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Abstract: Sport and exercise contribute to health and well-being in cities. While previous
research has mainly focused on activities at specific locations such as sport facilities, “in-
formal sport” that occur at arbitrary locations across the city have been largely neglected.
Such activities are more challenging to observe, but this challenge may be addressed using
data collected from social media platforms, because social media users regularly generate
content related to sports and exercise at given locations. This allows studying all sport, in-
cluding those “informal sport” which are at arbitrary locations, to better understand sports
and exercise-related activities in cities. However, user-generated geographical information
available on social media platforms is becoming scarcer and coarser. This places increased
emphasis on extracting location information from free-form text content on social media,
which is complicated by multilingualism and informal language. To support this effort, this
article presents an end-to-end deep learning-based bilingual toponym recognition model
for extracting location information from social media content related to sports and exercise.
We show that our approach outperforms five state-of-the-art deep learning and machine
learning models. We further demonstrate how our model can be deployed in a geoparsing
framework to support city planners in promoting healthy and active lifestyles.

Keywords: digital geography, deep learning, geoparsing, georeferencing, social media,
sports geography, toponym recognition
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1 Introduction

Cities are the physical concentrations that facilitate interaction between people and things
(physical activity environment, e.g., built environment and public green space). Therefore,
understanding the human dimension of cities and how people experience the physical en-
vironment is a crucial aspect to understand urban places and urban geography [45]. It
has been widely seen that among all the activities occurring every day in the cities, the
geographies of sport and exercise-related activities are largely neglected in the existing
literature [63, 104].

As an inseparable part of society, sport and exercise-related activities are inherently
connected to the discipline of geography, in particular, concerning time, space, commu-
nities, mobilities, and identities [6, 18, 104]. Therefore, how we understand the sport and
exercise-related activities in different places aligns with the continued transformation of
space and attitudes towards sport [104]. The interactions between cities’ inhabitants and
physical open spaces and sport facilities provide insights for geographers to study how
places are perceived and represented with enriched sporting activities and understand the
underlying socio-economic characteristics of the urban areas [55, 83].

Sport activities in urban spaces can take a variety of forms, ranging from formal partici-
pation in competitive club sports or organised exercises such as basketball matches, to more
casual engagements (or “informal sports” [5]) in active leisure such as jogging and cycling
to work, or lifestyle sports like skateboarding on the supermarket car park, or outdoor play
like rope skipping between buildings. Existing research that attempts to understand socio-
ecological relationships between human sporting activities and urban spaces commonly
focuses on formal participation or organised sports that use certain facilities [10, 60, 86] or
comparably more casual physical activities in public green spaces [24, 71, 83]. One of the
significant advantages of analysing registered sports facilities and green spaces is because
they often have officially published statistics (e.g., Statistics Finland1) that eases the diffi-
culties in data collection. Even without published data, they are more straightforward to
collect data and observe from specific known locations. However, the impact of “informal
sport” activities and unbuilt physical activity environments has been largely neglected in
scientific contexts. The locations of those sporting activities are more arbitrary and difficult
to observe.

In the recent years, social media is increasingly recognised as a valuable source of user-
generated geographical information on physical activities and sport in the urban environ-
ment [105]. The desire of self-presentations [108] of users to their friends or even strangers
has promoted the use of social media (such as Twitter or Instagram) into major platforms
from which to communicate and exchange information regarding a wide variety of top-
ics, including also recreational sporting activities. The integration of social media plat-
forms with highly mobile devices such as smartphones opens up opportunities for users
to upload their sport and exercise-related content anywhere they prefer with accessible
network connections. Thus, it allows researchers to extensively investigate all sport simul-
taneously, including those “informal sports” activities and unbuilt environments at more
arbitrary locations. Despite existing geographical studies having identified that sporting
activities carried out on social media (most are Twitter) have connections to the use of
urban space [44, 66, 83], the data they used are often tweets with precisely geolocated co-
ordinates. However, our understanding of the role played by social media in the social

1https://www.stat.fi/index en.html
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construction of the place has been limited by the fact that only a small percentage of social
media posts are precisely geolocated (e.g., according to Sloan and Morgan [89], 0.85% of
tweets are geolocated). In June 2019, Twitter further decided to remove the ability of users
to add precise location information (geo-coordinates pairs) in their text-based posts2, and
such a change presumably will reduce the number of geolocated tweets [50]. Although
Twitter still allows users to geotag their content using Twitter Place3, it has raised a signifi-
cant challenge for researchers to locate tweets precisely and study the connections between
places and online content.

