7 research outputs found

    Mechatronic Design, Dynamics, Controls, and Metrology of a Long-Stroke Linear Nano-Positioner

    Get PDF
    Precision motion systems find a broad range of application in various fields such as micro/nano machining tools, lithography scanners, testing and metrology machines, micro-assembly, biotechnology, optics manufacturing, magnetic data-storage, and optical disk drives. In this thesis, an ultraprecision motion stage (nano-positioner) is designed and built based on the concept of a low-cost desktop precision micro machine tool. Linear positioning performance requirements of such a machine tool are used as design objectives. The nano-positioner’s mechatronic design is carried out in such a way to integrate different components towards high performance in terms of high dynamic range, high feedrate, servo accuracy, and geometric accuracy. A self-aligning air-bearing/bushing arrangement is employed for frictionless motion with infinite theoretical resolution, as well as reduced assembly costs and footprint. The air discharge from the air bearings/bushings are also utilized for assistance in the removal of heat dissipated from actuator coils. A voice coil actuator (VCA) is chosen for continuous, non-contact operation, and designed from scratch. A number of dimensional variables of the cylindrical VCA are set according to required forces, motion range, production/assembly tolerances, magnet availability, leakage flux, etc. The remainder of variables is determined according to two novel optimization objectives defined independent of the coil wire gauge, which separately aim for maximum stage acceleration capacity and minimum heat generation per generated force. The actuators are operated in a complementary double configuration for control simplicity which allows for a straightforward and robust design for controller stability. Controller design is carried out at current control and position control levels. Current frequency response of the voice coil actuators is obtained, and they are observed to possess additional high frequency dynamics on top of the expected first order lumped resistance and inductance model. These are attributed to the eddy currents in the stator structure. A closed loop bandwidth of better than 907 [Hz] is achieved using the integrator plus lead current controller. The position controller is designed using the identified overall plant which includes the moving body, current dynamics and the force response. The lead-lag position controller is tuned at 450 [Hz] cross-over frequency and 40 [deg] phase margin. The control error during the tracking of a step trajectory filtered at 40 [Hz] is found to vary between ±5 [nm], indicating a 4 million dynamic range over the 20 [mm] stroke length. Dynamic Error Budgeting (DEB) method has been used to resolve the components of the error, and the largest contributor is found to be the sensor noise. The actual positioning error, which is an ideal signal excluding sensor noise is estimated using the same methodology and disturbance models, and it is found to be 0.680 [nm] root-mean-square (RMS). For the trajectory following case, experiments are carried out with and without a compensation scheme for encoder quadrature detection errors. The compensation is observed to reduce the ±45 [nm] control error to ±15 [nm]. For the assessment of stage performance and the verification of design choices, modal testing and laser interferometric metrology have been applied to the linear nano-positioner. For modal testing, two independent methods are used and their predictions are compared. In the first method, a graphical approach, namely the peak-picking method, is employed to identify modal parameters (natural frequency and damping ratio) and mode shapes. In the second method, a modal testing software package is used to identify the same using automated algorithms. The first mode, which is the most critical one for controller design, is identified at 65 [Hz] as a roll mode, followed by horizontal, vertical, and pitch modes at 450, 484, and 960 [Hz], respectively. The geometric errors of the system are identified using laser interferometric measurements, using various optical setups for linear and angular components. An error budget is formed using these results, together with the estimated thermal errors and servo errors. The accuracy of the stage is determined to be ±5.0 [μm], which had a ±1.1 [μm] non-repeatable component. In the future, the controller structure can be enhanced with an additional pole beyond the crossover frequency, in order to suppress unnecessary oscillations of the control effort signal around the set point due to the encoder noise transmitted to the controller input. Using an estimation of air bearing pitch stiffness from the catalogue values for normal stiffness, the roll mode was predicted at 672 [Hz]. The much lower natural frequency for that mode identified in modal testing (65 [Hz]) can be attributed to the shortcomings of the estimation method, primarily the neglect of the distortion of the supporting air cushion at the bearing interface due to out of plane rotations. In the future, experimental data can be obtained to characterize the air bearing pitch stiffness more accurately. It was observed that the preferred compensation scheme for the encoder quadrature detection errors is unable to match third and fourth harmonics of the encoder measurement error sufficiently. In the future, better compensation methods can be investigated for an improved match. During laser interferometric measurements, measurement uncertainty due to laser beam misalignment and air turbulence were inferred to be high. In the future, better ways to align the laser with the optics, as well as methods for improved assessment and compensation of environmental effects can be investigated

    EUSPEN : proceedings of the 3rd international conference, May 26-30, 2002, Eindhoven, The Netherlands

    Get PDF

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Conference on Thermal Issues in Machine Tools: Proceedings

