4,422 research outputs found

    A Comparative Review of Machine Learning for Arabic Named Entity Recognition

    Full text link

    A Survey on Arabic Named Entity Recognition: Past, Recent Advances, and Future Trends

    Full text link
    As more and more Arabic texts emerged on the Internet, extracting important information from these Arabic texts is especially useful. As a fundamental technology, Named entity recognition (NER) serves as the core component in information extraction technology, while also playing a critical role in many other Natural Language Processing (NLP) systems, such as question answering and knowledge graph building. In this paper, we provide a comprehensive review of the development of Arabic NER, especially the recent advances in deep learning and pre-trained language model. Specifically, we first introduce the background of Arabic NER, including the characteristics of Arabic and existing resources for Arabic NER. Then, we systematically review the development of Arabic NER methods. Traditional Arabic NER systems focus on feature engineering and designing domain-specific rules. In recent years, deep learning methods achieve significant progress by representing texts via continuous vector representations. With the growth of pre-trained language model, Arabic NER yields better performance. Finally, we conclude the method gap between Arabic NER and NER methods from other languages, which helps outline future directions for Arabic NER.Comment: Accepted by IEEE TKD

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    A Named Entity Recognition System Applied to Arabic Text in the Medical Domain

    Get PDF
    Currently, 30-35% of the global population uses the Internet. Furthermore, there is a rapidly increasing number of non-English language internet users, accompanied by an also increasing amount of unstructured text online. One area replete with underexploited online text is the Arabic medical domain, and one method that can be used to extract valuable data from Arabic medical texts is Named Entity Recognition (NER). NER is the process by which a system can automatically detect and categorise Named Entities (NE). NER has numerous applications in many domains, and medical texts are no exception. NER applied to the medical domain could assist in detection of patterns in medical records, allowing doctors to make better diagnoses and treatment decisions, enabling medical staff to quickly assess a patient's records and ensuring that patients are informed about their data, as just a few examples. However, all these applications would require a very high level of accuracy. To improve the accuracy of NER in this domain, new approaches need to be developed that are tailored to the types of named entities to be extracted and categorised. In an effort to solve this problem, this research applied Bayesian Belief Networks (BBN) to the process. BBN, a probabilistic model for prediction of random variables and their dependencies, can be used to detect and predict entities. The aim of this research is to apply BBN to the NER task to extract relevant medical entities such as disease names, symptoms, treatment methods, and diagnosis methods from modern Arabic texts in the medical domain. To achieve this aim, a new corpus related to the medical domain has been built and annotated. Our BBN approach achieved a 96.60% precision, 90.79% recall, and 93.60% F-measure for the disease entity, while for the treatment method entity, it achieved 69.33%, 70.99%, and 70.15% for precision, recall, and F-measure, respectively. For the diagnosis method and symptom categories, our system achieved 84.91% and 71.34%, respectively, for precision, 53.36% and 49.34%, respectively, for recall, and 65.53% and 58.33%, for F-measure, respectively. Our BBN strategy achieved good accuracy for NEs in the categories of disease and treatment method. However, the average word length of the other two NE categories observed, diagnosis method and symptom, may have had a negative effect on their accuracy. Overall, the application of BBN to Arabic medical NER is successful, but more development is needed to improve accuracy to a standard at which the results can be applied to real medical systems

    Extracting locations from sport and exercise-related social media messages using a neural network-based bilingual toponym recognition model

    Get PDF
    Sport and exercise contribute to health and well-being in cities. While previous research has mainly focused on activities at specific locations such as sport facilities, "informal sport" that occur at arbitrary locations across the city have been largely neglected. Such activities are more challenging to observe, but this challenge may be addressed using data collected from social media platforms, because social media users regularly generate content related to sports and exercise at given locations. This allows studying all sport, including those "informal sport" which are at arbitrary locations, to better understand sports and exercise-related activities in cities. However, user-generated geographical information available on social media platforms is becoming scarcer and coarser. This places increased emphasis on extracting location information from free-form text content on social media, which is complicated by multilingualism and informal language. To support this effort, this article presents an end-to-end deep learning-based bilingual toponym recognition model for extracting location information from social media content related to sports and exercise. We show that our approach outperforms five state-of-the-art deep learning and machine learning models. We further demonstrate how our model can be deployed in a geoparsing framework to support city planners in promoting healthy and active lifestyles.Peer reviewe

    Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!

