4 research outputs found

    Design and Empirical Validation of a Bluetooth 5 Fog Computing Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops

    Get PDF
    [Abstract] Navantia, one of largest European shipbuilders, is creating a fog computing based Industrial Cyber-Physical System (ICPS) for monitoring in real-time its pipe workshops in order to track pipes and keep their traceability. The deployment of the ICPS is a unique industrial challenge in terms of communications, since in a pipe workshop there is a significant number of metallic objects with heterogeneous typologies. There are multiple technologies that can be used to track pipes, but this article focuses on Bluetooth 5, which is a relatively new technology that represents a cost-effective solution to cope with harsh environments, since it has been significantly enhanced in terms of low power consumption, range, speed and broadcasting capacity. Thus, it is proposed a Bluetooth 5 fog computing based ICPS architecture that is designed to support physically-distributed and low-latency Industry 4.0 applications that off-load network traffic and computational resources from the cloud. In order to validate the proposed ICPS design, one of the Navantia’s pipe workshops was modeled through an in-house developed 3D-ray launching radio planning simulator that allows for estimating the coverage provided by the deployed Bluetooth 5 fog computing nodes and Bluetooth 5 tags. The experiments described in this article show that the radio propagation results obtained by the simulation tool are really close to the ones obtained through empirical measurements. As a consequence, the simulation tool is able to reduce ICPS design and deployment time and provide guidelines to future developers when deploying Bluetooth 5 fog computing nodes and tags in complex industrial scenarios.Auto-ID for Intelligent Products research line of the Navantia-UDC Joint Research Unit (Grant Number: IN853B-2018/02) 10.13039/100014440-Ministerio de Ciencia, Innovaci??n y Universidades (Grant Number: RTI2018-095499-B-C31

    Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A Methodology and Practical Use Case for the Shipbuilding Industry

    Get PDF
    [Abstract] Industry 5.0 follows the steps of the Industry 4.0 paradigm and seeks for revolutionizing the way industries operate. In fact, Industry 5.0 focuses on research and innovation to support industrial production sustainability and place the well-being of industrial workers at the center of the production process. Thus, Industry 5.0 relies on three pillars: it is human-centric, it encourages sustainability and it is aimed at developing resilience against disruptions. Such core aspects cannot be fully achieved without a transparent end-to-end human-centered traceability throughout the value chain. As a consequence, Auto-Identification (Auto-ID) technologies play a key role, since they are able to provide automated item recognition, positioning and tracking without human intervention or in cooperation with industrial operators. Although the most popular Auto-ID technologies provide a certain degree of security and productivity, there are still open challenges for future Industry 5.0 factories. This article analyzes and evaluates the Auto-ID landscape and delivers a holistic perspective and understanding of the most popular and the latest technologies, looking for solutions that cope with harsh, diverse and complex industrial scenarios. In addition, it describes a methodology for selecting Auto-ID technologies for Industry 5.0 factories. Such a methodology is applied to a specific use case of the shipbuilding industry that requires identifying the main components of a ship during its construction and repair. To validate the outcomes of the methodology, a practical evaluation of passive and active UHF RFID tags was performed in an Offshore Patrol Vessel (OPV) under construction, showing that a careful selection and evaluation of the tags enables product identification and tracking even in areas with a very high density of metallic objects. As a result, this article serves as a useful guide for industrial stakeholders, including future developers and managers that seek for deploying identification and traceability technologies in Industry 5.0 scenarios.This work was supported in part by the Auto-Identication for Intelligent Products Research Line of the Navantia-Universidade da Coruña Joint Research Unit under Grant IN853B-2018/02, and in part by the Centro de Investigación de Galicia ``CITIC,'' funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014_2020 Program) under Grant ED431G 2019/01Xunta de Galicia; IN853B-2018/02Xunta de Galicia; ED431G 2019/0

