the capacity.

In my thesis, we focus on a block fading model without the CSI at the

transmitter, and propose a hierarchical polar coding scheme for such channels.

More precisely, in this chapter, we focus on fading binary symmetric channel

(BSC), which is an important model as it is closely related to an AWGN block

fading channel with BPSK modulation and demodulation. Such binary input

AWGN models are previously analyzed in [47][48] to evaluate the performance

of polar codes over AWGN channels. Here, we focus on communication chan-
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nel models that involve fading, where the channel coefficients vary according to

a block fading model. This scenario of fading AWGN with BPSK modulation

resembles a fading binary symmetric channel model, where each fading block

has a cross-over probability depending on the corresponding channel state re-

alization. Specifically, AWGN channel states with higher SNRs map to binary

symmetric channels with lower crossover probabilities. For this binary sym-

metric fading model, we propose a novel polar coding approach that utilizes

polarization in a hierarchical manner without channel state information (CSI)

at the transmitter (with channel state statistics assumed to be known at the

transmitter). The key factor enabling our coding scheme is the hierarchical

utilization of polar coding. More precisely, polar codes are not only designed

over channel uses for each fading state, but also utilized over fading blocks. By

taking advantage of the degradedness property of channel polarization between

different BSCs, an erasure model (over fading blocks) is constructed for every

channel instance that polarizes differently depending on the channel states.

It is shown that this proposed coding scheme, without instantaneous CSI at

the transmitter, achieves the ergodic capacity of the fading binary symmetric

channel.

4.2 System Model of Fading BSCs

Fading channels characterize the wireless communication channels, where

the channel states vary over channel uses. Fading coefficients typically vary

much slower than transmission symbol duration in practice. For such cases,
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a block fading model is considered, wherein the channel state is assumed to

be a constant over each coherence time interval, and follows a stationary er-

godic process across fading blocks. For such a block fading model, we consider

the practical scenario where the channel state information is available only at

the decoder (CSI-D) [49], while the transmitter is assumed to know only the

statistics of the channel states.

Binary symmetric channel (BSC) is a channel with binary input X,

binary noise Z, and a binary output Y = X⊕Z. Here, for the fading BSC, the

channel noise is a Bernoulli distributed random variable, where its statistics

depend on the channel states. For the block fading BSC considered in this

work, the channel is modeled as follows.

Yb,i = Xb,i ⊕ Zb,i, b = 1, . . . , B, i = 1, . . . , N,

where N is the block length, and B is the number of fading blocks. Here, Zb,i

are assumed to be identically distributed within a block and follow an i.i.d.

fading process over blocks. That is, if we consider fading BSC with S states,

with probability ϱs the parameter ps is chosen for the fading block b, where the

channel noise Zb,i is sampled from a Bernoulli random variable with parameter

ps for all i ∈ {1, . . . , N}. Here, 1 ≤ s ≤ S and
S∑

s=1

ϱs = 1. See Figure 4.1 for

an illustration of defined fading BSCs with two states.

In wireless communications, the fading binary symmetric channel is uti-

lized to model a fading AWGN channel with BPSK modulation and demodu-

lation. In particular, for a fading AWGN channel with input power constraint
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Zb,i ∼ Ber(p2)

+

+Xb,i

Zb,i

Yb,i

Xb,i Yb,i

Yb,iXb,i

%1

%2

Zb,i ∼ Ber(p1)

+

Figure 4.1: Illustration of fading binary symmetric channels with two
states. Within a particular block b, the noise random variables Zb,i are iden-
tically distributed. Moreover, with probability ϱ1, they are identically dis-
tributed as Ber(p1), while with the rest probability ϱ2, they are identically
distributed as Ber(p2).

PX, the channel noise is distributed as i.i.d. Gaussian with variance PZ, and

the channel gain (the factor H in the AWGN channel Ŷ = HX̂ + Ẑ) remains

the same statistic within a fading block, and follows an ergodic process over

different blocks. After utilizing the BPSK modulation and demodulation at

the encoder and decoder, respectively, the equivalent channel is a binary in-

put and binary output channel, with transition probability relating to AWGN

channel state. More precisely, if the channel gain Hb,i within a particular fad-

ing block b is equal to hs with probability ϱs for some s ∈ {1, 2, . . . , S}, then

the corresponding binary noise in the equivalent fading BSC has the statistics

of

ps , Pr{Zb,i = 1} = 1− Φ(hs
√
SNR),
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where Φ(·) is the CDF of normal distribution and SNR is the signal-to-noise

ratio, i.e. SNR = PX/PZ. In other words, the channel at each fading block can

be modeled as Ws ,BSC(ps) with probability ϱs.

The ergodic capacity of a fading binary symmetric channel is given by

[50]

CCSI-D =
S∑

s=1

[1−H(ps)], (4.1)

where H(·) is the binary entropy function, and CSI-D refers to channel state

information at the decoder. Note that, the ergodic capacity of fading BSC is an

average over the capacities of all possible channels corresponding to different

channel states. In this section, we propose a polar coding scheme that achieves

the capacity of this fading BSC with low encoding and decoding complexity,

without having instantaneous channel state information at the transmitter.

Towards this end, we first focus on a fading BSC with two channel states, and

then generalize our results to arbitrary finite number of channel states.

4.3 Intuition

In polar coding for a BSC, we see that the channel can be polarized

by transforming a set of independent copies of given channels into a new set

of channels whose symmetric capacities tend to 0 or 1 (for all but a vanishing

fraction of indices). Towards applying such a polarization phenomenon to

fading BSC, we first focus on how two binary symmetric channels polarize at

the same time. We summarize a result given in [51] regarding the polarization
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p1

M BG

π(i)1

0

1

N

I(W
(π(i))
N

)

p2

Figure 4.2: Illustration of polarizations for two binary symmetric
channels. The blue-solid line represents the degraded channel with transition
probability p2, and the red-dashed one represents the superior channel with p1
(p1 ≤ p2). Values of I(W(π(i))

N ), the reordered symmetric mutual information,
are shown for both channels.

of degraded channels.

Lemma 4.1 ([51]). For two binary symmetric channels W1 , BSC(p1) and

W2 , BSC(p2), if W2 is degraded with respect to W1, i.e. p1 ≤ p2, then for

any channel index i ∈ {1, . . . , N}, the reconstructed channels after polarization

have the relationship that W(i)
2,N is degraded with respect to W (i)

1,N , and hence

I(W(i)
2,N) ≤ I(W(i)

1,N).

That is, when polarizing two binary symmetric channels, the recon-

structed channels of the degraded channel have lower symmetric rate compared

to that of the other channel. This statement also implies that

A2 ⊆ A1,
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where A1 and A2 denote the information sets of the superior and degraded

channels, respectively. This relationship is illustrated in Figure 4.2. Based

on this observation, when polarizing two BSCs, the channel indices after re-

ordering permutation π can be divided into three categories (we assume that

channel 2 is degraded, i.e., p1 ≤ p2):

1) Set G: both channels are good, i.e.,

I(W(π(i))
1,N ) → 1, I(W(π(i))

2,N ) → 1.

2) Set M: only channel 1 is good, while channel 2 is bad, i.e.,

I(W(π(i))
1,N ) → 1, I(W(π(i))

2,N ) → 0.

3) Set B: both channels are bad, i.e.,

I(W(π(i))
1,N ) → 0, I(W(π(i))

2,N ) → 0.

We have the following relationships between these sets. First, informa-

tion sets for two channels are given by A2 = G, and A1 = G ∪M. Moreover,

considering the sizes of these sets, we have:

|G| = |A2| = N · [1−H(p2)− ϵ], (4.2)

|M| = |A1| − |A2| = N · [H(p2)−H(p1)], (4.3)

|B| = N − |A1| = N · [H(p1) + ϵ], (4.4)

where ϵ is an arbitrarily small positive number (that vanishes as N → ∞).
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0
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I(W
(π(i))
N
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information bits frozen bits

Figure 4.3: Illustration of polarizations for fading binary symmetric
channels. The blue-solid line represents the degraded state with transition
probability p2, and the red-dashed one represents the superior state with p1
(p1 ≤ p2). For those channel indices after polarization in mixed set M, an
erasure channel is constructed to model its either noiseless or purely noisy
behavior.

For a fading binary symmetric channel, we utilize Figure 4.3 to illus-

trate our coding scheme. Here, consider a fading BSC with only two fading

states, the superior state and the degraded one (denoted as state 1 and 2,

respectively). If channel is in state 2, which happens with probability ϱ2, the

fading channel polarizes to the blue-solid curve, and otherwise the channel is

in state 1, which happens with the probability ϱ1 = 1 − ϱ2, and the fading
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channel polarizes to the red-dashed curve. Hence, the reconstructed channel

with index in set G always polarizes to a good one, i.e., its symmetric mutual

information is close to 1 no matter what the fading state is. And, the recon-

structed channel with index in set B always polarizes to a bad one, i.e., its

symmetric mutual information is close to 0 no matter what the fading state is.

Therefore, one can reliably transmit information for channel instances belong-

ing to G, whereas one may not transmit any information for channel instances

belonging to B. The novel part of the proposed coding scheme is for the mid-

dle region, i.e., coding over the set M, where reconstructed channels polarize

differently depending on the channel states. Since we consider the transmitter

has no prior knowledge of channel states before transmitting, coding over chan-

nels with indices in M is challenging. At this point, we observe that for these

channels, with probability ϱ1 they are nearly noiseless, and with probability ϱ2

they are purely noisy. Thus, each channel can be modeled as a binary erasure

channel (BEC) from the viewpoint of blocks, where the erasure probability is

equal to ϱ2. Here, we denote this channel as

We , BEC(ϱ2).

This observation motivates our design of hierarchical encoder and decoder for

fading BSCs.

4.4 Hierarchical Polar Encoder

The encoding process has two phases, hierarchically using polar codes

to generateNB-length codewords, whereN is blocklength andB is the number

83



x
(b)
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|G| |B||M|
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u
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Figure 4.4: Illustration of proposed polar encoder for a fading binary
symmetric channel with two states. Bits in blue are information bits,
and those in white are frozen as zeros. The codewords generated from Phase
I are transposed and embedded into the messages of Phase II to generate the
final codeword of length NB. ϕ and π are column reordering permutations
with respect to BEC and BSC, correspondingly.

of blocks.

4.4.1 Phase I: BEC Encoding

In this phase, we generate |M| number of BEC polar codes, each with

length B. Consider a set of blockwise messages v
(k)
1:|A| with k ∈ {1, . . . , |M|}.

For every v
(k)
1:|A|, we construct polar codeword ṽ

(k)
1:B, which is formed by the

GB-coset code with parameter (B, |A|,A, 0), where A is the information set

for WBEC = BEC(ϱ1), and we choose the rate to be optimal, i.e.

|A| = B · (ϱ1 − ϵ), (4.5)

|Ac| = B · (ϱ2 + ϵ). (4.6)
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In other words, we construct a set of polar codes, where each code corresponds

to an index in set M, with the same rate ϱ1, the same information set A,

and the same frozen values, 0. More precisely, if we denote the reordering

permutation for We = BEC(ϱ2) as ϕ, then

ṽ
(k)
1:B = ν

(k)
1:B ×GB,

ϕ(ν
(k)
1:B) =

[
v
(k)
1:|A| | 0

]
,

for every k ∈ {1, . . . , |M|}. The collection of all ṽ
(k)
1:B is denoted as a |M| ×B

matrix Ṽ . We denote Ṽ T
b as the b-th row of the transpose of Ṽ .

4.4.2 Phase II: BSC Encoding

In this phase, we generate B number of BSC polar codes, each with

length N . Consider a set of messages u
(b)
1:|G| with b ∈ {1, . . . , B}. For every

u
(b)
1:|G|, construct polar codeword x

(b)
1:N , which is GN -coset code with parameter

(N, |G|,G, [Ṽb
T |0]), where G is BSC information set with size given by (4.2).

Remarkably, we do not set all non-information bits to be 0, but transpose

the blockwise codewords generated from Phase I and embed them into the

messages of this phase. More precisely, if denote the reordering permutation

operator of BSC as π, then

x
(b)
1:N = µ

(b)
1:N ×GN .

π
(
µ
(b)
1:N

)
=
[
u
(b)
1:|G| | Ṽb

T | 0
]
,

for every b ∈ {1, . . . , B}. By collecting all {x(b)}1:B together, the encoder

outputs a codeword with length NB. We equivalently express these codewords
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by a B × N matrix X. The proposed encoder for fading binary symmetric

channel is illustrated in Figure 4.4.

4.5 Decoder

After receiving the sequence y1:NB from the channel, the decoder’s task

is to make estimates v̂
(k)
1:|A| and û

(b)
1:|G|, such that the information bits in both sets

of messages match the ones at the transmitter with high probability. Rewrite

channel output y1:NB as a B × N matrix, with row vectors y
(b)
1:N . As that of

the encoding process, the decoding process also works in phases.

4.5.1 Phase I: BSC Decoding for the Superior Channel State

In this phase, we decode part of the output blocks using the BSC SC

decoder with respect to the superior channel state. More precisely, since the

receiver knows channel states, it can adopt the correct SC decoder (BSC(p1)

SC decoder in this case) to obtain µ̂
(b)
1:N from y

(b)
1:N for every b corresponding

to the superior channel state. To this end, the decoder for block b with the

superior fading state in this phase is the classical BSC SC polar decoder with

parameter p1, i.e.,

µ̂
(b)
i =

 1, if i /∈ B, and W(i)
1,N (y

(b)
1:N ,µ̂

(b)
1:i−1|1)

W(i)
1,N (y

(b)
1:N ,µ̂

(b)
1:i−1|0)

≥ 1,

0, otherwise,

in the order i from 1 to N , and W(i)
1,N is the i-th polarized channel from

BSC(p1). In this phase, one can reliably decode the information bits in blocks

with respective to the superior channel states (with the knowledge of frozen
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|A|

|B||M|

transpose

|G| |B||M|

N

B
π−1

y
(b)
1:N

BSC(p2) SC Decoder û
(b)
1:|G| 0

Phase III: BSC Decoding for the Degraded Channel State

N

B
π−1

Phase I: BSC Decoding for the Superior Channel State

y
(b)
1:N 0û

(b)
1:|G|

BSC(p1) SC Decoder

Phase II: BEC Decoding

information bits

frozen bits

erased bits

transpose

|M|φ−1

BEC(%2) SC Decoderv̂
(k)
1:|A| 0

|G|

Figure 4.5: Illustration of proposed polar decoder for a fading binary
symmetric channel with two states. In Phase I, decoder outputs all
estimates using BSC SC decoders corresponding to the superior channel state.
Selected columns are transposed and delivered as inputs to next phase, by
adding all-erasures rows for blocks with the degraded channel state. In Phase
II, the decoder continues to use BEC SC decoders to decode all the blockwise
information bits, and to recover all erased bits in shade. In Phase III, the
BSC SC decoders corresponding to the degraded channel state are utilized
to decode the remaining information bits, by taking values of frozen bits in
set M as the decoded results from the previous phase. ϕ and π are column
reordering permutations with respect to BEC and BSC, correspondingly.

87



symbols corresponding to B indices). Formally, the decoder can declare

π
(
µ̂
(b)
1:N

)
=
[
û
(b)
1:|G| | ˆ̃V T

b | 0
]
,

for every b corresponding to the superior channel state.

However, for the blocks with degraded channel state, one cannot decode

reliably because the frozen bits corresponding to set M are unknown at the

decoder (for the degraded channel state, frozen set include M and B). At

this point, we use the next phase to decode these frozen bits using a BEC

SC decoder. To proceed, we construct a B × |M| matrix ˆ̃V T such that its

rows corresponding to the superior state are determined in previous decoding

process, while the ones corresponding to the degraded states are all set to

erasures. See Figure 4.4 for an intuitive illustration.

4.5.2 Phase II: BEC Decoding

In this phase, we decode the frozen bits with respect to the degraded

channel state. More precisely, each row of matrix ˆ̃V , denoted by ˆ̃Vk for k ∈

{1, . . . , |M|}, is considered as the input to the decoder, and the receiver aims

to obtain an estimate of the information bits from it using BEC SC decoder.

To this end, the decoder adopted in this phase is the classical BEC SC decoder

with parameter ϱ2, i.e.,

ν̂
(k)
b =

 1, if b ∈ A, and
W(b)

e,B( ˆ̃Vk,ν̂
(k)
1:b−1|1)

W(b)
e,B( ˆ̃Vk,ν̂

(k)
1:b−1|1)

≥ 1,

0, otherwise,
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in the order b from 1 to B, and W(b)
e,B is the b-th polarized channel from

BEC(ϱ2). Then, for every k ∈ {1, . . . , |M|}, the decoder can declare

ϕ
(
ν̂
(k)
1:B

)
=
[
v̂
(k)
1:|A| | 0

]
.

At this point, the decoder can reconstruct all erased bits as well. More pre-

cisely, the erased rows in ˆ̃V T can be recovered, and they can be further utilized

to decode the information bits in blocks with the degraded channel state in

the next phase.

4.5.3 Phase III: BSC Decoding for the Degraded Channel State

In this phase, the remaining blocks from Phase I are decoded by using

BSC SC decoders with respect to degraded channel states. In particular, bits

in the frozen set for the degraded channel state (set B and set M) are known

due to the previous phases. Hence, the receiver can decode from y
(b)
1:N using

BSC SC decoder with parameter p2, i.e.,

µ̂
(b)
i =


1, if i ∈ G, and W(i)

2,N (y
(b)
1:N ,µ̂

(b)
1:i−1|1)

W(i)
2,N (y

(b)
1:N ,µ̂

(b)
1:i−1|0)

≥ 1,

ˆ̃vTbi, if i ∈ M,
0, otherwise,

in the order i from 1 to N , where ˆ̃vTbi denotes the b-th row and i-th column

element of matrix ˆ̃V T , and W(i)
2,N is the i-th polarized channel from BSC(p2).