    Full text link
    Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at \url{http://github.com/UKPLab/coling2018-xling_argument_mining}.Comment: Accepted at Coling 201

    Improving Search via Named Entity Recognition in Morphologically Rich Languages – A Case Study in Urdu

    Get PDF
    University of Minnesota Ph.D. dissertation. February 2018. Major: Computer Science. Advisors: Vipin Kumar, Blake Howald. 1 computer file (PDF); xi, 236 pages.Search is not a solved problem even in the world of Google and Bing's state of the art engines. Google and similar search engines are keyword based. Keyword-based searching suffers from the vocabulary mismatch problem -- the terms in document and user's information request don't overlap. For example, cars and automobiles. This phenomenon is called synonymy. Similarly, the user's term may be polysemous -- a user is inquiring about a river's bank, but documents about financial institutions are matched. Vocabulary mismatch exacerbated when the search occurs in Morphological Rich Language (MRL). Concept search techniques like dimensionality reduction do not improve search in Morphological Rich Languages. Names frequently occur news text and determine the "what," "where," "when," and "who" in the news text. Named Entity Recognition attempts to recognize names automatically in text, but these techniques are far from mature in MRL, especially in Arabic Script languages. Urdu is one the focus MRL of this dissertation among Arabic, Farsi, Hindi, and Russian, but it does not have the enabling technologies for NER and search. A corpus, stop word generation algorithm, a light stemmer, a baseline, and NER algorithm is created so the NER-aware search can be accomplished for Urdu. This dissertation demonstrates that NER-aware search on Arabic, Russian, Urdu, and English shows significant improvement over baseline. Furthermore, this dissertation highlights the challenges for researching in low-resource MRL languages

    Minimally-supervised Methods for Arabic Named Entity Recognition

    Get PDF
    Named Entity Recognition (NER) has attracted much attention over the past twenty years, as a main task of Information Extraction. The current dominant techniques for addressing NER are supervised methods that can achieve high performance, but require new manually annotated data for every new domain and/or genre change. Our work focuses on approaches that make it possible to tackle new domains with minimal human intervention to identify Named Entities (NEs) in Arabic text. Specifically, we investigate two minimally-supervised methods: semi-supervised learning and distant learning. Our semi-supervised algorithm for identifying NEs does not require annotated training data or gazetteers. It only requires, for each NE type, a seed list of a few instances to initiate the learning process. Novel aspects of our algorithm include (i) a new way to produce and generalise the extraction patterns (ii) a new filtering criterion to remove noisy patterns (iii) a comparison of two ranking measures for determining the most reliable candidate NEs. Next, we present our methodology to exploit Wikipedia structure to automatically develop an Arabic NE annotated corpus. A novel mechanism is introduced, based on the high coverage of Wikipedia, in order to address two challenges particular to tagging NEs in Arabic text: rich morphology and the absence of capitalisation. Neither technique has yet achieved performance levels comparable to those of supervised methods. Semi-supervised algorithms tend to have high precision but comparatively low recall, whereas distant learning tends to achieve higher recall but lower precision. Therefore, we present a novel approach to Arabic NER using a combination of semi-supervised and distant learning techniques. We used a variety of classifier combination schemes, including the Bayesian Classifier Combination (BCC) procedure, recently proposed for sentiment analysis. According to our results, the BCC model leads to an increase in performance of 8 percentage points over the best minimally-supervised classifier
    • …
    corecore