One solution to the problem mentioned above is to investigate geographical informa-
tion available in a social media content. This is an active area of research known as geop-
arsing. Geoparsing is an algorithmic toponym resolution process of converting text-based
descriptions of places names into their corresponding spatial coordinates [34,36,42,80]. The
process of geoparsing is usually separated into two consecutive steps: toponym recognition
and toponym resolution. The first step recognises toponyms (i.e., location-indicative words)
from text, and the second step assigns a location mentioned in the text to a pair of suit-
able geographic coordinates and sorts out any possible place name ambiguity. This paper
focuses on the first step, namely toponym recognition, which can be conceptualised as a
part of a broader task known as Named-Entity Recognition (NER, a subtask of information
extraction that seeks to locate and classify named entities mentioned in unstructured text
into pre-defined categories such as person names, organisations, locations, etc.)

Twitter and other social media platforms are a rich source of information on real-life lan-
guage use [46]. Thanks to the increasing language diversity on the Internet, social media
platforms are multilingual [33]. Multilingual users pose a challenge to toponym recogni-
tion, as previous research has mainly focused on recognising toponyms in a single language
and the English language in particular [4,58,59,101]. When collecting spatial data based on
the toponyms in the text in a bilingual or multilingual setting, it is often needed to apply
language-specific models on different languages separately, which consequently compli-
cates the data collection process. Meanwhile, language-specific models struggle to handle
“code-switching” in social media where two or more languages are often presented in one
piece of text. Moreover, social media often face the challenge of various language irregu-
larities such as informal sentence structures, inconsistent upper and lower case, dialects,
name abbreviations, and misspellings [37, 49, 101, 102]. Such a high degree of variation in
the form of text presents a challenge for Natural Language Processing (NLP) models [14].
Therefore, to extract information about location-specific activities such as sport and ex-
ercise from social media data, one must overcome the challenges of multilingualism and
linguistic variation.

Our study in this paper focuses on Finland because it is well acknowledged as a suc-
cessful “sports nation” [64]. Therefore, Finland offers an excellent site for the analysis of
how sport contributes to space and place meaning within the displine of Digital Geog-
raphy. Hiippala et al. [47] revealed that four out of five Twitter users with a predicted
home location in Finland use multiple languages on the platform. In most cases, the lan-
guages used are Finnish and English, but the distribution of these languages is not balanced
among users or locations. Despite that, some research has led to the development of NER
tools that can be used for the toponym recognition tasks for Finnish language [96, 99] by
keeping location-relevant information as the only output. There are remaining concerns

2https://twitter.com/TwitterSupport/status/1141039841993355264
3https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/place
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regarding the performance of those off-the-shelf NER tools in processing user-generated
text. Resources for training NER models are often constrained to narrow domains, which
have linguistic conventions different from those used in social media.

In this paper, we propose a neural network-based bilingual (English and Finnish)
toponym recognition model (TRM) to extract locations from social media. TRM ex-
tends a general recurrent neural network model and is combined with the state-of-the-
art Transformer-based deep learning language model BERT [30] to create contextual em-
beddings for natural language understanding, together with the word- and character-level
embeddings for the toponym recognition task in social media messages.

In this paper, we show that

• pre-trained multilingual language models can be fine-tuned to recognise toponyms
in multiple languages with relatively little training data, leading to greater coverage
of social media content;

• TRM can be adopted to extract locations from sports and exercise-related tweets, and
we explore the potential of social media as a source of information on sports and
exercise in cities based on the aggregated spatial data.

2 Background

2.1 Urban places and user-generated content

Analysing how places are perceived and represented is crucial to interpret the underlying
social and spatial practices involved with enriched human activities such as political, social
and economic activities in space. The analysis of human conceptualisations of the space of-
ten involve categorisations of some kind. Such summarisation and categorisation processes
of representative geographical phenomena inform us of the understanding of socio-spatial
practices in the places of a given space. Thus, understanding the representation of place is
a central problem in geographical studies, and such representations of places have a strong
connection with information science and information systems [81].

Within the discipline of Digital Geography, place representation often refers to the over-
all information available in a target geographic area for a given data source [7, 8]. The
spatial and social structures of local communities in a city lead to certain collective hu-
man activities patterns [91]. With the concept that users on digital platforms are sensors
of places [39], user-generated content (UGC) can help to “sense” this type of information
from urban environments, focusing on the interactions between users and neighbourhood
infrastructures. Thus, UGC provides a unique insight to places with abundant information
of sentiment as well as relationships between individuals, groups, and the physical envi-
ronment [84]. GIScience research thereby focuses on how corresponding spatio-temporal
patterns of the content production from various platforms and heterogeneous data streams
can be explored, extracted, validated and aggregated. In turn, such information enables us
to analyse everyday spatial processes and to gain knowledge about places, especially with
respect to collective human dynamics [91].