Then, for every b corresponding to the degraded channel state, the decoder

declares

π
(
µ̂
(b)
1:N

)
=
[
û
(b)
1:|G| | ˆ̃V T

b | 0
]
.
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The whole decoding process for fading binary symmetric channel is

illustrated in Figure 4.5.

4.6 Performance Evaluation

Here, we summarize the performance of the proposed polar coding

scheme. Intuitively, by using BSC SC decoders corresponding to the superior

channel state, the output from Phase I successfully recovers all information

bits, because the size of information set is equal to the size of G. Then, for

decoding at Phase II, the input vector ˆ̃Vk can be considered as a ϱ2-fraction

erased polar codeword, hence, BEC SC decoder can decode all information

bits in v
(k)
1:|A| correctly for all k ∈ {1, . . . , |M|}, and recover the erased entries

correctly as well. Finally, in Phase III of decoding, the bits in M have the

correct frozen values, and by adopting BSC SC decoders corresponding to the

degraded channel state, all the remaining information bits can be decoded

correctly.

Therefore, as long as the designed rates of polar codes do not exceed the

corresponding channel capacities, all information bits in our proposed polar

coding scheme are reliably decodable. Hence, more formally, we have the

following theorem.

Theorem 4.2. The proposed polar coding scheme achieves any rate R <

CCSI-D, for sufficiently large N and B, and the decoding error probability scales

as max{O(B2−Nβ
), O(N2−Bβ

)} with β < 1/2. Moreover, the complexity of the
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encoding and decoding processes are both given by O(NB log(NB)), where N

is the block length and B is the number of blocks.

Proof. The achievable rate (corresponding to the transmission of information

bits in v
(k)
1:|A| and u

(b)
1:|G|) is given by

R =
1

NB

{
|M| · |Ã|+B · |G|

}
= [H(p2)−H(p1)][ϱ1 − ϵ] + [1−H(p2)− ϵ]

= ϱ1[1−H(p1)] + ϱ2[1−H(p2)]− δ(ϵ),

= CCSI-D − δ(ϵ),

where we have used (4.2)), (4.3), (4.5), and

δ(ϵ) , ϵ[1 +H(p2)−H(p1)] → 0, as ϵ→ 0.

The proof for error exponent is obtained by utilizing error bound from

polar coding. In Phase I and III of decoding, the error probability of recovering

u
(b)
1:|G| correctly for each b ∈ {1, . . . , B} is given by P

(b)
e,1 = O(2−Nβ

). Similarly,

in decoding Phase II, the error probability of recovering v
(k)
1:|A| correctly for

each k ∈ {1, . . . , |M|} is given by P
(k)
e,2 = O(2−Bβ

). Hence, by union bound,

the total decoding error probability is upper bounded by

Pe ≤
B∑
b=1

P
(b)
e,1 +

|M|∑
k=1

P
(k)
e,2 = O(B2−Nβ

) +O(N2−Bβ

),

as N and B tend to infinity. Therefore, Pe vanishes if B = o(2N
β
) and N =

o(2B
β
).
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Finally, since we have |M| number of B-length polar codes as well as B

number of N -length polar codes utilized, the overall complexity of the coding

scheme for both encoding and decoding is given by

|M| ·O(B logB) +B ·O(N logN) = O(NB log(NB)).

This theorem shows that our proposed polar coding scheme achieves

the capacity of fading BSC with low encoding and decoding complexity. In

addition, the error scaling performance, which is inherited from polar codes,

implies that long coherence intervals as well as large number of blocks are

required for this coding scheme to make the error probability arbitrarily small.

4.7 Generalization to Arbitrary Finite Number of States

Here, we generalize the polar coding scheme to fading binary symmetric

channel with arbitrary finite number of states. Consider S number of BSCs,

each with a different transition probability. Without loss of generality, consider

W1 , BSC(p1), . . . ,WS , BSC(pS), with p1 ≤ p2 ≤ · · · ≤ pS. Then, a fading

BSC with S fading states is modeled as the channel being Ws with probability

ϱs for a given fading block, where
S∑

s=1

ϱs = 1. The polarization of a fading

BSC with S fading states is illustrated in Figure 4.6, where the reconstructed

channel indices are divided into S+1 sets after permutation π. In addition to

G and B, there exist S − 1 middle sets M1, . . . , MS−1 in this case. For each
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MS−1 . . . B

π(i)1

0

1

N

I(W
(π(i))
N

)

pS pS−1 pS−2 p2 p1

G

. . .

M1MS−2

Figure 4.6: Illustration of polarization for a fading binary symmetric
channel with S channel states. Besides G and B, there are S − 1 middle
sets, denoted as M1, . . . ,MS−1.

channel index in setMs, channels having statistics being one ofW1, . . . ,Ws are

polarized to be noiseless and the remaining ones are purely noisy. Therefore,

for channel indices belonging to Ms, we consider modeling them as BECs with

erasure probability given by

es ,
S∑

t=s+1

ϱt, 1 ≤ s ≤ S − 1.

Based on this, we have

|G| = |AS| = N · [1−H(pS)− ϵ],

|Ms| = N · [H(ps+1)−H(ps)] , 1 ≤ s ≤ S − 1,

|B| = N − |A1| = N · [H(p1) + ϵ].

Here, the polarization result is similar to the case of two fading states,

and we utilize a similar hierarchical coding scheme. In Phase I of encoding,
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transmitter generates S − 1 sets of polar codes, where each one is a GB-coset

code with parameter (B, |Ae,s|,Ae,s, 0) with respect to BEC(es) (where Ae,s is

the information set for channel BEC(es)), and all the encoded codewords are

embedded into messages of Phase II in order. Then, in Phase II of encoding, we

use BSC polar encoders with information set G to generate the final codeword

with length NB. At the receiver end, we need 2S−1 number of phases. Phase

I utilizes the BSC(p1) SC decoders to decode blocks with respective to the best

channel state (state 1 in this case). Consider all decoded bits in M1, as well

as adding erasures to undecoded blocks, we could decode all erased bits by

using BEC(e1) SC decoders in Phase II. Then, using the decoded information

as frozen values for blocks with respective to state 2, BSC(p2) SC decoders are

adopted in Phase III to decode information bits in the blocks corresponding to

channel state 2. Recursively, all information bits for both BSC encoding and

BEC encoding could be reliably decoded, as long as the designed rates of polar

codes do not exceed corresponding channel capacities. Hence, by adopting this

hierarchical polar coding scheme, the achievable rate is given by

R =
1

NB

{
B · |G|+

S−1∑
s=1

|Ms| · |As|

}

= [1−H(pS)− ϵ] +
S−1∑
s=1

[H(ps+1)−H(ps)] · (1− es − ϵ)

=
S∑

s=1

ϱs[1−H(ps)]− δ′(ϵ),

where δ′(ϵ) , ϵ[1 + H(pS) − H(p1)] tends to 0 as ϵ → 0. Thus, to this end,

the proposed polar coding scheme achieves the capacity of channel, and the
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encoding and decoding complexities are both given by

S−1∑
s=1

|Ms| ·O(B logB) +B ·O(N logN) = O(NB log(NB)),

which is independent to the value of S as
S−1∑
s=1

|Ms| ≤ N . For the same reason,

the decoding error bound also remains the same as the case of only two fading

states. Thus, our proposed polar coding scheme achieves the capacity of fading

binary symmetric channel with arbitrary finite number of fading states, and

the encoding and decoding complexity are both guaranteed to be tractable in

practice.

4.8 Summary

In this section, a hierarchical polar coding scheme is proposed for the

fading BSC. This novel scheme, by exploiting an erasure decoding approach at

the receiver, utilizes the polarization results of different BSCs. (These BSCs

are defined over channel uses at a given fading block and over fading blocks

at a given channel use index.) This novel polar coding technique is shown

to be capacity achieving for fading BSC. Remarkably, the proposed scheme

does not assume channel state information at the transmitter and fading BSC

models the fading additive white Gaussian noise (AWGN) channel with a

BPSK modulation. Therefore, our results are quite relevant to the practical

channel models considered in wireless communications.

We remark that the advantages of polar codes in rate and complexity

are both inherited in the proposed coding schemes. More precisely, as polar
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codes achieve channel capacity of BSC and BEC, our hierarchical utilization of

polar codes also achieves the capacity of fading BSC. Meanwhile, the property

of low complexity for polar codes is also inherited to the coding scheme for

fading channels.

Finally, we note that the proposed coding scheme requires long code-

word lengths to make the error probability arbitrarily small. This require-

ment translates to requiring long coherence intervals and large number of fad-

ing blocks as our approach utilizes coding over both channel uses and fading

blocks. (This is somewhat similar to the analyses in Shannon theory, where

the guarantee of the coding is that the error probability vanishes as the block

length gets large.) Therefore, our coding scheme fits to the fading channels

with moderate/long coherence time and large number of fading blocks. Here,

we comment on applicability of the proposed coding scheme in typical wireless

systems. As reported in [52][53], LTE systems operating at 1.8GHz frequency

with 20MHz bandwidth typically have fading durations of 2.8×105 to 1.0×107

channel uses. In addition, WiFi systems operating at 5GHz frequency with

20MHz bandwidth typically have fading durations of 7.7 × 105 to 1.8 × 107

channel uses [54]. (Here, a mobile speed of 1m/s is assumed for both systems.)

Polar codes, on the other hand, typically have error rates around 10−6 when

the blocklength is around 210, and a smaller error probability is even possible,

when the decoding is implemented with a better decoder. For instance, instead

of the classical SC decoder, a list decoder [48] can be utilized. Finally, besides

long coherence intervals, another requirement for the proposed coding scheme
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is to have large number of fading blocks. This requirement can be satisfied in

many practical scenarios at the expense of having large decoding delays.
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Chapter 5

Polar Coding for Fading AEN Channels

5.1 System Model of Fading AEN Channels

In this section, we proceed to consider another fading channel model

with analog noise statistics known. In particular, the hierarchical polar cod-

ing scheme is combined with the aforementioned expansion coding technique

(Chapter 2) to achieve ergodic capacity for fading channels with analog noises.

More precisely, we consider the fading additive exponential noise (AEN) chan-

nel given by

Yb,i = Xb,i + Zb,i, b = 1, . . . , B, i = 1, . . . , N,

where Xb,i is channel input and restricted to be positive and with mean EX;

N is block length; and B is the number of blocks. In this model, Zb,i are

assumed to be identically distributed within a block and follow an ergodic

i.i.d. fading process over blocks. That is, if we consider a fading AEN channel

with S states, then, with probability ϱs channel noise Zb,i is distributed as

an exponential random variable with parameter EZs for a given b and all

i ∈ {1, . . . , N}, i.e.,

fZb,i
(z) =

1

EZs

e
− z

EZs , z ≥ 0, (5.1)
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where 1 ≤ s ≤ S and
S∑

s=1

ϱs = 1.

We first state the following upper bound on the ergodic channel capacity

in the high SNR regime.

Lemma 5.1. The ergodic capacity of a fading AEN channel, with channel

state information known at the decoder, is upper bounded as follows.

lim
EX→∞

CCSI-D ≤
S∑

s=1

ϱs

[
log

(
1 +

EX

EZs

)]
(5.2)

Proof. See Appendix 5.A.

In the following, we show that our proposed polar coding scheme achieves

the upper bound above in the high SNR regime.

Remark 5.2. Note that the capacity of the fading AEN channel with CSI-

D approaches to the bound above in the high SNR regime. (For example,

our coding scheme, as shown below, provides one such achievable rate.) This

observation is similar to the Gaussian counterpart [49], where in the high SNR

regime, the performance obtained from a waterfilling strategy - the optimal

solution for the case where encoder can adapt its power based on the channel

state, i.e., CSI-ED - approaches to the performance of utilizing the same power

allocation for each fading channel.

Remark 5.3. The model above assumes a mean constraint on the channel

input where the average is over channel blocks and channel states. If the mean

constraint is per block (abbreviated as MPB - Mean Per fading Block - in the

99



following), i.e., E[Xb,i] ≤ EX for each fading block b, then by following steps

similar to the ones above, we have

CCSI-D, MPB ≤ CCSI-ED, MPB =
S∑

s=1

ϱs

[
log

(
1 +

EX

EZs

)]
.

5.2 Expansion Coding with Hierarchical Polar Coding

Similar to the expansion coding technique utilized to achieve the ca-

pacity of static AEN channel in Chapter 2, the binary expansion of channel

noise is considered as

Ẑb,i ,
L2∑

l=−L1

2lZb,i,l, (5.3)

where Zb,i,l is a discrete random variable taking value in {0, 1}. However, the

distribution of Zb,i,l depends on the fading state. More precisely, if the noise

for a fading block b is exponential with parameter EZs , then Zb,i,l is a Bernoulli

random variable with parameter

ql,s , Pr{Zb,i,l = 1} =
1

1 + e2l/EZs
. (5.4)

Then, by the decomposability of exponential random variable, Ẑb,i
d.→ Zb,i as L1

and L2 tend to infinity. In this sense, we approximate the original exponential

noise perfectly by a set of discrete noises.

Similarly, we also expand channel input and output as follows,

Ŷb,i ,
L2∑

l=−L1

2lYb,i,l =

L2∑
l=−L1

2l(Xb,i,l + Zb,i,l),
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where Xb,i,l is a Bernoulli random variable with parameter pl , Pr{Xb,i,l = 1}.

At this point, we model the expanded channels as

Yb,i,l = Xb,i,l + Zb,i,l, l = −L1, . . . , L2.

Note that the summation is a real sum here, and hence, the channel is not a

fading BSC for a given block. If we replace the real sum by modulo-2 sum,

then, at level l, any capacity achieving code for fading BSC, for example the

one constructed in Chapter 4, can be utilized in combination with the method

of Gallager [37] [51] to achieve a rate corresponding to the one obtained by the

mutual information I(Xb,l;Yb,l) evaluated with a desired input distribution on

Xb,l.

Then, using the technique to essentially remove carries as discussed in

Chapter 2, each level could be modeled as a fading BSC. Thus, expansion cod-

ing reduces the problem of coding over a fading exponential noise channel into

a set of simpler subproblems, coding over fading BSCs. By adopting capacity

achieving polar coding scheme proposed in Chapter 4 for each expanded fading

BSC, we have the following achievable rate result for these channels.

Theorem 5.4. By decoding carries in expansion coding, and adopting hierar-

chical polar coding scheme for fading BSC in each expanded level, the proposed

scheme achieves the rate given by

R =

L2∑
l=−L1

S∑
s=1

ϱs[H(pl ⊗ ql,s)−H(ql,s)], (5.5)
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for any L1, L2 > 0, where pl ∈ [0, 0.5] is chosen to satisfy

L2∑
l=−L1

2lpl ≤ EX.

We note the followings. First, the achievable scheme we utilize satisfies

the mean constraint on the channel input for each block, i.e., averaged over

channel uses, lim
N→∞

1
N

N∑
i=1

Xi,b ≤ EX for each block b. (This implies satisfying

power constraint averaged over the blocks as well.) Secondly, the maximum

rate from our coding scheme could be considered as an optimization problem

over finite number of parameters pl, −L1 ≤ l ≤ L2. However, it is not clear how

to solve this non-convex problem. Here, instead of searching for an optimal

solution, we shift our focus to finding a sub-optimal choice of pl such that

the achievable rate is close the optimal one in the high SNR regime. From the

proof of Lemma 5.1, we observe that the optimal input distribution for the case

with the CSI at the transmitter could be approximated with an exponential

with parameter EXs as SNR = EXs/EZs gets large. As we do not have CSI

at the transmitter in our model, we consider choosing the same energy level,

EX, for each fading block. Noting again that the optimal input distribution is

unknown for our fading model, the high SNR observation inspires us to choose

pl as

pl =
1

1 + e2l/EX
. (5.6)

The following theorem gives the main result of our polar coding scheme

over fading AEN channel.
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Theorem 5.5. For any positive constant ϵ < 1, if

• L1 ≥ − log ϵ−min
s

logEZs;

• L2 ≥ − log ϵ+ logEX;

• min
s

SNRs ≥ 1/ϵ, where SNRs , EX/EZs,

then by decoding carries and adopting hierarchical polar codes at each fading

BSC after expansion, the achievable rate R given by (5.5), with a choice of pl

as (5.6), satisfies

R ≥
S∑

s=1

ϱs

[
log

(
1 +

EX

EZs

)]
− 5 log e · ϵ.

Proof. The spirit of the proof is analogous to the one of static AEN channel

case, except for taking into the impact of fading. More precisely, in order to

achieve the capacity of fading AEN channel, first, SNR should be large enough,

and secondly, the number of expanded levels should also be large enough such

that the highest level exceeds all the left shifted levels of expanded signal, and

the lowest level exceeds the right shifted levels of expanded noises. Hence, in

total, basically we need log SNRmax (SNRmax , max
s
EX/EZs) number of levels

to cover all “non-trivial” levels for coding, as well as extra −2 log ϵ number

of levels to shoot for accuracy. The details of the proof are illustrated in

Appendix 5.B.

Remark 5.6. We note that the proposed scheme achieves a rate

S∑
s=1

ϱs

[
log

(
1 +

EX

EZs

)]
= CCSI-ED, MPB,
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which is an upper bound on the capacity for the CSI-D case in the high SNR

regime. (See Lemma 5.1.) Therefore, the proposed scheme achieves the capac-

ity in the high SNR regime.