    Enabling technologies and cyber-physical systems for mission-critical scenarios

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicacións en Redes Móbiles . 5029P01[Abstract] Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: transportation, defense and public safety, and shipbuilding. Regarding the transport sector, this thesis provides an understanding of the progress of communications technologies used for railways since the implantation of Global System for Mobile communications-Railways (GSM-R). The aim of this work is to envision the potential contribution of Long Term Evolution (LTE) to provide additional features that GSM-R would never support. Furthermore, the ability of Industrial IoT for revolutionizing the railway industry and confront today's challenges is presented. Moreover, a detailed review of the most common flaws found in Radio Frequency IDentification (RFID) based IoT systems is presented, including the latest attacks described in the literature. As a result, a novel methodology for auditing security and reverse engineering RFID communications in transport applications is introduced. The second sector selected is driven by new operational needs and the challenges that arise from modern military deployments. The strategic advantages of 4G broadband technologies massively deployed in civil scenarios are examined. Furthermore, this thesis analyzes the great potential for applying IoT technologies to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where defense and public safety could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. The last part is devoted to the shipbuilding industry. After defining the novel concept of Shipyard 4.0, how a shipyard pipe workshop works and what are the requirements for building a smart pipe system are described in detail. Furthermore, the foundations for enabling an affordable CPS for Shipyards 4.0 are presented. The CPS proposed consists of a network of beacons that continuously collect information about the location of the pipes. Its design allows shipyards to obtain more information on the pipes and to make better use of it. Moreover, it is indicated how to build a positioning system from scratch in an environment as harsh in terms of communications as a shipyard, showing an example of its architecture and implementation.[Resumen] En la sociedad moderna, los sistemas de transporte fiables, la defensa, la seguridad pública y el control de la calidad en la Industria 4.0 son esenciales. En un escenario de misión crítica, el fracaso de una misión pone en peligro vidas humanas y en riesgo otros activos cuyo deterioro o pérdida perjudicaría significativamente a la sociedad o a los resultados de una empresa. Incluso pequeñas degradaciones en las comunicaciones que apoyan la misión podrían tener importantes y posiblemente terribles consecuencias. Por un lado, las organizaciones de misión crítica desean utilizar los sistemas y tecnologías de comunicación más modernos, disruptivos e innovadores y, sin embargo, deben cumplir requisitos estrictos que son muy diferentes a los relativos a escenarios no críticos. El objetivo principal de esta tesis es evaluar la viabilidad de aplicar tecnologías emergentes como Internet of Things (IoT), Cyber-Physical Systems (CPS) y comunicaciones de banda ancha 4G en escenarios de misión crítica en tres sectores clave de infraestructura crítica: transporte, defensa y seguridad pública, y construcción naval. Respecto al sector del transporte, esta tesis permite comprender el progreso de las tecnologías de comunicación en el ámbito ferroviario desde la implantación de Global System for Mobile communications-Railway (GSM-R). El objetivo de este trabajo es analizar la contribución potencial de Long Term Evolution (LTE) para proporcionar características adicionales que GSM-R nunca podría soportar. Además, se presenta la capacidad de la IoT industrial para revolucionar la industria ferroviaria y afrontar los retos actuales. Asimismo, se estudian con detalle las vulnerabilidades más comunes de los sistemas IoT basados en Radio Frequency IDentification (RFID), incluyendo los últimos ataques descritos en la literatura. Como resultado, se presenta una metodología innovadora para realizar auditorías de seguridad e ingeniería inversa de las comunicaciones RFID en aplicaciones de transporte. El segundo sector elegido viene impulsado por las nuevas necesidades operacionales y los desafíos que surgen de los despliegues militares modernos. Para afrontarlos, se analizan las ventajas estratégicas de las tecnologías de banda ancha 4G masivamente desplegadas en escenarios civiles. Asimismo, esta tesis analiza el gran potencial de aplicación de las tecnologías IoT para revolucionar la guerra moderna y proporcionar beneficios similares a los alcanzados por la industria. Se identifican escenarios en los que la defensa y la seguridad pública podrían aprovechar mejor las capacidades comerciales de IoT para ofrecer una mayor capacidad de supervivencia al combatiente o a los servicios de emergencias, a la vez que reduce los costes y aumenta la eficiencia y efectividad de las operaciones. La última parte se dedica a la industria de construcción naval. Después de definir el novedoso concepto de Astillero 4.0, se describe en detalle cómo funciona el taller de tubería de astillero y cuáles son los requisitos para construir un sistema de tuberías inteligentes. Además, se presentan los fundamentos para posibilitar un CPS asequible para Astilleros 4.0. El CPS propuesto consiste en una red de balizas que continuamente recogen información sobre la ubicación de las tuberías. Su diseño permite a los astilleros obtener más información sobre las tuberías y hacer un mejor uso de las mismas. Asimismo, se indica cómo construir un sistema de posicionamiento desde cero en un entorno tan hostil en términos de comunicaciones, mostrando un ejemplo de su arquitectura e implementación
    corecore