Due to the potential of social media platforms for exploring human activities in space
and the narrative of places [1], social media platforms in general, and Twitter in partic-
ular, have been at the centre of data-driven analysis in GIScience and quantitative ge-
ography for about a decade [73]. Location-based social media data are used widely in
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urban research ranging from urban form and structure to everyday activity practices of
people [26, 51, 52, 68]. Being one of the most important activities that is happening in
cities every day [62, 66, 107], sport and social media have presented a longstanding mu-
tually beneficial relationship with each other [22]. The use of social media for sport and
exercise-related purposes prompts sporting activities in the physical environment and vice
versa [12]. Therefore, sport and exercise-related activities carried out on social media plat-
forms can provide rich information regarding places, the use of space, and people’s ex-
periences of landscape [15, 43, 44, 98]. However, there is a lack of in-depth quantitative
studies of sport and exercise-related activities in the literature using social media messages
as a source of data. Therefore, one of the major novelties of this paper, as mentioned in
the Introduction, is to explore the potential of social media, with Twitter in particular, as a
source of information on sport and exercise in cities based on the collected spatial data. For
the scope of this paper, we focus on the analysis of sport and exercise-related activities in
Helsinki, which is the capital city of Finland.

2.2 Sport and exercise-related activities in Finland

Sport and exercise-related activities have played an integral role in the social life of Fin-
land’s population. The country has one of the highest sport participation rates in the whole
of Europe. Studies have emphasised that for the population over 15 years old, the percent-
age of those practising sport at least once a week in Finland is 76% and only 4% population
declared that they never do exercise or participate in sports [35]. Therefore, Finland is well
acknowledged as a successful “sports nation” [64]. As the most populous region of Fin-
land, Helsinki Metropolitan Area (HMA, including the central cities of Helsinki, Vantaa,
Espoo, and Kauniainen) is the only metropolis in the country which attracts over 1 mil-
lion population to settle in [90]. Among the cities in HMA, their urban planning strategies
highlight the promotion of physical activity as a spearhead project (e.g., city of Helsinki’s
Physical Activity Programme [20], city of Espoo’s Exercise Classes [19]), recognising that
physical inactivity is one of the most significant factors contributing to the deterioration of
wellbeing. Although Finnish people are generally active in physical activities and Finnish
law requires equal opportunities for all citizens to access sports facilities [94], evidence
shows that the participation and the attitudes towards sports are segregated and decided
by inhabitants’ social status (e.g., education background, incoming level) [55, 75, 85].

Due to an overall high willingness of the population to participate in sport and exercise-
related activities, Finland offers an excellent site for analysing how to understand urban
places with sporting activities. Being one of the most popular social media platforms in
Finland [21], Twitter provides a crucial opportunity for researchers to investigate the infor-
mation geographies of sporting activities using the social media content produced online.
However, due to the growing awareness of privacy concerns, locating and collecting those
recreational sporting activities from Twitter is increasingly difficult. As mentioned in the
Introduction, Twitter has announced the removal of its precise geo-tagging feature. Such
a change of Twitter’s policy prompts methodological developments to recognise and geo-
locate tweets [50].

JOSIS, Number 24 (2022), pp. 31–61
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2.3 Locating sport and physical activities: toponym recognition tools

One of the primary approaches is to identify the candidate locative references in the text,
and such a task is defined as geoparsing [80]. As mentioned in the Introduction, the process
of geoparsing is usually separated into two consecutive steps: toponym recognition and to-
ponym resolution. Many existing geoparsing research has heavily relied on off-the-shelf NER
tools for the toponym recognition step [28,41,58,59] because toponym recognition is often a
sub-task of NER by keeping only locations as the output. However, research has identified
that the performance of many existing NER tools (e.g., Stanford NER [72]) is limited when
conducted on informal text from user-generated content [49, 101, 102]. To address such a
limitation and improve toponym recognition from social media messages, Wang et al. [101]
introduce a Neuro-net ToPonym Recognition (NeuroTPR) model targeting the language ir-
regularities associated with social media text to recognise locations. Their proposed model
has several designed features on top of a general bidirectional recurrent neural network
to address the task of location recognition in social media messages. The model achieves
the state-of-the-art performance tested on GeoCorpora [100] and their proposed Twitter
dataset, which shows a significant technological advance addressing linguistics variations
in social media text compared to most off-the-shelf name entity recognition tools such as
Stanford NER.