5.3 Numerical Results

Numerical results for achievable rate given by (5.5) with pl chosen as

(5.6) are illustrated in Figure 5.1, where we consider the case of two fading

states. It is evident from the figure, and also from the theoretical analysis given

in Theorem 5.5, that our proposed polar coding scheme together with expan-

sion coding achieves the upper bound on the channel capacity (Lemma 5.1)

in the high SNR regime. Therefore, the proposed coding scheme achieves the

channel capacity for sufficiently large SNR.

We also note that, similar to static AEN channel case, the coding

scheme does not perform well in the low SNR regime, which mainly results

from two reasons. First, the upper bound we derived in Lemma 5.1, which

is the target rate in our coding scheme, is not tight in the low SNR regime.

Secondly, our choice of pl only behaves as a good approximation for sufficiently

high SNR, which limits the proposed scheme to be effective at the correspond-

ing regime. However, as evident from the numerical results, for a fairly large

set of SNR values the proposed scheme is quite effective. In addition, the upper

bound curve is equal to CCSI-ED, MPB, the capacity when the input mean con-

straint is imposed per block (instead of averaging over the blocks). Therefore,

for the scenario of having input constraint per each fading block, the upper
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Figure 5.1: Numerical results. The upper bound of ergodic capacity,
CCSI-ED, MPB, which is equal to CCSI-ED for sufficiently large SNR, is given
by the red curve. The achievable rate is given by the blue curve. In this
analysis, only two fading states are concerned, and the parameters are chosen
as EZ1 = 0.5, EZ2 = 3, ϱ1 = 0.8, and ϱ2 = 0.2. Average SNR is defined as

EX/(
S∑

s=1

ϱsEZs).

bound CCSI-D, MPB ≤ CCSI-ED, MPB holds at any SNR, and the only degradation

in our coding scheme is due to the second point discussed above.

5.4 Summary

In this section, we illustrate the utilization of hierarchical polar coding

scheme for encoding over another fading channel model. For the fading AEN

channel model, expansion coding is adopted to convert the problem of cod-
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ing over an analog fading channel into coding over discrete fading channels.

By performing this expansion approach and making the resulting channels

independent (via decoding the underlying carries), a fading AEN channel is

decomposed into multiple independent fading BSCs (with a reliable decoding

of the carries). By utilizing the hierarchical polar coding scheme for fading

BSC, both theoretical proof and numerical results show that the proposed

approach achieves the capacity of this fading channel in the high SNR regime.
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5.A Proof of Lemma 5.1

Denote the channel state as a random variable S, which is discrete on

set {1, 2, . . . , S}. If the channel state information is known at the decoder,

then we have

lim
EX→∞

CCSI-D

(a)

≤ lim
EX→∞

CCSI-ED

(b)
= lim

EX→∞
max

E[X]≤EX

I(X;Y|S)

= lim
EX→∞

max
E[X]≤EX

h(Y|S)− h(Y|S,X)

= lim
EX→∞

max
Xs:

∑
s
qsE[Xs]≤EX

S∑
s=1

qs[h(Xs + Zs)− h(Zs)]

(c)
= lim

EX→∞
max

EXs :
∑
s
qsEXs≤EX

S∑
s=1

qs

[
log

(
1 +

EXs

EZs

)]
(d)
=

S∑
s=1

qs

[
log

(
1 +

EX

EZs

)]
,

where

(a) is due to upper bounding the channel capacity with the case where encoder

also has CSI and adapts its coding according to the channel states;

(b) is the ergodic capacity of the channel where both encoder and decoder has

CSI (see, e.g., [49, pages 203-209]);

(c) holds as exponential distribution maximizes the differential entropy on

positive support with a mean constraint [34] [17, page 412]. Here, we choose

Xs to be a weighted sum of an exponential distribution with mean EXs +EZs
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and a delta function in order to make the output Xs+Zs to be exponentially

distributed random variable. That is, the pdf of Xs is given by

fXs(x) =
EXs

EXs + EZs

e−x/(EXs+EZs )

EXs + EZs

u(x) +
EZs

EXs + EZs

δ(x),

where δ(x) = 1 if x = 0, and δ(x) = 0 if x ̸= 0; u(x) = 1 if x ≥ 0, and

u(x) = 0 if x < 0.

(d) follows by taking the limit.

5.B Proof of Theorem 5.5

We first state bounds for the entropy of channel noise with mean EZs

at level l, which are obtained from the Lemma 2.6:

H(ql,s) ≤ 3 log e · 2−l+ηs for l > ηs, (5.7)

H(ql,s) ≥ 1− log e · 2l−ηs for l ≤ ηs, (5.8)

where ηs , logEZs .

Now, if we denote ξ , logEX, then comparing the definitions of pl and

ql,s, we get

pl =
1

1 + e2l/EX
= ql+ηs−ξ,s. (5.9)

Based on these observations, we have

L2∑
l=−L1

[H(pl ⊗ ql,s)−H(ql,s)]

(a)

≥
L2∑

l=−L1

[H(pl)−H(ql,s)]
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(b)
=

L2∑
l=−L1

[H(ql+ηs−ξ,s)−H(ql,s)]

=

L2+ηs−ξ∑
l=−L1+ηs−ξ

H(ql,s)−
L2∑

l=−L1

H(ql,s)

=

−L1−1∑
l=−L1+ηs−ξ

H(ql,s)−
L2∑

l=L2+ηs−ξ+1

H(ql,s)

(c)

≥
−L1−1∑

l=−L1+ηs−ξ

[
1− log e · 2l−ηs

]
−

L2∑
l=L2+ηs−ξ+1

3 log e · 2−l+ηs

(d)

≥ξ − ηs − log e · 2−L1−ηs − 3 log e · 2−L2+ξ

(e)

≥ log

(
EX

EZs

)
− log e · ϵ− 3 log e · ϵ

(f)

≥ log

(
1 +

EX

EZs

)
− log e · EZs

EX
− log e · ϵ− 3 log e · ϵ

(g)

≥ log

(
1 +

EX

EZs

)
− 5 log e · ϵ, (5.10)

where

(a) is due to pl ⊗ ql,s , pl(1− ql,s) + ql,s(1− pl) ≥ pl, and then due to the fact

that entropy function is increasing on [0, 0.5] (and, we have pl ⊗ ql,s ≤ 0.5);

(b) follows from equation (5.9);

(c) follows from bounds (5.7) and (5.8);

(d) follows as
−L1−1∑

l=−L1+ηs−ξ

2l−ηs ≤ 2−L1−ηs ,
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and
L2∑

l=L2+ηs−ξ+1

2−l+ηs =

−L2+ξ−1∑
l=−L2+ηs

2l ≤ 2−L2+ξ;

(e) follows from theorem assumptions that L1 ≥ − log ϵ − min
s
ηs, and L2 ≥

− log ϵ+ ξ;

(f) is due to the fact that log(1+EX/EZs)−log(EX/EZs) = log(1+EZs/EX) ≤

log e · EZs/EX (as log(1 + α) ≤ log e · α for any α ≥ 0);

(g) is due to the assumption in theorem that min
s

SNRs ≥ 1/ϵ.

Then, using (5.10) in (5.5) of Theorem 5.4, we have

R =
S∑

s=1

qs

{
L2∑

l=−L1

[H(pl ⊗ ql,s)−H(ql,s)]

}

≥
S∑

s=1

qs

{
log

(
1 +

EX

EZs

)
− 5 log e · ϵ

}

=
S∑

s=1

qs

[
log

(
1 +

EX

EZs

)]
− 5 log e · ϵ.
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Chapter 6

Polar Coding for Fading Wiretap BSCs

6.1 Background of Polar Coding for Wiretap Channels

Wiretap channels, introduced in the seminal paper of Wyner [55], model

the communication between a transmitter and a receiver in the presence of an

eavesdropper that overhears the transmitted signals via the channel between

transmitter and eavesdropper (e.g., by tapping the wire between the legitimate

nodes). The task of transmitter is to hide information from the eavesdropper

while communicating reliably to the receiver. Wyner studied this problem and

characterized the capacity region for certain channel models including the case

of degraded eavesdropper [55]. The achievability technique is the randomized

version of the Shannon’s random coding approach, where the randomization

is utilized to confuse the eavesdropper, in order to achieve security. Since

the publication of Wyner’s work, several studies in the network information

theory domain have utilized this random coding approach to characterize the

corresponding secrecy capacities. Yet, the design of secrecy achieving coding

schemes with practical constraints such as low complexity and availability of

channel state information remain as an important direction in the physical

layer security.
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Recently, polar codes have been utilized for communication over de-

graded wiretap channels [56][57][58][59]. These schemes are based on the be-

havior of the polarization of degraded channels, where the polarized channels

for the degraded wiretap channels can be partitioned to one of the following

sets:

1) Good for both receiver and eavesdropper;

2) Good for receiver and bad for eavesdropper;

3) Bad for both receiver and eavesdropper.

The fraction of type 2 channels approach to the secrecy capacity for the de-

graded (binary symmetric) wiretap channels, and the communication scheme

utilizes this type of polarized indices to transmit information; whereas, type

1 channels are assigned to random bits to limit the eavesdropper’s ability to

obtain information about the messages. (Type 3 channels are frozen, i.e., set

to a constant value and shared to receiver.) This scheme allows for achieving

the secrecy capacity, while inheriting the low complexity nature of polar codes.

In other words, this technique mimics the Wyner’s random coding approach

with practical encoding/decoding schemes. The main hurdle for most practi-

cal applications though is to have the eavesdropper channel state information

(CSI) at the transmitter, e.g., in order to differentiate between type 1 and 2

channels in this coding scheme. Remarkably, an incorrect knowledge about the

eavesdropper CSI would leak information, hence will not result in a meaning-

ful security guarantee. In this work, we focus on relaxing the assumption on
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the instantaneous CSI knowledge, and develop polar coding schemes for fading

wiretap channels where only the statistics of CSI is known at the transmitter.

Recent studies on the design of polar coding schemes to achieve se-

crecy include [60][61][62][63][64][65][66], where strong security is considered in

[57][61][64][66], key agreement/generation is studied in [57][62][63], and other

channel models (different than discrete memoryless wiretap channel) are con-

sidered in [65][67][58]. Our model is similar to the fading models considered in

[57][67] but differentiates from all these prior studies in that only a statistical

(i.e., distribution) CSI for both receiver and eavesdropper channels is assumed

at the transmitter. Polar coding schemes for fading wiretap channels are first

studied in [57], where the transmitter has the knowledge of instantaneous CSI

for the receiver’s channel and statistical CSI for the eavesdropper’s channel.

With this setup, a key agreement scheme is proposed based on utilizing polar

codes for each fading block, where the communicated bits over fading blocks

are then used in a privacy amplification step to construct secret keys. This

technique when combined with invertible extractors allows for secure message

transmission but with the requirement of receiver CSI at the transmitter[57].

Recent work [67] proposes a polar coding scheme that utilizes artificial noise

and multiple transmit antennas under the same assumption (instantaneous

CSI for receiver and statistical CSI for eavesdropper) for the fading channels.

However, a guarantee of secrecy rate with some probability (not the corre-

sponding channel capacity) is achieved. In contrast, in this paper, we consider

a fading channel model where the transmitter does not need to know any in-
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stantaneous CSI, but only its distribution for both receiver and eavesdropper

channels. The hierarchical polar coding scheme proposed in this paper, to the

best of our knowledge, is the first provably secrecy capacity achieving coding

scheme for fading (binary symmetric) wiretap channels. Considering that this

type of binary channels model the AWGN channels with BPSK modulation

and demodulation, our scheme covers a wide application scenarios in practice.

6.2 System Model of Fading Wiretap BSCs

We investigate the case where main channel and eavesdropper fade si-

multaneously. More precisely, consider the fading (binary symmetric) wiretap

channel model (Figure 6.1): Alice wishes to send message to Bob through the

main channel W , where the channel experiences the following block fading

phenomenon: with probability ϱ1, channel W behaves as BSC(p1) (in the su-

perior state), and with the rest probability ϱ2 , 1 − ϱ1, channel W behaves

as BSC(p2) (in the degraded state). On the same time, the transmission also

reaches to an adversary (Eve) through the wiretap channel W∗, where W∗

is degraded compared to the main channel, and experiences the same fading

state as the main channel. In particular, when W behaves as BSC(p1), W∗

behaves as BSC(p∗1); when W behaves as BSC(p2), W∗ behaves as BSC(p∗2).

Under this system model, we have p1 ≤ p2 ≤ 0.5, p∗1 ≤ p∗2 ≤ 0.5, p1 ≤ p∗1, and

p2 ≤ p∗2.

Remark 6.1. Simultaneous fading model consider the case where main chan-

nel and eavesdropper channel experience the fading states, and eavesdropper
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Figure 6.1: System model for wiretap channels. The target message
M is demanded to be obtained by the main channel decoder, but not to be
decodable at the eavesdropper.

channel is assumed to be degraded to the main channel over each fading block.

The independent fading model is briefly discussed at the end of this chapter,

where in some fading blocks, the eavesdropper can be stronger than the main

channel (although in average sense the eavesdropper channel is degraded).

In general, fading coefficients vary at a much slower pace than the

transmission symbol duration. For such cases, block fading model is consid-

ered, where the channel state is assumed to be constant within each coherence

time interval, and follows a stationary ergodic process across fading blocks

[49]. To this end, we consider the practical scenario where channel state infor-

mation (CSI) is available only at the decoder (CSI-D), while the encoder only

knows the statistics of channel states. Under this model, a secrete message

M is encoded by an encoding function ψ(·) to generate transmitted symbols:

X1:NB = ψ(M), where N is the length of a fading block, and B is the number

of blocks. At the receiver, a decoding function φ(·) gives an estimate of the

estimate M̂, i.e., M̂ = φ(Y1:NB). The reliability of transmission is satisfied if

Pe , Pr{M ̸= M̂|Y1:NB, S} → 0, as N,B → ∞ (6.1)
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where S denotes CSI, and (weak) security is defined as achieving

1

NB
I(M;Y∗

1:NB|S) → 0, as N,B → ∞. (6.2)

Under the degraded assumption, the secrecy capacity of the wiretap system

can be upper bounded by

SCCSI-D

(a)

≤ SCCSI-ED

(b)
= max

p(x|s)
[I(X;Y|S)− I(X;Y∗|S)]

= max
p(x|1)

ϱ1[I(X;Y|S = 1)− I(X;Y∗|S = 1)]

+ max
p(x|2)

ϱ2[I(X;Y|S = 2)− I(X;Y∗|S = 2)]

(c)
= ϱ1[H(p∗1)−H(p1)] + ϱ2[H(p∗2)−H(p2)], (6.3)

where

(a) follows by upper bounding the secrecy capacity with the case where en-

coder has CSI (and adapts its coding scheme according to the channel

states);

(b) is due to the secrecy capacity of the degraded wiretap channel;

(c) is due to the secrecy capacity result for the degraded binary symmetric

wiretap channel [50].

In this paper, assuming CSI is available only at the receivers, we pro-

vide a polar coding scheme that achieves this upper bound while satisfying

reliability (6.1) and security (6.2) constraints. To this end, the upper bound
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(6.3) gives the secrecy capacity of our model. For the moment, we assume

p1 ≤ p2 ≤ p∗1 ≤ p∗2, and the remaining case (p1 ≤ p∗1 ≤ p2 ≤ p∗2) is detailed

later in Section 6.7.

6.3 Hierarchical Polar Encoder

In this section, we combine the hierarchical polar coding scheme in-

troduced in Chapter 4 with the polar coding scheme for wiretap channels

[56][57][58][59].

The encoder works in two phases (see Figure 6.2), hierarchically using

polar codes to generate an NB-length codeword.

6.3.1 Phase I: BEC Encoding

Here, we consider two sets of messages to be encoded using polar en-

coders designed for binary erasure channels (BECs). For the first set of mes-

sages, we generate |M1| number of BEC polar codes, where

|M1| = N · [H(p∗2)−H(p∗1)]. (6.4)

Consider a set of blockwise messages u
(j)
1:|Ac| with j ∈ {1, . . . , |M1|}, where A

is the information set for BEC(ϱ2), i.e.,

|A| = B · [ϱ1 − ϵ], (6.5)

|Ac| = B · [ϱ2 + ϵ], (6.6)

where ϵ is a positive number tending to 0 asN and B tend to infinity. For every

u
(j)
1:|Ac|, we combine it with |A| random bits to construct polar codeword ũ

(j)
1:B.
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Figure 6.2: Encoder of the polar coding scheme for wiretap channels.
The Encoder works in two phases, successively utilizing BEC and BSC polar
encoders. The codewords encoded from Phase I are transposed and embedded
into the massage of Phase II.

Denoting the permutation for BEC channel as ϕ, and the uniform random

string as r
(j)
1:|A| (each bit is Ber(1/2) distributed), the encoding process is given

by

ũ
(j)
1:B = µ

(j)
1:B ×GB,

ϕ
(
µ
(j)
1:B

)
=
[
r
(j)
1:|A| | u

(j)
1:|Ac|

]
,

for every j ∈ {1, . . . , |M1|}, where GB is the polar generator matrix with size

B. By collecting all ũ
(j)
1:B together, the encoder generates a |M1| × B matrix

Ũ . We denote ŨT
b as the b-th row of the transpose of Ũ , where b ∈ {1, . . . , B}.
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Secondly, we generate |M2| number of BEC polar codes, where

|M2| = N · [H(p2)−H(p1)]. (6.7)

Consider another set of blockwise messages v
(k)
1:|A| with k ∈ {1, . . . , |M2|}. Each

message is set as information bits to construct polar codeword ṽ
(k)
1:B. More

formally, this encoding process is given by

ṽ
(k)
1:B = ν

(k)
1:B ×GB,

ϕ
(
ν
(k)
1:B

)
=
[
v
(k)
1:|A| | 0

]
,

for every k ∈ {1, . . . , |M2|}. The collection of all ṽ
(k)
1:B together is denoted as

a |M2| × B matrix Ṽ . We denote Ṽ T
b as the b-th row of the transpose of Ṽ ,

where b ∈ {1, . . . , B}.