    Get PDF
    Inhomogeneous and changing temperature distributions in machine tools lead to sometimes considerable quality problems in the manufacturing process. In addition, the switching on and off of aggregates, for example, leads to further fluctuations in the temperature field of machine tools. More than 100 specialists discussed these and other topics from the field of thermal research at the 1st Conference on Termal Issues in Machine Tools in Dresden from 22 to 23 March.:Efficient modelling and computation of structure-variable thermal behavior of machine tools S. Schroeder, A. Galant, B. Kauschinger, M. Beitelschmidt Parameter identification software for various thermal model types B. Hensel, S. Schroeder, K. Kabitzsch Minimising thermal error issues on turning centre M. Mareš, O. Horejš, J. Hornych The methods for controlled thermal deformations in machine tools A. P. Kuznetsov, H.-J. Koriath, A.O. Dorozhko Efficient FE-modelling of the thermo-elastic behaviour of a machine tool slide in lightweight design C. Peukert, J. Müller, M. Merx, A. Galant, A. Fickert, B. Zhou, S. Städtler, S. Ihlenfeldt, M. Beitelschmidt Development of a dynamic model for simulation of a thermoelectric self-cooling system for linear direct drives in machine tools E. Uhlmann, L. Prasol, S.Thom, S. Salein, R. Wiese System modelling and control concepts of different cooling system structures for machine tools J. Popken, L. Shabi, J. Weber, J. Weber The electric drive as a thermo-energetic black box S. Winkler, R. Werner Thermal error compensation on linear direct drive based on latent heat storage I. Voigt, S. Winkler, R. Werner, A. Bucht, W.-G. Drossel Industrial relevance and causes of thermal issues in machine tools M. Putz, C. Richter, J. Regel, M. Bräunig Clustering by optimal subsets to describe environment interdependencies J. Glänzel, R. Unger, S. Ihlenfeldt Using meta models for enclosures in machine tools F. Pavliček, D. P. Pamies, J. Mayr, S. Züst, P. Blaser, P. Hernández-Becerro, K. Wegener Model order reduction of thermal models of machine tools with varying boundary conditions P. Hernández-Becerro, J. Mayr, P. Blaser, F. Pavliček, K. Wegener Effectiveness of modelling the thermal behaviour of the ball screw unit with moving heat sources taken into account J. Jedrzejewski, Z. Kowal, W. Kwasny, Z. Winiarski Analyzing and optimizing the fluidic tempering of machine tool frames A. Hellmich, J. Glänzel, A. Pierer Thermo-mechanical interactions in hot stamping L. Penter, N. Pierschel Experimental analysis of the heat flux into the grinding tool in creep feed grinding with CBN abrasives C. Wrobel, D. Trauth, P. Mattfeld, F. Klocke Development of multidimensional characteristic diagrams for the real-time correction of thermally caused TCP-displacements in precise machining M. Putz, C. Oppermann, M. Bräunig Measurement of near cutting edge temperatures in the single point diamond turning process E. Uhlmann, D. Oberschmidt, S. Frenzel, J. Polte Investigation of heat flows during the milling processes through infrared thermography and inverse modelling T. Helmig, T. Augspurger, Y. Frekers, B. Döbbeler, F. Klocke, R. Kneer Thermally induced displacements of machine tool structure, tool and workpiece due to cutting processes O. Horejš, M. Mareš, J. Hornych A new calibration approach for a grey-box model for thermal error compensation of a C-Axis C. Brecher, R. Spierling, M. Fey Investigation of passive torque of oil-air lubricated angular contact ball bearing and its modelling J. Kekula, M. Sulitka, P. Kolář, P. Kohút, J. Shim, C. H. Park, J. Hwang Cooling strategy for motorized spindle based on energy and power criterion to reduce thermal errors S. Grama, A. N. Badhe, A. Mathur Cooling potential of heat pipes and heat exchangers within a machine tool spindleo B. Denkena, B. Bergman, H. Klemme, D. Dahlmann Structure model based correction of machine tools X. Thiem, B. Kauschinger, S. Ihlenfeldt Optimal temperature probe location for the compensation of transient thermal errors G. Aguirre, J. Cilla, J. Otaegi, H. Urreta Adaptive learning control for thermal error compensation on 5-axis machine tools with sudden boundary condition changes P. Blaser, J. Mayr, F. Pavliček, P. Hernández-Becerro, K. Wegener Hybrid correction of thermal errors using temperature and deformation sensors C. Naumann, C. Brecher, C. Baum, F. Tzanetos, S. Ihlenfeldt, M. Putz Optimal sensor placement based on model order reduction P. Benner, R. Herzog, N. Lang, I. Riedel, J. Saak Workpiece temperature measurement and stabilization prior to dimensional measurement N. S. Mian, S. Fletcher, A. P. Longstaff Measurement of test pieces for thermal induced displacements on milling machines H. Höfer, H. Wiemer Model reduction for thermally induced deformation compensation of metrology frames J. v. d. Boom Local heat transfer measurement A. Kuntze, S. Odenbach, W. Uffrecht Thermal error compensation of 5-axis machine tools using a staggered modelling approach J. Mayr, T. Tiberini. P. Blaser, K. Wegener Design of a Photogrammetric Measurement System for Displacement and Deformation on Machine Tools M. Riedel, J. Deutsch, J. Müller. S. Ihlenfeldt Thermography on Machine Tools M. Riedel, J. Deutsch, J. Müller, S. Ihlenfeldt Test piece for thermal investigations of 5-axis machine tolls by on-machine measurement M. Wiesener. P. Blaser, S. Böhl, J. Mayr, K. Wegene
    corecore