However, most tools in geoparsing are developed for English. This is partially due to
that as a high-resourced language, English has the most abundant and well-documented
datasets and information. Even though much effort has been devoted to developing multi-
lingual NER tools for both high- and low-resourced languages, few research projects have
focused on developing multilingual geoparsing tools [27]. This has significantly limited
the data collection process for social media platforms, especially for Twitter which has an
increasing language diversity on the Internet [47]. It is often needed to apply language-
specific models (i.e., toponym recognition models or NER tools) on different languages
separately to cover a broader language use on Twitter, which complicate the data collection
process. Multilingual or bilingual language models have the potential to address such a
limitation and ease the data collection process by applying to different languages directly.
Chen et al. [16] developed a multilingual geoparsing workflow based on machine transla-
tion, consisting of three major steps. Firstly, a machine translating tool will translate dif-
ferent languages into English, and then based on Condition Random Fields [37], a trained
English geoparser will find locations in the translated text. Finally, their multilingual geop-
arser uses the word alignment information to match the locations identified with those in
English and original languages and converts identified locations into geo-coordinates. The
framework has been tested with Chinese, Arabic and English, and its performance based
on their tests has been robust. Even though the framework remains the ability, to extend
to other languages, in an English-Finnish context, for example, such a tool is heavily de-
pendent on translation quality, which is a major concern when applying this workflow to
social media studies.

To the best of our knowledge, no end-to-end bi- or multilingual geoparsing tool that can
be directly used in an English-Finnish context has been developed, especially for toponym
recognition on social media. The primary contribution of our paper is to propose a bilingual
toponym recognition model that can extract locations from social media messages (i.e.,
tweets).

www.josis.org
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3 Methodology

3.1 Model architecture

The proposed TRM model is based on the BiLSTM–conditional random field (BiLSTM-
CRF) model proposed by Lample et al. [65]. This is widely considered as a classical frame-
work for general NER tasks [101]. With this framework, we include several improvements
inspired by Wang et al. [101] to develop our TRM model, as shown in Figure 1.

Walking in Helsinki University

Layer 2: Cased-sensitive
character embeddings

Layer 1: Static multilingual word
embeddings (Pre-trained
multilingual embeddings)

Layer 3: Multilingual
BERT 

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Out Out Out Out

O O B-LOC I-LOC

Layer 0: Input

Layer 4: BiLSTM

Layer 5: Output

Layer 6: Conditional
Random Field

Figure 1: Overall framework for TRM with an English text as the example.

We present TRM from top to bottom using the example in Figure 1, characterising the
layers of the proposed neural network. Layer 0 takes each individual word of a tweet as
the input to the model. Then, each word is represented as vectors using three different ap-
proaches in the next three layers. Layer 1 adopts static multilingual word embeddings from
Facebook named MUSE (Multilingual Unsupervised and Supervised Embeddings) [23]
which has been successfully used for a wide range tasks (e.g., multilingual speech detec-
tion [11], sentiment analysis [88], informational retrieval [79], etc.). In terms of “static”,
vector representation for a given word in the model’s vocabulary remains the same regard-
less of the context in which the word appears. MUSE attempts to learn a shared embedding
space for multiple languages, in which the vectors for words with similar meanings across
different languages are close to each other in the embedding space. Taking English word
“cat” and Finnish word “kissa” (cat) as an example; traditionally, if we separately train two
word embedding models in two languages, although both “cat" and “kissa” refer to the
same kind of animal, the cosine distance between these two words could be far from each
other as they are in the different vector spaces. MUSE will align two embeddings into the

JOSIS, Number 24 (2022), pp. 31–61
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same vector space; therefore, the words “cat” and “kissa” can have similar or even the same
vectors. The published multilingual word embeddings4 have a coverage of 30 languages
(including Finnish) aligned in a single vector space. The use of word embeddings helps the
model to learn whether a word refers to a location according to the specific context where
the word is used.

Character embedding is adopted as Layer 2 to model each word as a sequence of char-
acters. The character embeddings are modelled by using BiLSTM architecture [25]. As
mentioned by Wang et al. [101], character embeddings are good at handling the high lin-
guistic diversity and variations of the user-generated text. The use of this layer can aid
the framework to still be able to capture the semantic meanings of a word when a user
misspelling in their text (e.g., miss typing the word “location” into “locatuon”, or missing
any character in the word completely).