6.3.2 Phase II: BSC Encoding

In this phase, we generate B number of BSC polar codes, each with

length N . The encoded codewords from previous phase are embedded as mes-

sages of this phase. We consider a set of messages w
(b)
1:|I| with b ∈ {1, . . . , B},

where

|I| = N · [H(p∗1)−H(p2)]. (6.8)

For every w
(b)
1:|I|, we introduce random bits s

(b)
1:|R|, where

|R| = N · [1−H(p∗2)− ϵ], (6.9)
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and combine the output from the previous phase as message to construct

polar codeword x
(b)
1:N . More formally, if we denote the reordering permutation

for BSC as π, then the encoder of this phase can be expressed as

x
(b)
1:N = ω

(b)
1:N ×GN , (6.10)

π
(
ω
(b)
1:N

)
=
[
s
(b)
1:|R| | ŨT

b | w
(b)
1:|I| | Ṽ T

b | 0
]
,

for every b ∈ {1, . . . , B}, where GN is the polar generator matrix with size N .

That is, the codewords generated from BEC encoding phase are transposed

and embedded into the messages of the BSC encoding process. We denote

these codewords by a B × N matrix X. The proposed encoder is illustrated

in Figure 6.2.

6.4 Decoder for the Main Channel

The codewords x
(b)
1:N are transmitted through both the main channel

and the wiretap channel. After receiving the output sequence y
(b)
1:N for all

b ∈ {1, . . . , B}, the task of the decoder of main channel is to make estimates

for all the information and random bits. In particular, the decoder aims to

recover u
(j)
1:|Ac|, v

(k)
1:|A|, w

(b)
1:|I|, r

(j)
1:|A|, and s

(b)
1:|R| successfully with high probability.

As that of the encoding process, the decoding process also works in phases

(see Figure 6.3).
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ŝ
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ŝ
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Figure 6.3: Decoder at the main channel receiver given the knowledge
of the channel states information. The decoder also works in phases. After
decoding blocks in the superior channel state, the decoder is enable to decode
the blockwise information through BEC SC decoder. Finally, using the output
from previous phase, blocks in the degraded channel state can also be decoded.

6.4.1 Phase I: BSC Decoding for the Superior Channel State

In this phase, using the BSC SC decoder, channels corresponding to

the superior state are decoded. More precisely, since the receiver knows the

channel states, it can adopt the correct SC decoder to obtain estimates ω̂
(b)
1:N

from y
(b)
1:N for every b corresponding to the superior channel state. To this end,
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the decoder adopted in this phase is the classical BSC SC polar decoder with

parameter p1, i.e.,

ω̂
(b)
i =

 1, if i /∈ F , and
W(i)

1,N (y
(b)
1:N ,ω̂

(b)
1:i−1|1)

W(i)
1,N (y

(b)
1:N ,ω̂

(b)
1:i−1|0)

≥ 1,

0, otherwise,

in the order i from 1 to N , and W(i)
1,N is the i-th polarized channel from

BSC(p1). Then, for every b corresponding to the superior channel state, the

decoder can obtain the messages (with the knowledge of the frozen symbols

corresponding to F indices)

π
(
ω̂
(b)
1:N

)
=
[
ŝ
(b)
1:|R| | ˆ̃UT

b | ŵ
(b)
1:|I| | ˆ̃V T

b | 0
]
.

However, for the blocks with degraded channel states, one cannot decode re-

liably because the frozen bits corresponding to set M2 are unknown at the

decoder. At this point, we use the next phase to decode these frozen bits us-

ing a BEC SC decoder. To proceed, we construct a B×|M2| matrix ˆ̃V T such

that its rows corresponding to the superior state are determined in previous

decoding process, while the ones corresponding to the degraded states are all

set to erasures.

6.4.2 Phase II: BEC Decoding

In this phase, we decode the frozen bits with respect to the degraded

channel state. More precisely, each row of matrix ˆ̃V , denoted by ˆ̃Vk for k ∈

{1, . . . , |M2|}, is considered as the input to the decoder, and the receiver aims

to obtain an estimate of the information bits from it using BEC SC decoder.
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To this end, the decoder adopted in this phase is the classical BEC SC decoder

with parameter ϱ2, i.e.,

ν̂
(k)
b =

 1, if b ∈ A, and
W(b)

e,B( ˆ̃Vk,ν̂
(k)
1:b−1|1)

W(b)
e,B( ˆ̃Vk,ν̂

(k)
1:b−1|1)

≥ 1,

0, otherwise,

in the order b from 1 to B, and W(b)
e,B is the b-th polarized channel from

BEC(ϱ2). Then, for every k, the decoder can declare

ϕ
(
ν̂
(k)
1:B

)
=
[
v̂
(k)
1:|A| | 0

]
.

At this point, the decoder can reconstruct all erased bits as well. More pre-

cisely, the erased rows in ˆ̃V T can be recovered, and they can be further utilized

to decode the information bits in blocks with the degraded channel state in

the next phase.

6.4.3 Phase III: BSC Decoding for the Degraded Channel State

In this phase, the remaining blocks from Phase I are decoded by using

BSC SC decoders with respect to degraded channel states. In particular, bits

in the frozen set for the degraded channel state (set F and set M2) are known

due to the previous phases. Hence, the receiver can decode from y
(b)
1:N using

BSC SC decoder with parameter p2, i.e.,

ω̂
(b)
i =


1, if i /∈ F , n /∈ M2, and

W(i)
2,N (y

(b)
1:N ,ω̂

(b)
1:i−1|1)

W(i)
2,N (y

(b)
1:N ,ω̂

(b)
1:i−1|0)

≥ 1,

ˆ̃vTbi, if i ∈ M2,
0, otherwise,

in the order i from 1 to N , and W(i)
2,N is the i-th polarized channel from

BSC(p2). Then, for every b corresponding to the degraded channel state, the
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decoder declares

ψ
(
ω̂
(b)
1:N

)
=
[
ŝ
(b)
1:|R| | ˆ̃UT

b | ŵ
(b)
1:|I| | ˆ̃V T

b | 0
]
.

Hence, after this decoding procedure, the receiver makes an estimate ˆ̃U of

matrix Ũ , which further implies all information bits in u
(j)
1:|Ac| are decoded.

Note that, in addition to information bits, all random bits are decoded reliably

at Bob as well. However, in order to guarantee security, we set these bits

random (instead of information).

6.5 Achievable Rate and Reliability

The proposed hierarchical scheme allows for recovering all information

bits (represented by light blue in Figure 6.2) reliably, as long as the designed

rates of polar codes do not exceed the corresponding channel capacities. Hence,

the achievable rate is given by

R =
1

NB
(|M2| × |A|+ |M1| × |Ac|+B × |I|)

= [H(p2)−H(p1)]× [ϱ1 − ϵ] + [H(p∗2)−H(p∗1)]× [ϱ2 + ϵ] + [H(p∗1)−H(p2)]

= [H(p∗1)−H(p1)]× ϱ1 + [H(p∗2)−H(p2)]× ϱ2 − δ(ϵ), (6.11)

where we have used (6.4), (6.5), (6.6), (6.7), and (6.8), and δ(ϵ) → 0 as N ,

B → ∞. In this scheme, B number of N -length polar codes are decoded in

Phase I and III in total, and |M2| number of B-length polar codes are decoded

in Phase II. Hence, the decoding error probability is upper bounded by

Pr{M ̸= M̂|Y1:NB, S} ≤ B · 2−Nβ

+ |M2| · 2−Bβ

, (6.12)
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where β < 1/2; and, M is the collection of random variables representing for

all information bits (its realizations include u
(j)
1:|Ac|, v

(k)
1:|A|, and w

(b)
1:|I|), and M̂ is

the estimate of M obtained at the legitimate receiver. Noting that the right

hand side of (6.12) tends to 0 when implemented with properly large B and

N , the proposed scheme achieves the upper bound given by (6.3) reliably.

6.6 Security

Assume that, in addition to y
∗(b)
1:N , a genie reveals Eve all information

bits u
(j)
1:|Ac|, v

(k)
1:|A|, and w

(b)
1:|I|. Under this condition, we show that all random

bits can be reliably decoded at Eve. More precisely, the decoder designed for

the eavesdropper also works in phases, similar to the one for the main channel

(see Figure 6.4). We sketch the procedures for the decoder at Eve as follows:

1) Phase I (BSC Decoding for the Superior Channel State): The decoder still

works over the blocks with the superior channel state. However, for the

wiretap channel with superior channel state, the frozen set consists of bits

not only in set F , but also in sets M2 and I. Since we have assumed the

information bits are known at Eve, the classical BSC(p∗1) SC decoder can

be used to decode the random bits.

2) Phase II (BEC Decoding): In the second phase, we aim to recover the

unknown frozen bits corresponding to the degraded channel state, where a

similar scheme as that of the main receiver is adopted. More precisely, we

utilize the BEC(ϱ2) SC decoder over each row of the matrix after transpose.
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Phase I: BSC Decoding for the Superior Channel State

Phase III: BSC Decoding for the Degraded Channel State

Phase II: BEC Decoding

ŝ
(b)

1:|R| w
(b)

1:|I|

ŝ
(b)

1:|R|
w

(b)

1:|I|

r̂
(j)

1:|A| û
(j)

1:|Ac|

Ṽ
T
b

Ṽ
T
b

|A|

π−1

Figure 6.4: Decoder at the eavesdropper given the knowledge of the
channel states information and information bits. The decoder at the
eavesdropper works analogously to the one at the main channel.

This scheme successively recovers the erased elements, as the frozen bits for

this BEC is the information bits u
(j)
1:|Ac| and they are assumed to be known.

3) Phase III (BSC Decoding for the Degraded Channel State): Finally, the

decoded result from the BEC decoding phase is utilized at the BSC decoding

for the degraded state, where the classical BSC(p∗2) SC decoder is adopted.
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By adopting this hierarchical polar decoder, Eve can decode all random

bits with high probability, i.e.,

Pr{R ̸= R̂|Y∗
1:NB,M, S} ≤ B · 2−Nβ

+ |M1| · 2−Bβ

, (6.13)

where R is the collection of random variables representing for random bits (its

realization include r
(j)
1:|A| and s

(b)
1:|R|), and R̂ is the estimate of R. Then, using

Fano’s inequality, together with (6.13), we have

H(R|Y∗
1:NB,M, S)

≤ [B · 2−Nβ

+ |M1| · 2−Bβ

] · [|R| ·B + |A| · |M1|]

+H(B · 2−Nβ

+ |M1| · 2−Bβ

). (6.14)

Based on this, the following steps provide an upper bound (omitting

the subscript of Y∗):

I(M;Y∗|S) = I(M,R;Y∗|S)− [H(R|M, S)−H(R|Y∗,M, S)]

(a)
= I(M,R;Y∗|S)−H(R) +H(R|Y∗,M, S)

(b)

≤ NB · CCSI-D(W∗)−H(R) +H(R|Y∗,M, S)

(c)
= NB · CCSI-D(W∗)− |A| · |M1| −B · |R|+H(R|Y∗,M, S)

(d)
= NB · CCSI-D(W∗)−B[ϱ1 − ϵ] ·N [H(p∗2)−H(p∗1)]

−B ·N [1−H(p∗2)− ϵ] +H(R|Y∗,M, S)

= NB · CCSI-D(W∗)−NB · ϱ1[1−H(p∗1)]

−NB · ϱ2[1−H(p∗2)] +H(R|Y∗,M, S)−NB · δ′(ϵ)
(e)
= H(R|Y∗,M, S)−NB · δ′(ϵ),
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where δ′(ϵ) → 0 as N , B → ∞, and

(a) follows as R is independent of M and S;

(b) is due to the definition of channel W∗’s capacity with CSI-D;

(c) is due to the assumption that R is uniform;

(d) is due to equations (6.5), (6.4), and (6.9);

(e) is due to the ergodic capacity of the fading eavesdropper channel with

channel state information known only at the decoder, i.e.,

CCSI-D(W∗) ≤ CCSI-ED(W∗) = ϱ1[1−H(p∗1)] + ϱ2[1−H(p∗2)].

Finally, combining with (6.14), we have

1

NB
I(M;Y∗

1:NB|S) → 0,

as N and B tends to infinity (with proper choice of the their scaling relation-

ship). Hence, the proposed scheme achieves the secrecy constraint.

6.7 The Scenario of p1 ≤ p∗1 ≤ p2 ≤ p∗2

Here, we discuss the extension of the aforementioned coding scheme to

the scenario of p1 ≤ p∗1 ≤ p2 ≤ p∗2. Combined with the result discussed earlier

in this section, this completes the proof for all possible cases of simultaneous

fading. Note that although p∗1 ≤ p2, in each fading block the main channel is
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still stronger than the eavesdropper channel because of simultaneous fading.

to this end, the upper bound of form (6.3) still holds in this scenario.

From the previous scenario, the key idea for hierarchical polar coding

scheme is setting the size of random bits be NB · CCSI-D(W∗) and setting the

size of information bits be NB · SCCSI-D(W). Based on this observation, the

encoder for the scenario discussed here is illustrated in Figure 6.5. Note that

we still have five categories for channel indices after polarization. R and F

remain the same as previous case, but we do not have pure information set in

this scenario due to p∗1 ≤ p2. Instead, a new set M3 contains coding results

from random bits and frozen bits. More precisely, parameters shown in the

figure are defined as follow:

|R| = N · [1−H(p∗2)− ϵ],

|M1| = N · [H(p∗2)−H(p2)],

|M2| = N · [H(p∗1)−H(p1)],

|M3| = N · [H(p2)−H(p∗1)],

|F| = N ·H(p1),

|A| = B · [ϱ1 − ϵ],

|Ac| = B · [ϱ2 + ϵ].

Then, the encoding procedure works analog to the previous scenario,

except that three sets of BEC encoding are performed and the resulting code-

words are transposed and embedded into the second phase. In particular, the

sketch of hierarchical coding scheme is sketched as follow:
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1:|R|
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(j)

1:|A|
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u
(j)
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1:|A| ṽ
(k)
1:B

ũ
(j)
1:B

Figure 6.5: Hierarchical polar encoder for the scenario of p1 ≤ p∗1 ≤
p2 ≤ p∗2. For this scenario, there is no pure information index set, but a mixed
index set with random bits and frozen bits (M3 in the figure).

1) Phase I (BEC Encoding): Three sets of BEC polar codes, with either

random bits or information bits encoded, are considered in this phase:

• Random bits r
(j)
1:|A| combined with information bits u

(j)
1:|Ac| are encoded to

generate BEC polar codes ũ
(j)
1:B, for each j ∈ 1, . . . , |M1|;

• Information bits v
(k)
1:|A| combined with frozen bits 0 are encoded to gener-

ate BEC polar codes ṽ
(k)
1:B, for each k ∈ 1, . . . , |M2|;
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• Random bits t
(l)
1:|A| combined with frozen bits 0 are encoded to generate

BEC polar codes w̃
(l)
1:N , for each l ∈ 1, . . . , |M3|.

2) Phase II (BSC Encoding): The encoded result from the previous phase are

transposed and embedded into the message of this BEC encoding phase.

more precisely, the encoded bits are combined with random bits s
(b)
1:|R| and

frozen bits 0 to generate BSC polar codes x
(b)
1:N , for each b ∈ 1, . . . , B.

The decoder at the main channel also works in phases. Quite similar to

the previous case, the sketch of decoder is as follow (illustrated in Figure 6.6):

1) Phase I (BSC Decoding for the Superior Channel State): The Decoder

can decode the block with respect to the superior state using BSC(p1) SC

decoder, because the frozen bits (set as 0) are known with respect to the

superior channel state.

2) Phase II (BEC Decoding): In this phase, the decoder can recover the un-

known frozen bits corresponding to the degraded channel state. More pre-

cisely, by adding erasures to the decoded bits in set M3 and M2 from the

previous phase and forming the input to the BEC(ϱ2) SC decoder, both the

random bits and information bits can be decoded by choosing frozen bits as

0. Meanwhile, this scheme successively recovers the erased elements, which

are utilized to help to decoding in the next phase.

3) Phase III (BSC Decoding for the Degraded Channel State): At last, by

using the decoded frozen bits from the previous phase, the decoder can
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Figure 6.6: Decoder at the main channel for the scenario of p1 ≤
p∗1 ≤ p2 ≤ p∗2. The decoder here is similar to the one for the scenario of
p1 ≤ p2 ≤ p∗1 ≤ p∗2, which also works in phases to hierarchically decode all
information bits and random bits.

decode all blocks with respect to the degraded state using BSC(p2) SC

decoder.

In this way, all information bits and random bits can be recovered

reliably, i.e., (6.12) still holds in this scenario. Meanwhile, we have

R =
1

NB
(|M2| × |A|+ |M1| × |Ac|)
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= [H(p∗1)−H(p1)]× ϱ1 + [H(p∗2)−H(p2)]× ϱ2 − δ(ϵ),

which means the upper bound (6.3) is also achieved in this scenario.

On the other hand, for the proof of security, we assume the receiver

from the eavesdropper channel knows all the information bits, i.e., u
(j)
1:|Ac| and

v
(k)
1:|A| in this scenario. Then, the eavesdropper can decode all random bits by

following steps (also see Figure 6.7):

1) Phase I (BSC Decoding for the Superior Channel State): The eavesdropper

can decode all random bits in the blocks with respect to the superior channel

state using BSC(p∗1) SC decoder, because the frozen bits for these blocks

are given by F and M2, which are known by the assumption.

2) Phase II (BEC Decoding): By adding erasures blockwise to the decoded

bits in set M1 and M3 from previous phase, eavesdropper can decode both

the random bits using BEC(ϱ2) SC decoder by choosing frozen bits as u
(j)
1:|Ac|

and 0 respectively.

3) Phase III (BSC Decoding for the Degraded Channel State): Finally, for the

degraded channel state, since the corresponding frozen bits are all known

from the previous phase, eavesdropper can recover all random bits using

BSC(p∗2) SC decoder.

Hence, all random bits can be decoded reliably, i.e., (6.13) still holds

in this scenario. Then, the same procedures as the previous scenario complete

the proof of security.
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Figure 6.7: Decoder at the eavesdropper for the scenario of p1 ≤ p∗1 ≤
p2 ≤ p∗2. Similar to the one for the scenario of p1 ≤ p2 ≤ p∗1 ≤ p∗2, decoder
at the eavesdropper here also works hierarchically to decode all random bits
given knowledge of all information bits.

To this end, combining this section with the previous analysis in this

chapter, the proposed polar coding scheme can achieve the secure capacity

reliably and securely, when the main channel and wiretap channel fade simul-

taneously.
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6.8 Discussion on Independent Fading Case

In this section, we discuss the case of independent fading for main

channel and eavesdropper. More precisely, the main channel has probability

ϱ1 to behave in the superior fading state, while the eavesdropper channel

has probability ϱ∗1 to behave in the superior state (independent of the main

channel). The essential difference from the simultaneous fading case is that

the main channel may be degraded comparing to the eavesdropper channel for

certain fading blocks, which leads to challenges for coding. Still, we distinguish

two scenarios based on the relation between parameters p∗1 and p2, and we show

that the performance evaluations behave quite different between the two cases.

1) In the scenario of p1 ≤ p2 ≤ p∗1 ≤ p∗2, for those fading blocks where the

main channel is in the superior state and eavesdropper channel is in the

degraded state, the main channel is still stronger than the eavesdropper

channel due to p2 ≤ p∗1. To this end, the upper bound for security capacity

can be expressed as

SCCSI-D ≤ SCCSI-ED

= max
p(x|s,s∗)

[I(X;Y|S, S∗)− I(X;Y∗|S, S∗)]

= ϱ1ϱ
∗
1[H(p∗1)−H(p1)] + ϱ1ϱ

∗
2[H(p∗2)−H(p1)]

+ ϱ2ϱ
∗
1[H(p∗1)−H(p2)] + ϱ2ϱ

∗
2[H(p∗2)−H(p2)]

= ϱ∗1H(p∗1) + ϱ∗2H(p∗2)− ϱ1H(p1)− ϱ2H(p2), (6.15)

where random variables S and S∗ are the fading states for the main channel

and eavesdropper respectively.
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Because the main channel is still stronger than the eavesdropper channel for

all blocks, we can reuse Figure 6.2, Figure 6.3, and Figure 6.4) to illustrate

the encoding and decoding scheme, except that the encoding and decoding

for indices in set M1 should be substituted with respect to parameters for

channel BEC(ϱ∗2). To this end, all information bits and random bits can still

be decoded reliably, which implies

R =
1

NB
(|M2| × |A|+ |M1| × |A∗c|+ |I| ×B)

= [H(p2)−H(p1)]× [ϱ1 − ϵ] + [H(p∗2)−H(p∗1)]× [ϱ∗2 + ϵ]

+ [H(p∗1)−H(p2)]

= ϱ∗1H(p∗1) + ϱ∗2H(p∗2)− ϱ1H(p1)− ϱ2H(p2)− δ′(ϵ).

The reliability and security proof follows the same steps as simultaneous

fading case. Hence, the achievable rate, matching the upper bound given

by (6.15), approaches the secure capacity of the system.

2) In the scenario of p1 ≤ p∗1 ≤ p2 ≤ p∗2, for those fading blocks where the

main channel is in the superior state and eavesdropper channel is in the

degraded state, the eavesdropper channel is stronger. This situation con-

tributes nothing to the secure capacity of the system, i.e.,

SCCSI-D ≤ SCCSI-ED

= max
p(x|s,s∗)

[I(X;Y|S, S∗)− I(X;Y∗|S, S∗)]

= ϱ1ϱ
∗
1[H(p∗1)−H(p1)] + ϱ1ϱ

∗
2[H(p∗2)−H(p1)]

+ ϱ2ϱ
∗
1 · 0 + ϱ2ϱ

∗
2[H(p∗2)−H(p2)]
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= ϱ1ϱ
∗
1H(p∗1) + ϱ∗2H(p∗2)− ϱ1H(p1)− ϱ2ϱ

∗
2H(p2). (6.16)

Hence, if we still utilize the hierarchical polar encoding and decoding scheme,

a gap may exist comparing with the upper bound given by (6.16). An

effective polar coding scheme for the case of independent fading and in

particular for this scenario is still open.

6.9 Summary

In this chapter, a hierarchical polar coding scheme is proposed for bi-

nary symmetric wiretap channels with block fading. By exploiting an erasure

decoding approach at the receiver, this scheme utilizes the polarization of

degraded binary symmetric channels to survive from the impact of fading.

Meanwhile, to combat with eavesdropping, random bits are injected into the

encoded symbols, and the resulting coding scheme is shown to achieve the

secrecy capacity for the case of simultaneous fading of the main channel and

eavesdropper channel. Although we consider binary symmetric channels in

this paper, the hierarchical coding scheme can be applied as a general method

to other scenarios (such as fading blocks with more states) for simultaneously

resolving fading and security problems. Noting that AWGN channels with

BPSK modulation and demodulation resembles a BSC, the proposed scheme

covers a fairly large set of practically relevant channel models.
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Chapter 7

Information-Theoretic Analysis of Haplotype

Assembly

7.1 Background of Haplotype Assembly

Diploid organisms, including humans, have homologous pairs of chro-

mosomes where one chromosome in a pair is inherited from mother and the

other from father. The two chromosomes in a pair are structurally similar and

basically carry the same type of information but are not identical. More specif-

ically, chromosomes in a pair differ at a small fraction of positions (i.e., loci).

Such variations are referred to as single nucleotide polymorphisms (SNPs); in

humans, frequency of SNPs is approximately 1 base in 1000. A haplotype is

the string of SNPs on a single chromosome in a homologous pair (see Fig-

ure 7.1). Haplotype information is essential for understanding genetic causes

of various diseases and for advancement of personalized medicine. However,

direct analysis and identification of a haplotype is generally challenging, costly,

and time and labor intensive.

Alternatively, single individual haplotypes can be assembled from short

reads provided by high-throughput sequencing systems. These systems rely

on so-called shotgun sequencing to oversample the genome and generate a
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Figure 7.1: Illustration of SNPs and haplotypes. In a diploid cell (e.g.
human cell in the figure), paired chromosomes are inherited from father and
mother respectively. The collection of differences between these paired chro-
mosomes, i.e., SNPs, is denoted as a haplotype.

redundant library of short reads. The reads are mapped to a reference and the

individual genome is assembled following consensus of information provided

by the reads. The length of each read (i.e., DNA fragment) in state-of-the-

art sequencing systems is typically 100− 1000 base pairs [68]. Note that this

length is comparable to the average distance between SNPs on chromosomes.

Therefore, single reads rarely cover more than one variant site which is needed

to enable haplotype assembly. Moreover, the origin of a read (i.e., to which

chromosome in a pair the read belongs) is unknown and needs to be inferred

[69].

Paired-end sequencing [70], also known as mate-paired sequencing [71],

helps overcome these problems. This process generates pairs of short reads

that are spaced along the target genome, where the spacing (so-called insert
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Figure 7.2: Paired-end reads sampling two chromosomes in a homol-
ogous pair. Rectangles linked by the lines above and below the target chro-
mosome pair represent paired-end reads, and their relative positions indicate
their location along the chromosomes. In this example, 6 SNPs and 8 reads
are presented.

size) between the two reads in a pair is known. The mate-pairs allow acquisi-

tion of the information about distant SNPs on the same haplotype, and thus

help assemble the haplotype. Figure 7.2 illustrates how paired-end reads may

cover two or more variant sites along a homologous chromosome pair. The goal

of haplotype assembly is to identify the chromosome from which fragments are

sampled, and to reconstruct the haplotype sequences. When there are no se-

quencing errors, a fragment conflict graph framework [72] converts the original

problem into partitioning of the set of reads into two subsets, each collecting

the reads that belong to the same chromosome in a pair. For erroneous data,

it poses haplotyping as an optimization problem of minimizing the number of

transformation steps needed to generate a bipartite graph [73]. This leads to

various formulations of the haplotype assembly problem including minimum

fragment removal (MFR), minimum SNP removal (MSR), and minimum error
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correction (MEC) [72]. The last one, MEC, has been the most widely used cri-

terion for haplotype assembly, and is characterized by an inherent connection

with the independent error model.

In this chapter, we analyze the haplotype assembly problem from in-

formation theoretic perspective. In particular, we determine necessary and

sufficient conditions for haplotype assembly, both in the absence of noise as

well as for the case where data is erroneous.

7.2 Problem Formulation

As detailed in the introduction, a single nucleotide polymorphism (SNP)

is a variation in a DNA sequence where two corresponding bases at a specific

location on the chromosomes in a homologous pair differ from each other.

Typically, diploid organisms have only two possible variants at a SNP site,

i.e., their SNPs are typically biallelic. For the sake of convenience, we denote

one of the two variants as +1 while the other one we denote as −1. With

this notation, a haplotype sequence h comprising information about all SNP

sites on one of the chromosomes in a homologous pair can be represented by

a string with elements in {+1,−1}, while the haplotype associated with the

other chromosome in the pair is its additive inverse −h, where we denote

h = (h1, h2, . . . , hn),

and n is the length of haplotypes (i.e., the number of SNPs within each chro-

mosome in a pair).
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Each paired-end read acquired in a shotgun sequencing experiment con-

tains partial information about either of these two haplotypes. Consider a set

of discrete random variables ci, where i ∈ {1, . . . ,m} and m denotes the num-

ber of reads. Let ci identify the origin of read i, i.e., ci carries information

about the chromosome membership for read i. More precisely,

ci =

{
+1, if read i is sampled from h,
−1, if read i is sampled from −h.

(7.1)

Due to the limitation of read lengths and relatively rare occurrence of SNPs,

only a small fraction of variant sites is covered by a read. Formally, the infor-

mation about a haplotype provided by a paired-end read ri can be represented

by a sequence that consists of symbols from the alphabet {+1,−1,×}, where

“×” indicates lack of information about a variant site. Let us collect the rel-

evant information provided by the reads in an m × n matrix R having rows

corresponding to paired-end reads and columns corresponding to SNP sites.

The ith row of R (i.e., read i) is denoted as ri, and the jth element of ri

is denoted as rij. Typically, since the length of a haplotype is much larger

than the number of SNPs covered by a read, only few entries in each row are

numerical (ignoring the occurrence of bursty variations).

Note that, in the absence of sampling noise, every observed element rij

can be represented as the product of the jth SNP and the variable indicating

membership of the ith read [74]. Formally, this can be written as

rij = ci · hj. (7.2)
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From (7.2), matrix R could be interpreted as being obtained from a

rank 1 matrix S whose row si is either h or −h based on the value of ci, while

most of its entries are erased in the reading process. In particular, we have

R = PΩ(S), and S = cT · h, (7.3)

where Ω is the collection of all observed locations, and the projection P is

defined by

PΩ(S)ij =

{
sij, if (i, j) ∈ Ω,
×, if (i, j) /∈ Ω.

(7.4)

Hence, the task of haplotype assembly is to recover haplotype h and chro-

mosome membership vector c, or, equivalently, to find matrix S from matrix

R.

An example, illustrated by Figure 7.2, corresponds to the scenario

where 6 SNP sites are covered by 8 paired-end reads. The first 4 reads are

assumed to be (shotgun) sequenced from chromosome 1 and thus the chro-

mosome membership vector is c = (+1,+1,+1,+1,−1,−1,−1,−1). The true

haplotype associated with chromosome 1 is assumed to be h = (+1,+1,−1,+1,

−1,−1). In the absence of errors, the acquired SNP fragment matrix is given

by

R = PΩ(c
T · h) =



× × −1 × −1 ×
× +1 × × −1 ×
+1 × × +1 × ×
× × −1 +1 × ×
−1 × +1 × × ×
× −1 × × +1 ×
−1 × × −1 × ×
× × × × +1 +1


. (7.5)
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Ŝ
Encoder

h

c

DecoderChannel
S R

Figure 7.3: Information theoretic model for the haplotype assem-
bly problem. Two messages, haplotype and membership vector, are passing
through an erasure channel, characterizing the paired-end reading process.

7.3 Error-free Case

We first analyze haplotype assembly in the ideal scenario where the

information provided by the sequencing reads is error-free. From a joint source-

channel coding perspective, haplotype assembly aims to recover two sources

being communicated through an erasure channel (see Figure 7.3). The first

source is haplotype information, h, and the second source is the chromosome

membership vector c. Both of these vectors are assumed to originate from

a uniform distribution, i.e., their entries have 1/2 probability to take values

from {+1,−1}. These two sources are encoded jointly using the function

ψ : {+1,−1}n×{+1,−1}m → {+1,−1}m×n, and hence the encoded codeword

S = ψ(h, c). In particular, each entry in S is given by sij = ci · hj, which

implies the encoder is a bijection.

After receiving the output from channel, R, the decoder uses the decod-

ing function to map its observations into an estimate of the message. Specif-

ically, we consider the decoder (i.e., an algorithm for haplotype assembly)

given by φ : {+1,−1,×}m×n → {+1,−1}m×n, such that Ŝ = φ(R), where

Ŝ represents the estimate. Note that since the encoding function is a bijec-

tion, decoding S is equivalent to decoding both h and c. We define the error
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probability of decoding as

Pe , Pr{Ŝ ̸= S|R}. (7.6)

As in the conventional information-theoretic analysis of a communication chan-

nel, we consider all possible choices of matrix S and denote the resulting en-

semble by S. Let m and n be sufficiently large so that there exists at least

one decoding function φ with small probability of error. The channel model

reflects particular reading technique. For the paired-end sequencing technique

without sampling errors, let us consider the channel W : {+1,−1}m×n →

{+1,−1,×}m×n described as follows:

1) Erasures happen independently across rows.

2) In each row, only 2 entries remain and their positions are assumed to be

uniformly placed. This can be easily extended to any number of (constant)

entries within each row.

3) Unerased entries are observed correctly.

In other words, for the sake of simplicity we assume that precisely 2 entries are

observed in each row of S, and that the observations are correct and indepen-

dent across different rows. Under these assumptions, the number of numerical

entries in each column of R approximately obeys Poisson distribution. More-

over, the expected length of insert size between 2 sampled entries within a

row is given by (n− 2)/3. In practice, the insert size is limited and cannot be
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made arbitrarily large – a constraint that we relax in our analysis by making

the assumption 2) above.

Based on this model, we derive the necessary and sufficient conditions

on the number of error-free reads needed for haplotype assembly.

Theorem 7.1. Given the SNP fragment matrix R with 2 reliable observations

at arbitrary positions in each row, the original haplotype matrix S can be

reconstructed only if the number of reads satisfies

m = Ω(n),

where n is the length of the target haplotype. Moreover, if m = Θ(n lnn), a

reconstruction algorithm, erasure decoding, could determine S accurately with

high probability. Specifically, given a target small constant ϵ > 0, there exists

n large enough such that by choosing m = Θ(n lnn) the probability of error

Pe ≤ ϵ.

We provide the proofs of necessary and sufficient conditions in the fol-

lowing two subsections.

7.3.1 Necessary Condition for Recovery

Using Fano’s inequality [17], we find that

H(S|R) ≤ Pe log |S| ≤ Pe(m+ n), (7.7)

where the set of all possible S, S, has cardinality upper bounded by 2m+n.

Recall that Ω specifies random locations where S is observed (i.e., sampled).

146



Note that Ω is independent of S and that its rows are independent due to our

assumption on the nature of the channel. The following simple steps provide

a bound:

H(S)
(a)
= H(S|Ω)

= I(S;R|Ω) +H(S|Ω,R)

= I(S;R|Ω) +H(S|R)

(b)

≤ I(S;R|Ω) + Pe(m+ n)

= H(R|Ω)−H(R|S,Ω) + Pe(m+ n)

(c)
= H(R|Ω) + Pe(m+ n)

≤
m∑
i=1

H(ri|ωi) + Pe(m+ n)

(d)
= 2m+ Pe(m+ n),

where

(a) follows from independence between S and Ω;

(b) from Fano’s inequality, i.e., equation (7.7);

(c) from the fact that R is deterministic if S and Ω are both known in the

error-free case;

(d) from the assumption that every row has exactly 2 entries observed.

Finally, by noting that H(S) = m+ n, we clearly need

m ≥ (1− Pe)n

1 + Pe

(7.8)
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for accurate recovery. More precisely, we need m = Ω(n) for recovery with

arbitrarily small probability of decoding error.