Layer 3, as shown in Figure 1, is a multilingual BERT used to capture the different
semantics of a word under varied contexts. BERT is a Transformer-based deep learning
technique for natural language processing (NLP) published by Google [30]. It has achieved
state-of-the-art results in many natural language processing tasks. In contrast to the static
word embeddings provided in Layer 1, BERT provides a dynamic (contextualised) word
embedding for a word by modelling the context (i.e., sentences) where the word is used.
For example, for two sentences of “I went to the river bank. I went to the bank to make a
deposit”, traditional word embeddings will generate one embedding for the word “bank”;
however, BERT is able to capture the context of the sentence and generate different embed-
dings for the word “bank” under different use contexts. The pre-trained multilingual BERT
adopted in this paper was published by Google that covers 104 languages5.

The three layers mentioned above model a word into three individual representation
vectors, and those representation vectors are then combined to represent each input word
with a large vector. As shown in Figure 1, these vectors are then used as the input to Layer
4, which is a Bidirectional LSTM (BiLSTM) layer that consists of two LSTMs taking the
input in a forward and backward direction, respectively. As such, BiLSTMs effectively en-
large the information available to the network (e.g., knowing the immediate following and
preceding information for a target word). Layer 5 is a fully connected layer that combines
the two LSTM layers’ outputs. Layer 6 is a CRF layer that performs sequence labelling on
the output of Layer 5. The CRF layer uses the standard IOB model, the same as in Wang et
al. [101] to label each word but focuses on locations. Thus, the framework annotates each
word with tags “B-LOC” (i.e., the beginning of a phrase which refers to a location), “I-LOC”
(i.e., inside a phrase which refers to a location), or “O” (i.e., outside a phrase which refers
to a location).

Our model is a variation and improvement of NeuroTPR [101] for bilingual toponym
recognition tasks. Compared with NeuroTPR, we removed the caseless character embed-
ding layer to simplify the model architecture, and we replaced ELMO [53] with BERT be-
cause BERT has demonstrated stronger capabilities in many NLP tasks [30]. We further
remove the layer of part-of-speech tagging layer to reduce the impact from distinctive
grammatical features of English and Finnish during the training. See Section 4.2 for fur-
ther discussion. Although our model is designed for bilingual geoparsing tasks, the use of
pre-trained multilingual models in our framework: MUSE and multilingual BERT are a sig-

4https://github.com/facebookresearch/MUSE
5https://github.com/google-research/bert/blob/master/multilingual.md
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nificant advantage. That is, the TRM architecture can be easily adapted to other language
pairs.

3.2 Data preparation

3.2.1 Training data

Wang et al. [101] demonstrates that other domains of information sources (i.e., Wikipedia
articles) can also be useful training data for deep learning models to perform toponym
recognition on social media text. Therefore, their paper indicates that deep learning models
may have the generalisability to learn across the domains. Also, a joint learning process
based on a combination of social media text and Wikipedia articles as training data can
further benefit the model to identify correct toponyms. Therefore, in this paper, as a model
designed for bilingual geoparsing tasks, we trained our TRM on a combined Finnish and
English dataset following a similar process of data preparation introduced by Wang et al.
[101] in their paper.

We adopted an automated annotation workflow proposed in Wang et al. [101] for En-
glish training data preparation. This workflow operates the first few paragraphs of En-
glish Wikipedia articles that often annonate the entities mentioned in the text using hyper-
links. An annotated training data set is generated by extracting these paragraphs from a
Wikipedia dump. With the help of Infobox6, only the phrases whose hyperlinks linking to
articles about geographic location are possessed. Since the data are generated for training
our TRM in toponym recognition for tweets, we manufactured our data to share a more
consistent form as tweets by splitting the Wikipedia paragraphs into sentences and retain-
ing only those within 280 characters (the maximum allowed by Twitter7). The sentences
extracted from Wikipedia are automatically labelled with “B-LOC” (i.e., the beginning of
a phrase which refers to a location), “I-LOC” (i.e., inside a phrase which refers to a loca-
tion), or “O” (i.e., outside a phrase which refers to a location) as already mentioned in the
previous section in the CoNLL2003 format [95]. We prepared and annotated 3000 phrases
from English Wikipedia with the help of this workflow. In addition to the sentences from
English Wikipedia articles, we followed the same concept of data preparation described in
Wang et al. [101] and obtained 300 English tweets from a published NER benchmarking
Twitter dataset WNUT 2017 Shared Task on Novel and Emerging Entity Recognition (WNUT
2017) [29]. WNUT 2017 is a dataset that contains real tweets annotated by human annota-
tors, and the tweets contain toponyms along with other types of entities. The 300 tweets
were selected by filtering out tweets that contain toponyms, and we kept only toponyms
in the annotations as a final English Twitter dataset used for training TRM.

Compared with English, Finnish data preparation is less straightforward, considering
it is a low-resourced language. The workflow [101] for extracting and annotating sentences
from English Wikipedia articles cannot be applied for Finnish Wikipedia articles because
Finnish articles have fewer hyperlinks. The Infobox of the articles commonly lacks infor-
mation regarding geographical entities. Therefore, we adopted the Turku NER corpus from
TurkuNLP [70] to prepare our Finnish dataset. The Turku NER corpus consists of a range
of text domains, including news, user-generated text such as blog posts, and legal texts for
NER tasks, and the corpus annotation marks mentions of the person (PER), organisation

6https://en.wikipedia.org/wiki/Wikipedia:List of infoboxes/Place
7https://developer.twitter.com/en/docs/counting-characters
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(ORG), location (LOC), product (PRO) and event (EVENT) names as well as dates (DATE).
At first, we keep sentences with both ORG and LOC as there are commonly ambiguities
between these two categories. For example, as mentioned in the Turku NER corpus an-
notation guidelines8, buildings, facilities and similar entities referred to by the name of
an organisation are annotated as ORG, such as “Stockmann” (a Finnish retail company)
in “menin Stockmannille” (I went to Stockmann) is marked as ORG. Still, we might con-
sider it as a toponym to be identified as a location if our targeted studying area is the city
of Helsinki (see Section 5). Therefore, we manually examined each sentence and solved
such ambiguities and further filtered out sentences that only have toponyms indicating
locations. In general, we change and annotate the following to LOC:

• administrative place names, such as neighbourhoods, towns, cities, states, and coun-
tries;

• names of natural features, such as rivers, mountains, and beaches;
• names of facilities and landmarks, such as roads, train stations, buildings, bus stops

and airports.

Such a principle of annotation will be further applied to annotate the Twitter datasets
we collected (see next subsection). The final Finnish dataset consists of 1587 sentences.

3.2.2 Test data

The original Twitter dataset contains 38,487,766 tweets from Finland and Estonia covering
the time frame between 08.09.2006 and 15.04.2020, and it was collected and cleaned up by
the Digital Geography Lab at the University of Helsinki [47]. The dataset contains 23,248,531
Finnish tweets and 12,042,826 English tweets. Hypothetically, if all tweets mention sports
and locations, a bilingual model can collect 34% more data than an English-only language
model and 66% more data than a Finnish-only language model. Therefore, it is necessary
to consider bilingualism when analysing social media data in Finland. As shown in Figure
2, we designed the workflow to prepare the test data extracted from the original Twitter
dataset. Firstly, we extract 200,000 tweets that contain certain sports-indicative words for
English and Finnish tweets, respectively. The language is decided by using the attached
language code supported by Twitter in the JSON file we collected. The sports-indicative
words are decided by a list of words containing nouns and verbs as shown in Table 1.

We are aware that some of the sports may be missing in the word list and such
a matching-on-form approach is relatively naive to filter out sport and exercise-related
tweets, the corresponding tweets contain a large amount of “noise”. For example, tweets
similar to “we keep the computer running” would also be identified as sport and exercise-
related tweets in the dataset. However, advanced methodological development of sporting
activities classification is beyond the scope of this paper. Further discussions will be pro-
vided in Sections 5 and 6.

After the first step, we randomly sampled 9000 tweets in English and 9000 tweets
in Finnish, and we then manually examined the data, selected and annotated 750 sport
and exercise-related tweets with toponyms to be recognised following the guidelines men-
tioned in Section 3.2.1 in English as well as in Finnish. Therefore, the final dataset consists
of 1500 labelled tweets, and it would be used as the test data to evaluate the performance
of our proposed TRM.

8https://github.com/TurkuNLP/turku-ner-corpus/blob/master/docs/Turku-NER-guidelines-v1.pdf
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Figure 2: Test data preparation.

Table 1: List of sports-indicative words in English and Finnish.