Remark 7.2. Note that, in this proof, the channel model is only utilized when

bounding H(R|Ω). In fact, the necessary result is extendable to other channel

models (i.e., reading techniques). In particular, the lower bound m = Ω(n) also

holds in the case of deterministic choice of reading sites, paired-end reading

with fixed insert size, and, more importantly, reading techniques with more than

2 observations in each read. The essential condition for the establishment of

necessary condition is to ensure the number of observed entries in the matrix

is Θ(m).

7.3.2 Sufficient Condition for Recovery

The goal of a decoding algorithm is to recover S (or equivalently h

and c) from R with high confidence. Here, we show a simple and effective

algorithm, called “erasure decoding”, which requires only Θ(n lnn) reads for

reliable haplotype recovery. Detailed steps of this algorithm are described as

follows:

1) Choose the “seed” s as an arbitrary non-erased entry in the first row, i.e.,

s = r1j, where j is randomly chosen such that r1j ̸= ×. Set the chromosome

membership variable of the first row to c1 = +1.

2) Find all other rows with position j not erased, i.e., form a set

A = {k| rkj ̸= ×, k ̸= 1}. (7.9)
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3) Set the chromosome membership variables of the rows with indices in A to

ck =

{
+1, if rkj = r1j,
−1, otherwise,

(7.10)

for every k ∈ A.

4) Decode SNPs in the first row by evaluating

r1l = ck · rkl, (7.11)

for every k ∈ A and rkl ̸= ×.

5) Delete all rows with indices in A.

6) Arbitrarily choose another non-erased entry in the first row as the new seed

s = r1j which has not been chosen as a seed in any of the previous steps.

Repeat Step 2) to 6) until no row could be further erased.

7) If the first row is the only remaining one and its entries are all decoded,

declare h = r1; otherwise, declare a failure.

Remark 7.3. In the previous algorithm, we arbitrarily set a chromosome

membership variable of the first row, which may lead to incorrect association

of the corresponding read with a haplotype. In fact, if the algorithm success-

fully decodes both h and c, then all their components may be flipped due to

an incorrect choice of the initial chromosome membership variable. However,

matrix S would still be reconstructed correctly due to the particular product

operation used to generate components of S. Therefore, the choice of initial

membership does not influence the decoding performance.
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Remark 7.4. Erasure decoding is closely connected to the bipartite partition-

ing interpretation of the haplotype assembly problem [69]. Note that if our

algorithm successfully recovers the message matrix S, we can realign its rows

such that the matrix could be partitioned into two sub-matrices with different

chromosome memberships. Therefore, in the error-free case, the erasure de-

coding provides a computationally efficient method for partitioning reads into

two sets.

Figure 7.4 shows the details of the decoding procedure for the example

illustrated in Figure 7.2, where the read matrix is given by (7.5).

Below we analyze the performance of the proposed algorithm. More

precisely, we show that if the number of reads is large enough, i.e., m =

Θ(n lnn), the source matrix S can be recovered correctly with high proba-

bility. Observe that, in the absence of sampling errors, the erasure decoding

algorithm ensures the output to be the correct haplotype if both of the follow-

ing conditions are satisfied:

1. all rows except for the first one are deleted, and

2. all entries in the first row are decoded.

At this point, decoding error occurs if at least one of the following events

happen:

1. Event E1: at least one of the columns in R is erased and thus the corre-

sponding SNP could not be decoded;

150



c8 = −1

× ×

× × ×
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j = 6 A = {2, 6, 8}
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c2 = +1

c6 = −1

c8 = −1

+1 −1 −1 −1×

j = 1 A = {3, 7}

c1 = +1

c2 = +1
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c5 = −1

c6 = −1

×

Figure 7.4: Erasure decoding of the example illustrated in Figure 7.2.
In every round, the seed is marked in a rectangle, with its column index given
by j. Rows that share the same positions as the seed are collected in the set
A. A straight line crossing a whole row of the matrix represents a deletion.

2. Event E2: there exist a partition of row indices {1, . . . ,m} = U1 ∪ U2 and

a partition of column indices {1, . . . , n} = V1 ∪ V2 such that |V1| ≥ 2 and

|V2| ≥ 2 (so that 2 entries could be sampled from each row), and rij = × for

any (i, j) ∈ (U1 × V2)∪(U2 × V1). In other words, the sampled entries could

be considered as originating from two disjoint subsets of target haplotypes

and thus there is no hope for assembly due to the lack of information

bridging these subsets.
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We outline how to bound the probability of each of the two error events.

First, note that by the coupon collector effect, if m = Θ(n lnn) then every

column is covered by at least one read with high probability. More precisely,

by taking m = n lnn, the error event (or, equivalently, the tail distribution for

the coupon collector problem) is given by

Pr{E1} =

n−2∑
i=1

(
n
i

)(
n−i
2

)m
(
n
2

)m
=

n−2∑
i=1

(
n

i

)[
(n− i)(n− i− 1)

n(n− 1)

]m
≤

n−2∑
i=1

nie−m
2in−i(i+1)

n(n−1)

=
n−2∑
i=1

O(n−i)

= O(n−1). (7.12)

On the other hand, the second error event E2 could be further de-

composed into sub-events Eu,v
2 which represent the type 2 error event with

particular u = |U1| and v = |V1|. Then, we have

Pr{Eu,v
2 } =

(
n
v

)(
m
u

)(
v
2

)u(n−v
2

)m−u(
n
2

)m . (7.13)

Observe that by symmetry and monotonicity, the right hand side in (7.13) is

maximized by two extreme points on the feasible (u, v)−region, i.e., for any u

and v, Pr{Eu,v
2 } ≤ Pr{E1,2

2 } = Pr{Em−1,n−2
2 }. In particular, we have

Pr{E1,2
2 } =

(
n
2

)(
m
1

)(
2
2

)1(n−2
2

)m−1(
n
2

)m
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=
m[(n− 2)(n− 3)]m−1

[n(n− 1)]m−1

≤ n lnn

(
1− 4n− 6

n(n− 1)

)n lnn−1

≤ n lnne−
4n−6

n(n−1)
(n lnn−1)

= O(n−3 lnn).

Hence, the probability of the second error event is upper bounded by

Pr{E2} =
m−1∑
u=1

n−2∑
v=2

Pr{Eu,v
2 }

≤ (m− 2)(n− 4)Pr{E1,2
2 }

≤ n2 lnnO(n−3 lnn)

= O(n−1(lnn)2). (7.14)

Combining these two bounds together, we obtain

Pe ≤ Pr{E1}+ Pr{E2} = O(n−1) +O(n−1(lnn)2) < ϵ,

for arbitrary ϵ > 0 with sufficiently large n.

Remark 7.5. Note that there is a log-factor gap between the lower and upper

bounds. As analyzed in [75], this log-factor generally exists and reflects the

need that sufficiently many entries should be sampled to facilitate accurate

recovery. If a more systematic reading method, rather than random sampling,

could be adopted to generate the observation matrix, the log-factor may not be

essential for reconstruction. We will see in the next section that this log-factor

gap between two bounds also exists for the erroneous case.
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7.4 Erroneous Case

When determining a component of the haplotype sequence at a par-

ticular position, we essentially need to perform a hypothesis test and decide

between possible symbols in the corresponding column of the SNP fragment

matrix. If sequencing errors are present, some of the entries in R are erro-

neously flipped. For the purpose of the following discussion, we assume such

errors are independent and identically distributed (i.i.d.). More precisely, the

errors are modeled as having originated by passing messages (i.e., the nu-

merical entries in R) through a collection of independent binary symmetric

channels characterized by the parameter p, the probability of flipping the sign

of a numerical entries of R. Denoting the noise as matrix N with entries nij

that are i.i.d., we can write

R = PΩ(S ⊕N ). (7.15)

Hence, the model describing the erroneous case is as same as the one for

the error-free case except for an additional noise term capturing the effects of

“channel” (i.e., the effects of sequencing and data processing steps that precede

haplotype assembly). The equivalent channel model W : {+1,−1}m×n →

{+1,−1,×}m×n considered in this section is described as follows:

1) Erasures happen independently across rows.

2) In each row, only 2 entries remain and their positions are uniformly random.
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3) The remaining entries are read incorrectly with probability p and the errors

are independent.

We would like to reconstruct S from R with high probability. However,

if no more than two numerical entries are observed in a row, solving this prob-

lem is not always feasible. Assume, for instance, that the observed numerical

entries in ri are (+1,+1), and that only one sequencing error happened (i.e.,

either one of ri’s numerical entries is erroneous). Then, there is no hope to

discover whether the true numerical entries in si are (−1,+1) or (+1,−1). For

this reason, in the erroneous case we aim to recover (with high probability)

only the row space, i.e., find the haplotype h from matrix R. Let us denote

the haplotype estimate found by an assembly algorithm by ĥ. We define the

probability of error as

Pe = Pr{ĥ ̸= h|R},

and use it to characterize the accuracy of assembly. We would like to make

this probability arbitrarily small on average (averaged over all possible h).

Based on the previously described model of the haplotype assembly

problem, we next state the necessary and sufficient conditions on the number

of reads required for assembly.

Theorem 7.6. Given the SNP fragment matrix R with 2 unreliable observa-

tions at arbitrary positions in each row, the original haplotype vector h can be

reconstructed only if the number of reads satisfies

m = Ω(n),
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where n denotes the length of the target haplotype. Moreover, if m = Θ(n lnn),

a reconstruction algorithm, spectral partitioning, can determine h accurately

with high probability. Specifically, given a target small constant ϵ > 0, there

exists n large enough such that by choosing m = Θ(n lnn) the probability of

error Pe ≤ ϵ.

The preceding theorem shows that although observations are not re-

liable due to sampling noise, the number of reads required for assembly still

scales linearly with n. We provide the proofs of necessary and sufficient con-

ditions in the following two subsections.

7.4.1 Necessary Condition for Recovery

From Fano’s inequality,

H(h|R) ≤ Pe · n.

Therefore, we can write

H(h) ≤ H(R|Ω)−H(R|h,Ω) + Pe · n.

Unlike the error-free scenario analyzed in Section III.A, here H(R|h,Ω) does

not vanish. In particular, since the noise is i.i.d., it holds that

H(R|h,Ω) ≥ H(R|S,Ω) =
m∑
i=1

H(ri|si, ti) = 2mH(p).

Since H(R|Ω) ≤ 2m and H(h) = n, we have

m ≥ (1− Pe)n

2[1−H(p)]
, (7.16)

156



and thus the necessary number of reads is of the same order as in the error-free

case, m = Ω(n).

7.4.2 Sufficient Condition for Recovery

Recall that, for the scenario where R is error-free, in Section III.B

we proposed and analyzed the erasure decoding algorithm for the recovery of

S (or, equivalently, h and c). However, if the entries of R are potentially

erroneous, erasure decoding may fail to find the correct solution. Effective

methods for haplotype assembly from erroneous short reads are actively pur-

sued in research community. Most state-of-the-art algorithms rely on graphical

interpretation of the problem and consider optimization formulations focusing

on different objective criteria [72].

Formulations of the haplotype assembly problem include minimum frag-

ment removal (MFR), minimum SNP removal (MSR), and minimum error cor-

rection (MEC). MFR [72] formulation aims to identify the smallest number

of fragments (i.e., reads) whose removal renders the graph representing the

assembly problem bipartite. Since the resulting graph is conflict-free, algo-

rithms for error-free case could be readily applied to assemble the haplotypes.

However, solving the MFR formulation of the assembly problem is challenging

since the resulting optimization is generally non-convex. MSR [72] is an alter-

native formulation focused on identifying the smallest possible number of SNP

sites such that the graph representing remaining SNPs could be partitioned in

two subgraphs corresponding to haplotypes. In graph-theoretic terms, MSR
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aims to find the maximum independent set of the original graph. MEC [73]

formulation seeks the smallest number of entries in matrix R whose flipping

ensures that rows in R are consistent with having originated from two com-

plementary haplotypes. In this formulation, the problem becomes the one of

error-correction of binary data corrupted by i.i.d. noise. MEC is the most

widely used formulation of the haplotype assembly problem, and a large num-

ber of algorithms have been developed for solving it (perhaps the most widely

used one is HapCUT [76]).

The existing work on haplotype assembly focuses on the development

of algorithms that treat the number of reads as a known parameter and do not

explore the fundamental requirements for the assembly. In contrast, we rely

on the information-theoretic framework to investigate the sufficient conditions

on the number of reads needed for near-perfect recovery of the haplotype se-

quence. To this end, we present a low-rank matrix analysis formulation of the

haplotype assembly problem. Intuitively, we aim to partition SNP sites into

two sets, each corresponding to one of the two haplotypes in a homologous

pair. By regarding the adjacency matrix of the original graphical representa-

tion of the problem as a perturbation of a planted model (which is inherently a

low rank matrix), we claim that the partition is perfect as long as the param-

eters of the model are chosen appropriately. In what follows, we first describe

the “spectral partitioning” algorithm that relies on the singular value decom-

position (SVD) technique to obtain a weaker conclusion that the fraction of

partition errors vanishes as n increases, and then propose a modified algorithm
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for near-perfect haplotype recovery. The steps of the spectral partitioning al-

gorithms are as follows:

1) Construct an adjacency matrix A ∈ {0, 1}n×n based on the observation

matrix R, such that for every (u, v) ∈ {1, . . . , n} × {1, . . . , n} with u > v,

auv =

 1, if
m∑
i=1

1{riu ̸=×,riv ̸=×,riu=riv} >
m∑
i=1

1{riu ̸=×,riv ̸=×,riu ̸=riv},

0, otherwise.

(7.17)

Then, let auv = avu for any u > v to guarantee symmetry, and let auu = 0

to enforce zeros on the diagonal of A.

2) Find the singular value decomposition (SVD) of A, i.e., A = UΛV such

that U ,V ∈ Rn×n are unitary matrices and Λ ∈ Rn×n is diagonal.

3) Identify the eigenvector v2(A) corresponding to the second largest eigen-

value of A and construct sets

C1 = {j : v2j < 0}, C2 = {j : v2j ≥ 0}.

The haplotype is then recovered as

hj =

{
+1, if j ∈ C1,
−1, if j ∈ C2.

Remark 7.7. As evident from (7.17), elements of A are evaluated by examin-

ing all SNP position pairs and performing the majority voting operation over

read components that cover the same SNP position pair. This procedure is
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equivalent to the MAP hypothesis testing that assumes uniform SNP prior dis-

tribution. If the distribution of SNPs is not uniform, or if error distributions

are not identical across SNP sites, one should rely on weighted majority voting

instead.

We analyze the performance of spectral partitioning by showing its

relation to the classical partitioning problem on a planted model. This ap-

proach originates from the perturbation theory for eigenvectors and follows

steps similar to those in [77], but additionally exploits structural features of

the haplotype assembly problem to arrive at bounds that are much tighter

than those provided in the general case.

7.4.2.1 Planted Model

Consider the planted model, i.e., a matrix B ∈ Rn×n defined as

B =

[
[α]n1×n1

[β]n1×n2

[β]n2×n1
[α]n2×n2

]
,

where α > β > 0, n1+n2 = n, and [α]n1×n1 denotes an n1×n1 sub-matrix with

all entries equal to α. Clearly, such a matrix B is low-rank. More precisely,

if we perform the SVD on B, it becomes evident that the rank of B is 2 and

that its first two singular values and the corresponding singular vectors are

given by

λ1(B) = n1βµ1 + n2α , (7.18)

λ2(B) = n1βµ2 + n2α , (7.19)
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v1(B) =

([
µ1√

n1µ2
1 + n2

]
1×n1

,

[
1√

n1µ2
1 + n2

]
1×n2

)
, (7.20)

v2(B) =

([
µ2√

n1µ2
2 + n2

]
1×n1

,

[
1√

n1µ2
2 + n2

]
1×n2

)
, (7.21)

where

µ1 =
(n1 − n2)α+

√
(n1 − n2)2α2 + 4n1n2β2

2n1β
, (7.22)

µ2 =
(n1 − n2)α−

√
(n1 − n2)2α2 + 4n1n2β2

2n1β
. (7.23)

Note that since µ1 > 0 and µ2 < 0 for any n1 and n2, it holds that λ1(B) >

λ2(B). Moreover, since µ2 < 0, the first n1 entries in v2(B) have opposite

signs from those of the last n2 entries. Therefore, if we partition the indices

into two sets with respect to their signs in v2(B), the result naturally provides

a classification corresponding to different blocks of matrix B.

7.4.2.2 Generated Adjacency Matrix

As discussed above, eigenvector corresponding to the second largest

eigenvalue of the planted model B enables partitioning, i.e., helps distinguish

between different block indices. The next step is to relate the planted model

B to the adjacency matrix A constructed according to (7.17). Note that the

entries in the upper-triangular part of A are random and independent. In fact,

the distribution of each entry in A is Bernoulli with parameters which only

depend on whether the corresponding SNP sites belong to the same block or

not (i.e., two parameters are sufficient to characterize the distribution of A).
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A and B are related through a series of permutations of rows and columns

(note that permutations do not impact the eigenvectors). In particular, for

any (u, v) ∈ {1, . . . , n} × {1, . . . , n} with u > v, we define

Pr{auv = 1} = π(buv),

Pr{auv = 0} = 1− π(buv),

where π is the permutation of rows and columns. Let α denote the proba-

bility that two SNP sites from the same cluster are inferred correctly in the

majority voting step, while β denotes the probability that two SNP sites from

different clusters are inferred incorrectly. Clearly, α and β are closely related

to the accuracy and redundancy in the sequencing data – more precisely, the

parameters n, m, and p. In our case of unreliable paired-end sequencing, the

probabilities α and β are given by

α , Pr{majority voting claims auv = 1| hu = hv}

=
m∑
i=1

Pr{claims auv = 1, i reads cover sites u and v| hu = hv}

=
m∑
i=1


(
m

i

)
γi(1− γ)m−i

i∑
l=⌊i/2⌋+1

(
i

l

)
[(1− p)2 + p2]l[2p(1− p)]i−l

 ,

where γ , 2/n(n − 1) is the probability that a read covers target SNP sites

u and v; (1 − p)2 + p2 is the probability that a read covers SNPs that are

identical given hu = hv; and the second summation (ranging from ⌊i/2⌋ + 1

to i) represents for the majority voting operation evaluated over i voters.

Similarly, we have

β , Pr{majority voting claims auv = 1| hu ̸= hv}
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=
m∑
i=1


(
m

i

)
γi(1− γ)m−i

i∑
l=⌊i/2⌋+1

(
i

l

)
[2p(1− p)]l[(1− p)2 + p2]i−l

 ,

where 2p(1− p) is the probability that a particular read covers SNPs that are

identical given hu ̸= hv. Since neither α nor β is straightforward to compute,

we seek more compact and manageable bounds on these probabilities that will

enable analysis of the worst-case scenarios.

Lemma 7.8. When the number of reads used to assemble a long haplotype of

length n scales as m = Θ(n lnn), there exist positive constants κ1, κ2, and κ3,

such that

α ≥ 2κ1κ2[(1− p)2 + p2] lnn

n− 1
, (7.24)

β ≤ 2κ1[2p(1− p)] lnn

(n− 1)(1− κ−1
3 )

, (7.25)

where κ2 < 1 and κ3 > 1.

The lemma shows that both α and β have bounds which scale as

Θ(n−1 lnn) (for the proof, please see Appendix 7.A). Using these bounds,

we next show that the signs of the corresponding entries of the eigenvectors of

A and B are identical with high probability.

7.4.2.3 Matrix Eigenvector Perturbation

After establishing the relationship between the adjacency matrix A

and the planted model B, we proceed to explore the difference between their

eigenvectors by relying on the matrix perturbation theory. In particular, we
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show that for our choices of α and β, perturbation of the eigenvector of A

associated with the second largest eigenvalue from the corresponding eigen-

vector of B (i.e., the difference between those two eigenvectors) vanishes as n

increases. This result justifies performing spectral partitioning on A, rather

than B, without a significant loss of performance.

The matrix perturbation theory allows one to determine sensitivity of

matrix eigenvalues and eigenvectors with respect to slight perturbations. This

area was pioneered in [78] where a general bound for the matrix eigenvalue

perturbation effects was provided. More recently, [79] improved this bound

under further assumptions on the matrix structure. Meanwhile, the famous

Davis-Kahan sin-theta theorem [80] characterizes the rotation of eigenvectors

after perturbation, and [81] focuses on random matrices to propose a proba-

bilistic sin-theta theorem. Note that the observed matrices in the haplotype

assembly problem are always characterized by a particular structures, for in-

stance, independent and binary distributed entries, low rank, etc. To exploit

the special structure, we follow the result from a recent perturbation study

[82] which provides a much tighter bound for the perturbation effects with

respect to binary random matrices, summarized in the following lemma.

Lemma 7.9 (Lemma 2 and 3 in [82]). Consider a square n× n symmetric 0-

diagonal random matrix M such that its elements muv = mvu are independent

Bernoulli random variables with parameters E[muv] = ρuvχn
−1, where ρuv are

constants and χ = Ω(lnn). Then, with probability at least 1−O(n−1), we have

|λk(M)− λk(E[M ])| ≤ O(χ1/2), (7.26)
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||vk(M )− vk(E[M ])|| ≤ O(χ−1/2), (7.27)

for any k not larger than the rank of E[M ], where λk(M) is the k-th largest

eigenvalue of M , and vk(M ) is the corresponding k-th eigenvector.

We observe that the adjacency matrix A has the same structure as the

matrix M in the statement of the lemma. In particular, note that A is a

0-diagonal random matrix with each entry being an independently distributed

Bernoulli random variable. The parameters of the Bernoulli distributions, α

and β, satisfy the scale constraints with χ = lnn due to Lemma 7.8. Moreover,

note that E[A] = π(B̃), where B̃ = B − αI, and that permutation π does

not change the eigenvectors. Therefore, we can utilize Lemma 7.9 to study the

haplotype assembly problem. In particular, from (7.27) it follows that

||v2(A)− v2(B̃)|| ≤ O(ln−1/2 n).

By noting that an addition of the identity matrix does not influence the eigen-

vectors, we conclude that v2(B̃) = v2(B). Thus, we obtain

||v2(A)− v2(B)|| ≤ O(ln−1/2 n). (7.28)

Recall that v2(B) has the form of (7.21), which implies that a particular entry

perturbed to change its sign contributes at least Ω(n−1/2) to ||v2(A)−v2(B)||.

Therefore, if ne is the number of errors, we have√
ne

n
≤ O(ln−1/2 n). (7.29)
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By noting that ne/n is the fraction of partition errors, we conclude that the

haplotype can be recovered reliably with vanishing fraction of errors for suffi-

ciently large number of reads n.

Remark 7.10. As indicated by the analysis, spectral partitioning using SVD

technique could only guarantee that the fraction of partition errors vanishes

with high probability. For a stronger result, i.e., that the probability of parti-

tion error tends to zero, one may rely on another technique, “combinational

projection” [77], instead of performing only the SVD. Essentially, the combina-

tional projection gives another projection, after the one on the singular space,

onto the span of characteristic vectors generated from a certain threshold. This

way, the variances of target random variables are significantly reduced and the

Chernoff-type argument could be adopted to arrive at a tighter bound on the

distance of row spaces after the final projection. Note that (7.26) still holds

in this case, and that by replacing the corresponding bounds in [77] it follows

that Θ(n lnn) reads are sufficient to exactly recover the haplotype with high

probability.

Remark 7.11. Spectral partitioning is a very simple and computationally effi-

cient algorithm that employs only the majority voting and the SVD techniques

to perform haplotype assembly. In fact, we do not even require a full SVD

calculation since only the second eigenvector is needed to determine the hap-

lotype, as described in the algorithm. Therefore, by using the power method

to discover the desired eigenvector, the complexity of spectral partitioning can
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be reduced from O(n3) in the general case to O(n lnn) for sparse adjacency

matrix (since the number of total entries observed is roughly O(n lnn)).

Remark 7.12. Although the theoretical analysis presented in Section ??.B is

conducted under the assumption that there are precisely two entries observed

in each row of the SNP fragment matrix, the results can easily be generalized

to the case with multiple entries per row as long as reads may sample all pairs

of SNP positions with non-trivial probability. If, however, the insert size is

fixed or characterized by small variance, an alternative quantification of the

minimum number of entries guaranteeing recovery of a low rank matrix may

be needed. To this end, we note that a related matrix completion problem was

studied in in [83] [84] [85], where an optimization approach was utilized to

determine the necessary conditions and the recovery was facilitated by solving

an appropriately formulated convex program. For our haplotype assembly prob-

lem, the observed fragments matrix R could be interpreted as a combination of

the true haplotype matrix S and an independent sequencing error matrix N .

Moreover, the MEC criterion score is equivalent to the minimum l1-norm of

N , and the associated optimization problem is given by

min ||S||∗ + γ||N ||1

s.t. PΩ(S ⊕N ) = PΩ(R),

where ∥S∥∗ is the nuclear norm of S and γ denotes the balancing weight. [86]

[87] report that the row space of the original matrix could be reliably recovered

as long as the number of observed entries is large enough. Putting it more
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precisely, the number of reads needed for recovery is as least Ω(n · poly(lnn)),

which does not outperform the bound we obtained by relying on spectral parti-

tioning. The kernel technique utilized in general for this type of proofs is the

Golfing Scheme [86] [87], which requires a lower bound on the number of sam-

pled entries to construct the dual certificate. If a new technique with a better

performance guarantee could be used instead of the Golfing Scheme (at least for

the case of the specific problem structure encountered in haplotype assembly),

then the optimality method may also be able to provide the necessary condition

that is characterized by a log-factor gap. Results utilizing this optimization

method will be reported elsewhere in the future.

7.5 Simulation Results and Analysis

7.5.1 Simulation on a Synthetic Data Set

We first test the performance of the two proposed algorithms – erasure

decoding and spectral partitioning – on a synthetic data set. To this end, hap-

lotypes are randomly generated according to a uniform distribution, followed

by sampling paired-end fragments from haplotypes randomly and uniformly

with i.i.d. sampling errors. For the moment, we enforce that 2 SNPs are ob-

served in each fragment. The target of this simulation study is to empirically

explore the relations among three key parameters featured in the algorithms,

i.e., the length of the haplotype n, the probability of sampling errors p, and,

most importantly, the number of sampled reads m. We show that the sim-

ulation results verify the conclusions of the theorems presented in the earlier
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Figure 7.5: Plot of average error rates from 100 random simulations
where the probability of sampling errors is set to p = 0.1. In this
simulation, we illustrate how the accuracy of haplotype assembly depends on
relationship between the number of reads m and the haplotype length n for
both erasure decoding (ED) and spectral partitioning (SP).

sections of this paper, and also provide intuition for selecting appropriate pa-

rameters from the practical point of view.

To begin with, we set the probability of sampling error p = 0.1 (signif-

icantly larger than the typical value in practice), and study how the accuracy

of haplotype assembly depends on relationship between the number of reads

m and the haplotype length n. The results, shown in Figure 7.5, provide the

following observations:

1) The erasure decoding algorithm fails to assemble the haplotype for all

choices of m, which is basically due to large sampling noise. As indicated
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in Section III, this algorithm is intuitively designed for the error-free case

and it has no performance guarantees when adopted and applied for the

erroneous case.

2) For spectral partitioning, choosing m = Θ(n) is not sufficient to ensure

reliable recovery, while choosing m = Θ(n lnn) is sufficient to guarantee

that the error fraction vanishes for large n. This result is consistent with

the conclusion of Theorem 7.6.

3) Spectral partitioning, when implemented with sufficiently large number of

reads (i.e., m = Θ(n lnn)), provides better error rate for large haplotype

lengths. This is predicted by the theoretical result provided by equation

(7.28).

Next, motivated by the results of the theoretical analysis and the pre-

viously described initial simulation results, we scale the number of sampled

reads as m = 2n lnn and empirically study how the performance of both al-

gorithms depends upon sampling errors and haplotype lengths. The results of

simulation are illustrated in Figure 7.6, leading to the following observations:

4) The erasure decoding algorithm performs extremely well in the error-free

case when the number of fragments is sufficiently large. However, in the

erroneous case, this algorithm fails to recover the original haplotypes with

high confidence.
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Figure 7.6: Plot of the average error rates evaluated based on 100
random simulations where the number of reads is m = 2n lnn. Here
we illustrate how the performance depends on sampling errors for both erasure
decoding (ED) and spectral partitioning (SP).

5) The convergence rate for spectral partitioning highly depends on p. More

specifically, spectral partitioning is well-suited for the low-noise scenario,

i.e., p ≤ 0.1, which is typical of practical applications.

These results on synthetic data verify the results of our theoretical

analysis in Section 7.3 and Section 7.4, and the overall conclusions may be

summarized as follows:

Erasure decoding is applicable only in the noise-free setting and it re-

quires m = Θ(n lnn) reads for a reliable assembly of a haplotype of length

n.

Spectral partitioning proves useful in the low-noise scenario (e.g., p ≤
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0.1). It, too, requires m = Θ(n lnn) reads for a reliable assembly of a hap-

lotype of length n. When these two conditions are met, spectral partitioning

is capable of recovering the original haplotype with high accuracy, and the

recovery rate is inversely proportional to the length of the haplotype.

7.5.2 Simulation on a Benchmark Database

Here we present the study of the performance of both algorithms on the

database created in [88], generated from the Phase I of the HapMap project [89]

and widely adopted for benchmarking the effectiveness of haplotype assembly

algorithms. This database consists of all 22 chromosomes from 209 unrelated

individuals; shotgun sequencing process has been simulated to obtain the SNP

observation matrix. Note that only heterogeneous SNP sites are considered

in our study and that the recovery rate is computed based on the haplotype

block lengths after filtering out the homozygous sites. Moreover, note that

here the number of SNPs covered by reads varies and is no longer fixed to 2

as was the case in Section V.A. Nevertheless, our algorithms can be directly

applied since the assumption on having precisely 2 observations per read was

only needed to allow theoretical analysis.

TABLE 7.1 shows the average recovery rate computed using 100 data

sets from [88], where the free parameters include: 1) the haplotype length

n = 100, 350, 700; 2) the coverage c = 3, 5, 8, 10; and 3) the sampling error rate

p = 0%, 10%, 20%. From the simulation results, we find that erasure decoding

successfully assembles the haplotype with high probability when p = 0, but
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fails to do so when p > 0. Moreover, sparse partitioning performs well in

comparison with several recently proposed algorithms when the number of

reads is sufficiently large. Therefore, our proposed algorithms, primarily meant

to support theoretical results, also have practical significance.

7.6 Summary

In this chapter, we study the haplotype assembly problem from an

information-theoretic perspective. To determine the chromosome membership

of reads provided by high-throughput sequencing systems and thus enable

haplotype assembly, we interpret the problem as the one of decoding data

messages that are encoded and transmitted over a particular channel model.

This channel model reflects the salient features of the paired-end sequencing

technology and the haplotype assembly problem.

In the case of error-free sequencing, we find that the required number

of reads needed for reconstruction is at least of the same order as the length

of the haplotype sequence. To establish a sufficient condition, we analyze

an erasure decoding algorithm that utilizes the common information across

reads to iteratively recover haplotypes. We find that this algorithm ensures

reconstruction with the optimal scaling of the number of reads.

In the case of erroneous sequencing, where errors are assumed to be gen-

erated independently and identically, we show that the number of reads needed

to recover the haplotype is of the same order as in the error-free case. For the

sufficient condition, we rephrase the original haplotype assembly problem as a
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low-rank matrix recovery. Using matrix permutation theory, we illustrate that

haplotype sequences could be recovered reliably when the number of reads

scales as Θ(n lnn), where n denotes the haplotype length.

Simulation results corroborate theoretical claims, and the information-

theoretic view of the haplotype assembly problem is worth pursuing in other

DNA-sequencing related applications (e.g., population haplotyping).
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7.A Proof of Lemma 7.8

Assume m = κ1n lnn, where κ1 is a positive constant. In order to

provide a lower bound for α, we truncate the first summation by leaving only

the term with i = 1. More precisely, we have by denoting γ , 2/n(n− 1),

α =
m∑
i=1


(
m

i

)
γi(1− γ)m−i

i∑
l=⌊i/2⌋+1

(
i

l

)
[(1− p)2 + p2]l[2p(1− p)]i−l


≥
(
m

1

)[
2

n(n− 1)

] [
1− 2

n(n− 1)

]m−1(
1

1

)
[(1− p)2 + p2][2p(1− p)]0

≥ 2κ1n lnn

n(n− 1)
e−

4κ1n lnn
n(n−1) [(1− p)2 + p2]

=
2κ1[(1− p)2 + p2]n− 4κ1

n−1 lnn

n− 1
.

Note that n− 4κ1
n−1 is an increasing function with n and tends to 1. Hence, for

large enough n, there exists a constant κ2 < 1 such that

n− 4κ1
n−1 ≥ κ2. (7.30)

As a result, the lower bound becomes

α ≥ 2κ1κ2[(1− p)2 + p2] lnn

n− 1
. (7.31)

Thus, α has a Θ(n−1 lnn) scale lower bound. In fact, this bound is rather

tight, because the first term (i = 1) dominates the overall value (analogue to

the analysis of β that follows next).

In addition, we need to establish an upper bound on β. In particular,

we show that the terms in the above summation are at least exponentially
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decreasing, such that the first term dominates the value of β. For this purpose,

we denote

βi ,
(
m

i

)[
2

n(n− 1)

]i
γi(1− γ)m−i

i∑
l=⌊i/2⌋+1

(
i

l

)
[2p(1− p)]l[(1− p)2 + p2]i−l,

where γ = 2/n(n− 1). Introducing

β
(l)
i ,

(
i

l

)
[2p(1− p)]l[(1− p)2 + p2]i−l

and

β =
m∑
i=1

βi,

it follows that

βi =

(
m

i

)[
2

n(n− 1)

]i [
1− 2

n(n− 1)

]m−i i∑
l=⌊i/2⌋+1

β
(l)
i .

In order to derive a lower bound on βi/βi+1 for any i, we focus on two cases:

1. For even i, write i = 2k and note that

β2k
β2k+1

=

(
m
2k

) [
2

n(n−1)

]2k [
1− 2

n(n−1)

]m−2k 2k∑
l=k+1

β
(l)
2k(

m
2k+1

) [
2

n(n−1)

]2k+1 [
1− 2

n(n−1)

]m−2k−1 2k+1∑
l=k+1

β
(l)
2k+1

=

(2k + 1)[n(n− 1)− 2]
2k∑

l=k+1

β
(l)
2k

2(κ1n lnn− 2k)
2k+1∑
l=k+1

β
(l)
2k+1

.