English Finnish
walk, walking kävely, kävellä, käveleminen
running, run juoksu, juosta, juokseminen
jog, jogging lenkki, lenkkeily, lenkkeillä
hike, hiking patikointi, patikoida, patikoiminen
trek, trekking, bicycle, pyörä, pyöräily,
bike, biking, cycling pyöräillä, pyöräileminen
exercise, exercising, workout, treeni, urheilu, liikunta,
training, sport, sporting treenata, treenaaminen, urheilla
gym kuntosali
sweat, sweating hiki, hikoilla
ski, skiing hiihto, hiihtää, hiihtäminen
skate, skating luistella, luisteleminen, luistelu
ice-hockey, hockey jääkiekko, lätkä,
basketball koripallo, koris
football, footy jalkapallo, futis
tennis tennis
badminton sulkapallo
floorball sähly, salibandy
volleyball lentopallo, lentis
beachvolley rantalentopallo
dance, dancing tanssi, tanssia, tanssiminen
yoga jooga
swim, swimming uinti, uida, uiminen
kayak, kayaking, rowing, meloa, melonta, soutaa,
canoe, canoeing, sail, sailing soutaminen, kajakki, kanootti, pujehtia, purjehdus

In both training data and test data, the level of granularity of the geographical areas
mentioned in the text varies from the geographical scales of countries to point-of-interest.
That is, the toponyms for TRM to recognise can be the names of countries (e.g., “Finland”),
cities (e.g., “Helsinki”) or more fine-grained toponyms such as streets and buildings (e.g.,
“Stockmann”). Although TRM in this paper is primarily used to recognise toponyms at the
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fine-grained resolution in the city of Helsinki (see Section 5), our model can be adopted to
identify location-indicative words at any geographical granularity.

4 Model training and experiments

We implemented our TRM in Python using the FlairNLP platform [3] with Pytorch [77] as
the backend. We trained our model on Google Colab9, which provides powerful Nvidia
GPU supports10. The training starts with an initial learning rate of 0.1 using Adam [61]
with a loss function of Cross-Entropy Loss. The learning rate will decrease by half if the
model performance during the training is not improved for three consecutive iterations
until the learning rate is too low (learning rate < 0.000195). The source code used for this
paper is available on GitHub11.

The evaluation metrics used in the experiments are Precision, Recall, and F-score, which
have been widely used in previous studies, such as [57, 67, 101]. Precision measures the
fraction of correctly identified toponyms (true positives) among all toponyms (including
true positives and false positives – falsely recognised toponyms) annotated by a model.
Recall quantifies the number of true positives out of all positive predictions that could have
been conducted, including true positives and false negatives, which are the ground truth
IOB labels of each toponym to be identified. The F-score can be understood as a harmonic
mean of Precision and Recall, combining both of them into a single score that captures both
properties.

4.1 Baseline comparisons

To evaluate the performance, we modified and retrained the existing multilingual NER
tools or multilingual geoparsing workflows in other languages and tested them on the
Twitter dataset that we collected to compare with our proposed TRM model.

The cross-lingual NER tool proposed by Murthy et al. [74] was initially designed for
NER tasks. It combines a character-level embedding processed by a convolutional neural
network together with Bilbowa bilingual word embeddings [40] into a BiLSTM-CRF net-
work to recognise toponyms and other entities. The original model was trained and tested
in English, Spanish, Dutch and German. However, because the official toolkit of Bilbowa
bilingual word embeddings12 has no official implementation for the English-Finnish lan-
guage pair, and further exploration on this word embedding is beyond the scope of this
paper, we replaced such an embedding layer with MUSE. Therefore, in the reproduced
model, it is consisted of MUSE and a character embedding layer together with a BiLSTM-
CRF network. Although there are differences between how each word is embedded by
a convolutional neural network as a character embedding layer and a BiLSTM layer as
adopted in TRM [69], such a re-designed cross-lingual NER model can be seen as a sim-
plified version of TRM without BERT embedding layer. We retrained such a model on our
bilingual dataset (see Section 3.2.1) so that it can directly perform toponym recognition in
both English and Finnish, and we compared its performance with TRM tested with the
prepared Twitter dataset (see Section 3.2.2).

9https://colab.research.google.com/
10https://www.nvidia.com/en-us/
11https://github.com/PengyuanLiu1993/Bilingual-TRM
12https://github.com/gouwsmeister/bilbowa
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As mentioned in Section 2, LanguageBridge [16] is a geoparsing workflow based on
machine translation, translating other languages to English. The original framework was
designed and tested with Chinese, Arabic, and English, yet it is possible to extend to other
languages. Their framework is designed following the overall steps of Machine translation
- Word alignment - Conditional Random Field toponym recognition. However, we soon found
that their proposed word alignment step based on Fast Align [31] did not apply to our
task because it requires an additional large Finnish-English dataset to train the word align-
ment tool. Thus, this step of word alignment is removed in the reproduced code. We used
Google Translation API13 as the machine translation tool and a trained English Conditional
Random Field-based toponym recognition tool (trained with 300 WNUT 2017 data as in-
troduced in Section 3.2.1) to recognise toponyms in our bilingual Twitter dataset.