Note that there are k + 1 terms for β
(l)
2k+1 in the denominator, but only

k terms for β
(l)
2k in the numerator. Hence, we duplicate the numerator to
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compare it with the denominator. More precisely, for k + 1 ≤ l ≤ 2k,

β
(l)
2k

β
(l)
2k+1

=
2k + 1− l

(2k + 1)[(1− p)2 + p2]
≥ 1

2k + 1
, (7.32)

where the last inequality holds due to (1− p)2 + p2 ≤ 1. Moreover,

β
(k+1)
2k

β
(2k+1)
2k+1

=
(2k)![(1− p)2 + p2]k−1

(k + 1)!(k − 1)![2p(1− p)]k
≥ 1

2k + 1
, (7.33)

where the last inequality holds due to 1 ≥ (1 − p)2 + p2 ≥ 2p(1 − p).

Combining these two expressions, we have

2β2k
β2k+1

=

(2k + 1)[n(n− 1)− 2]

{
2k∑

l=k+1

β
(l)
2k +

2k∑
l=k+1

β
(l)
2k

}
2(κ1n lnn− 2k)

{
2k∑

l=k+1

β
(l)
2k+1 + β

(2k+1)
2k+1

}

≥
(2k + 1)[n(n− 1)− 2]

{
2k∑

l=k+1

β
(l)
2k + β

(k+1)
2k

}
2(κ1n lnn− 2k)

{
2k∑

l=k+1

β
(l)
2k+1 + β

(2k+1)
2k+1

}
≥ (2k + 1)[n(n− 1)− 2]

2(κ1n lnn− 2k)(2k + 1)

=
n(n− 1)− 2

2(κ1n lnn− 2)
.

Thus,

β2k
β2k+1

≥ n(n− 1)− 2

4(κ1n lnn− 2)
. (7.34)

2. For i odd, write i = 2k − 1 and note that

β2k−1

β2k
=

(
m

2k−1

) [
2

n(n−1)

]2k−1 [
1− 2

n(n−1)

]m−2k+1 2k−1∑
l=k

β
(l)
2k−1(

m
2k

) [
2

n(n−1)

]2k [
1− 2

n(n−1)

]m−2k 2k∑
l=k+1

β
(l)
2k
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=

2k[n(n− 1)− 2]
2k−1∑
l=k

β
(l)
2k−1

2(κ1n lnn− 2k + 1)
2k∑

l=k+1

β
(l)
2k

.

In this case, both numerator and denominator have k terms in summation.

Hence, term-by-term comparison leads to

β
(l)
2k−1

β
(l)
2k

=
2k − l

2k[(1− p)2 + p2]
≥ 1

2k
. (7.35)

Thus,

β2k−1

β2k
≥ n(n− 1)− 2

2(κ1n lnn− 1)
. (7.36)

Note that, in both cases, the lower bounds (7.34) and (7.36) tend to infinity

as n increases. Therefore, there exists a constant κ3 > 1 such that for large

enough n

min

{
n(n− 1)− 2

4(κ1n lnn− 2)
,
n(n− 1)− 2

2(κ1n lnn− 1)

}
≥ κ3, (7.37)

which further implies that for any value of i,

βi
βi+1

≥ κ3.

Based on this we obtain βi ≤ β1κ
1−i
3 and

β1 =

(
m

1

)[
2

n(n− 1)

] [
1− 2

n(n− 1)

]m−1(
1

1

)
[2p(1− p)][(1− p)2 + p2]0

≤ 2κ1n lnn

n(n− 1)
e−

2κ1n lnn
n(n−1) [2p(1− p)]

=
2κ1[2p(1− p)]n− 2κ1

n−1 lnn

n− 1
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≤ 2κ1[2p(1− p)] lnn

n− 1
,

where we have used the fact that n− 2κ1
n−1 ≤ 1. Hence, we obtain

β =
m∑
i=1

βi

≤
m∑
i=1

β1κ
1−i
3

≤ 2κ1[2p(1− p)] lnn

(n− 1)(1− κ−1
3 )

. (7.38)

Thus, the upper bound for β is also Θ(n−1 lnn) scale.

A point to clarify: in several places we have somewhat imprecisely

used categorization “large enough n.” One may be concerned with whether

a particular choice of n satisfying the proof assumptions could match the

practical haplotype assembly scenarios. As an illustration, for κ1 = 2 that we

use in the simulation setup, a simple choice of κ2 = 1/2 and κ3 = 2 implies

that the minimum value of n needed to satisfy both assumptions (7.30) and

(7.37) is given by

n ≥ max{45, 69, 28} = 69,

which is quite smaller than the commonly encountered value in the haplo-

type assembly problems. Therefore, our bounds are meaningful and useful in

practical scenarios.
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Chapter 8

Conclusion

In this thesis, we study the coding mechanisms for communication and

compression, from the perspective of wireless communication and DNA se-

quencing respectively. Three important topics are considered, namely expan-

sion coding for analog data transmission and compression, hierarchical polar

coding scheme for fading channels, and information-theoretic analysis for hap-

lotype assembly. In this chapter, we review our main contributions to each

topic and point out a few possible directions for future research.

8.1 Summary of Main Results

8.1.1 Part I: Expansion Coding for Data Transmission and Com-
pression

In Chapter 2, we propose expansion coding scheme to construct good

codes for analog channel coding. With a perfect or approximate decompo-

sition of channel noises, we consider coding over independent parallel repre-

sentations, which provides a foundation for reducing the original problems to

a set of parallel simpler subproblems. In particular, via expansion channel

coding, we consider coding over q-ary channels for each expanded level. This

approximation of the original channel together with capacity achieving codes
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for each level (to reliably transmit messages over each channel constructed) and

Gallager’s method (to achieve desired communication rates for each channel)

allow for constructing near-capacity achieving codes for the original channel.

Both theoretical analysis and numeric result show the proposed coding scheme

achieves the capacity of AEN channel at high SNR regime, when implemented

with enough number of expanded levels.

In Chapter 3, similar to the case of channel coding, we utilize expansion

coding to adopt discrete source codes achieving rate distortion limit on each

level after expansion, and design codes achieving near-optimal performance

for the original source. Exponential and Laplacian sources are concerned as

examples to show effectiveness of the proposed scheme. Theoretical analysis

and numerical results are provided to detail performance guarantees of the

proposed expansion coding scheme.

To this end, expansion coding is proved to be an effective coding scheme

framework for both data transmission over analog noise channel, and data com-

pression of analog sources. The advantages of expansion coding scheme lie in

its ability to shoot for near optimal rate, and to guarantee coding complexities

tractable at the same time.

8.1.2 Part II: Hierarchical Polar Coding Scheme for Fading Chan-
nels

In Chapter 4, a hierarchical polar coding scheme is proposed for the

fading BSC. This novel scheme, by exploiting an erasure decoding approach at
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the receiver, utilizes the polarization results of different BSCs. (These BSCs

are defined over channel uses at a given fading block and over fading blocks

at a given channel use index.) This novel polar coding technique is shown to

be capacity achieving for fading BSC.

In Chapter 5, we illustrate the utilization of hierarchical polar coding

scheme for encoding over another fading channel model. For the fading AEN

channel model, expansion coding is adopted to convert the problem of cod-

ing over an analog fading channel into coding over discrete fading channels.

By performing this expansion approach and making the resulting channels

independent (via decoding the underlying carries), a fading AEN channel is

decomposed into multiple independent fading BSCs (with a reliable decoding

of the carries). By utilizing the hierarchical polar coding scheme for fading

BSC, both theoretical proof and numerical results show that the proposed

approach achieves the capacity of this fading channel in the high SNR regime.

In Chapter 6, we move our focus to binary symmetric wiretap channels

with block fading. By exploiting an erasure decoding approach at the receiver,

this scheme utilizes the polarization of degraded binary symmetric channels to

survive from the impact of fading. Meanwhile, to combat with eavesdropping,

random bits are injected into the encoded symbols, and the resulting coding

scheme is shown to achieve the secrecy capacity for the case of simultaneous

fading of the main channel and eavesdropper channel.

Remarkably, for all of the fading channel concerned in this part, the

proposed scheme does not assume channel state information at the transmitter,

183



and fading BSC models the fading additive white Gaussian noise (AWGN)

channel with a BPSK modulation. Therefore, our results are quite relevant to

the practical channel models considered in wireless communications.

8.1.3 Part III: Information-Theoretic Analysis for Haplotype As-
sembly

In Chapter 7, we study the haplotype assembly problem from an information-

theoretic perspective. To determine the chromosome membership of reads

provided by high-throughput sequencing systems and thus enable haplotype

assembly, we interpret the problem as the one of decoding data messages that

are encoded and transmitted over a particular channel model. This channel

model reflects the salient features of the paired-end sequencing technology and

the haplotype assembly problem.

In the case of error-free sequencing, we find that the required number

of reads needed for reconstruction is at least of the same order as the length

of the haplotype sequence. To establish a sufficient condition, we analyze

an erasure decoding algorithm that utilizes the common information across

reads to iteratively recover haplotypes. We find that this algorithm ensures

reconstruction with the optimal scaling of the number of reads.

In the case of erroneous sequencing, where errors are assumed to be gen-

erated independently and identically, we show that the number of reads needed

to recover the haplotype is of the same order as in the error-free case. For the

sufficient condition, we rephrase the original haplotype assembly problem as a
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low-rank matrix recovery. Using matrix permutation theory, we illustrate that

haplotype sequences could be recovered reliably when the number of reads

scales as Θ(n lnn), where n denotes the haplotype length.

8.2 Future Directions

This thesis is motivated by our recognition of recent trend in informa-

tion theory and coding theory, and represents our initial efforts to develop

coding schemes for practical communication and compression problems. We

take some first steps in developing and analyzing theoretical models and cod-

ing mechanisms for wireless communication and DNA sequencing. There are

still many interesting open problems and unsolved issues in this broad area.

Here, we summarize three such research directions as the closure of this thesis.

8.2.1 Expansion Coding for AWGN Channel

Although expansion coding has a good performance for AEN channel

at high SNR regime, a more popular model concerned in communications

is AWGN channel. To design an expansion coding method for AWGN, the

challenges come from two aspects.

First, Gaussian distribution is not decomposable. More precisely, unlike

exponential distribution, Gaussian distribution cannot be expressed a summa-

tion of independent random variables, however, it could be approximated by

its binary expansion very closely, where each levels are forced to be indepen-

dent. To this end, we are coding over a set of approximated discrete channels,
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and proper argument should be concerned here in order to guarantee that

the achievable scheme for the approximated channel also fit for the original

channel.

Secondly, Gaussian distribution is two-sided. Again, unlike the expo-

nential distribution, the support set for Gaussian distribution is the real set,

which means the issue with sign should be taken into consideration in coding.

More precisely, in addition to carries, we also have borrows in the design of

coding scheme. Because borrows and carries happen arbitrarily with the same

probability, they cannot be decoded corrected in any coding scheme.

8.2.2 Expansion Coding for Multi-User Channels

Deterministic model is an effective tool to study analog noise channel

coding problems, where the basic idea is to construct an approximate channel

for which the transmitted signals are assumed to be noiseless above the noise

level. This approach is proved to be very effective in analyzing the capacity of

networks. In particular, it has been testified that this framework perfectly rep-

resents and helps to characterize degrees of freedom of point-to-point AWGN

channels, as well as some multi-user channels of concern.

In this sense, expansion coding scheme can be seen as a generalization

of these deterministic approaches. Here, the effective noise in the channel is

carefully calculated and the system takes advantage of coding over the noisy

levels at any SNR. This generalized channel approximation approach can be

useful in reducing the large gaps reported in the previous works, because the
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noise approximation in our work is much closer to the actual distribution as

compared to that of the deterministic model.

8.2.3 Information-Theoretic Analysis for Population Haplotyping

Population haplotyping is another important DNA sequencing related

problem. Unlike haplotype assembly, population haplotyping aims to recover

potential haplotypes from observed genotypes generated from group of diploid

species. Similar information theoretic tool can be utilized to analyze the nec-

essary condition of the number of observations (i.e., genotypes) for perfect

or near-perfect recovery, however, the corresponding coding scheme that can

achieve the necessary condition (with proper gap) is challenging and still open.

187



Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[2] R. W. Hamming, “Error detecting and error correcting codes,” Bell Sys-

tem Technical Journal, vol. 29, no. 2, pp. 147–160, Apr. 1950.

[3] M. J. E. Golay, “Notes on digital coding,” Proceeding of the Institute of

Radio Engineers, vol. 37, no. 6, pp. 657–657, Jun. 1949.

[4] D. E. Muller, “Application of boolean algebra to switching circuit de-

sign and to error detection,” IRE Transactions on Electronic Computers,

vol. 3, no. 3, pp. 6–12, Sep. 1954.

[5] I. S. Reed, “A class of multiple-error-correcting codes and the decoding

scheme,” IRE Transactions on Information Theory, vol. 4, no. 4, pp. 38–

49, Sep. 1954.

[6] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

Journal of the Society for Industrial & Applied Mathematics, vol. 8, no. 2,

pp. 300–304, Jun. 1960.

[7] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups.

New York: Springer, 1988.

188



[8] F. J. McWilliams and N. J. A. Sloane, The theory for error-correcting

codes. North-Holland, 1983.

[9] J. G. D. Forney, “Convolutional codes I: Algebraic structure,” IEEE

Transactions on Information Theory, vol. 16, no. 6, pp. 720–738, Nov.

1970.

[10] ——, Concatenated codes. Cambridge: MIT press, 1966.

[11] C. Berrou and A. Glavieux, “Near optimum error correcting coding and

decoding: Turbo-codes,” IEEE Transactions on Communications, vol. 44,

no. 10, pp. 1064–1070, Oct. 1996.

[12] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse

matrices,” in Cryptography and Coding. Springer, 1995, pp. 100–111.

[13] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions on

Information Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[14] E. Arıkan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, Jul.

2009.

[15] J. Perry, H. Balakrishnan, and D. Shah, “Rateless spinal codes,” in Proc.

of the 10th ACM Workshop on Hot Topics in Networks (HotNets 2011),

New York City, New York, USA, Nov. 2011, pp. 1–6.

189



[16] H. Balakrishnan, P. Iannucci, D. Shah, and J. Perry, “De-randomizing

Shannon: The design and analysis of a capacity-achieving rateless code,”

arXiv:1206.0418, Jun. 2012.

[17] T. M. Cover and J. A. Thomas, Elements of information theory. John

Wiley & Sons, 1991.

[18] A. J. Viterbi and J. K. Omura, “Trellis encoding of memoryless discrete-

time sources with a fidelity criterion,” IEEE Transactions on Information

Theory, vol. 20, no. 3, pp. 325–332, May 1974.

[19] Y. Matsunaga and H. Yamamoto, “A coding theorem for lossy data com-

pression by LDPC codes,” IEEE Transactions on Information Theory,

vol. 49, no. 9, pp. 2225–2229, Sep. 2003.

[20] M. J. Wainwright, E. Maneva, and E. Martinian, “Lossy source compres-

sion using low-density generator matrix codes: Analysis and algorithms,”

IEEE Transactions on Information Theory, vol. 56, no. 3, pp. 1351–1368,

Mar. 2010.

[21] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy source

coding,” IEEE Transactions on Information Theory, vol. 56, no. 4, pp.

1751–1768, Apr. 2010.

[22] E. Arıkan, “Source polarization,” in Proc. 2010 IEEE International Sym-

posium on Information Theory (ISIT 2010), Austin, Texas, USA, Jun.

2010, pp. 899–903.

190



[23] M. Karzand and E. Telatar, “Polar codes for q-ary source coding,” in

Proc. 2010 IEEE International Symposium on Information Theory (ISIT

2010), Austin, Texas, USA, Jun. 2010, pp. 909–912.

[24] F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-

terminating inhibitors,” Proceedings of the National Academy of Sciences,

vol. 74, no. 12, pp. 5463–5467, Dec. 1977.

[25] R. Staden, “A strategy of DNA sequencing employing computer pro-

grams,” Nucleic Acids Research, vol. 6, no. 7, pp. 2601–2610, Mar. 1979.

[26] S. Anderson, “Shotgun DNA sequencing using cloned DNase I-generated

fragments,” Nucleic Acids Research, vol. 9, no. 13, pp. 3015–3027, May

1981.

[27] G. A. Churchill and M. S. Waterman, “The accuracy of DNA sequences:

Estimating sequence quality,” Genomics, vol. 14, no. 1, pp. 89–98, Sep.

1992.

[28] J. D. J. Costello and J. G. D. Forney, “Channel coding: The road to

channel capacity,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1150–

1177, Jun. 2007.

[29] J. G. D. Forney, M. D. Trott, and S. Y. Chung, “Sphere-bound-achieving

coset codes and multilevel coset codes,” IEEE Transactions on Informa-

tion Theory, vol. 46, no. 3, pp. 820–850, May 2000.

191



[30] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information

flow: A deterministic approach,” IEEE Transactions on Information The-

ory, vol. 57, no. 4, pp. 1872–1905, Apr. 2011.

[31] E. Abbe and A. Barron, “Polar coding schemes for the AWGN channel,”

in Proc. 2011 IEEE International Symposium on Information Theory

(ISIT 2011), St. Petersburg, Russia, Jul. 2011, pp. 194–198.

[32] E. Abbe and E. Telatar, “Polar codes for the m-user multiple access

channel,” IEEE Transactions on Information Theory, vol. 58, no. 8, pp.

5437–5448, Aug. 2012.

[33] M. Seidl, A. Schenk, C. Stierstorfer, and J. B. Huber, “Polar-coded mod-

ulation,” IEEE Transactions on Communications, vol. 61, no. 10, pp.

4108–4119, Oct. 2013.
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