Soon after proposing BERT [30], Google research introduced a multilingual version
of BERT capable of working with more than 100 languages14. It can be applied directly
to many down-stream tasks such as NER [9] which also identifies toponyms that are
concerned with geographic entities, or it can be straightforwardly retrained on our pro-
posed toponym recognition task. We firstly adopt the cased-version multilingual BERT
developed by Burtsev et al. [13] as a NER tool to identify toponyms in the text. As a
NER tool, it recognises up to 18 entities [103], including PERSON, NORP (nationalities
or religious or political groups), ORG (organisations such as companies, agencies, insti-
tutions, etc.), LOC (non-GPE locations, mountain ranges, bodies of water), GPE (coun-
tries, cities, states), DATE, MONEY, FAC (buildings, airports, highways, bridges, etc.),
PRODUCT, EVENT, WORK_OF_ART, LAW, LANGUAGE, TIME, PERCENT, QUANTITY,
ORDINAL, and CARDINAL. One can choose to keep only LOC in the output; or, for
better coverage of entities (e.g., to include locations such as institutions, schools), both
LOC, FAC, GPE and ORG can be retained. As pointed by Wang et al. [101], keeping only
LOC in the output may exclude other phrases that are about locations (e.g., cities, coun-
tries); however, retaining all possible entity types mentioned above will possess phrases
that are not necessarily location-relevant. Taking an artificial text “Running a marathon
in Helsinki, hosted by Suomen Urheiluliitto” as an example, if keeping both LOC, FAC,
GPE and ORG as toponyms, “Helsinki” would be correctly identified but “Suomen (Fin-
land/Finland’s/Finnish) Urheiluliitto” as an organisation would be mistakenly under-
stood as a toponym. Such a tricky design choice highlights the problem in using a general
NER tool for toponym recognition. Following Wang et al. [101], we tested two versions of
the multilingual BERT as the off-the-shelf NER tools; one version recognises phrases that
are location-indicative using LOC only. In contrast, the other version follows a broader def-
inition of location by including many entity types (i.e., LOC, FAC, GPE and ORG) that may
be related to locations. Additionally, we retrained the multilingual BERT directly to our
downstream toponym recognition task using the data introduced in Section 3 and compare
its performance with TRM.

As shown in Table 2, our TRM model outperforms all baseline models introduced before
in Precision, Recall and F1-score. As a current state-of-the-art non-deep learning-based mul-
tilingual geoparsing tool, the performance of the re-designed LanguageBridge was much
worse compared to TRM. This is partially because we removed the crucial step word align-
ment of this workflow, but more importantly, the robustness of this framework is heavily
dependent on the quality of machine translation. Such a point is also stated by the pre-

13https://cloud.google.com/translate/
14https://github.com/google-research/bert/blob/master/multilingual.md

JOSIS, Number 24 (2022), pp. 31–61

https://cloud.google.com/translate/
https://github.com/google-research/bert/blob/master/multilingual.md


44 LIU ET AL.

vious studies on this workflow [17], that is, the higher the quality of the translation, the
more precise the geoparsing process is. However, the translation quality from Finnish to
English with Google translation API is not accurate enough. According to Aiken [2], com-
paring with Chinese and Arabic, which are used as the results’ reports in Chen et al. [16],
the quality of Finnish translation is much lower than the other two languages. Although
the Conditional Random Field trained specifically on Twitter data can address and solve
some ambiguities and irregularities in the translated text, the workflow of LanguageBridge
proved to be less robust when compared to other neural network-based approaches.

Table 2: Performance of TRM and baseline models on sport and exercise-related tweets
(best results reported, “∼” symbol in the table denotes for the approximations of the re-
ported numbers; “–” symbol indicates that the corresponding numbers are not reported
in the original papers or reports or published codes, and if numbers are presented in this
table, they are reported from our reproduced models).

Test data Models Number of Parameters Precision Recall F1-score

Bilingual Twitter data
(1500 tweets, 750 in
English and 750 in
Finnish)

Re-trained cross-lingual NER –, ∼ 1.4 million 0.7467 0.6531 0.6928[74]
Cased multilingual BERT NER ∼ 110 million 0.8002 0.6046 0.7018(broad location) [13]
Cased multilingual BERT NER ∼ 110 million 0.5792 0.4541 0.5065(narrow location) [13]

Re-designed LanguageBridge – 0.6912 0.5983 0.6536[16]
Re-trained cased multilingual BERT ∼ 180 million 0.8019 0.7329 0.7659

TRM ∼ 182 million 0.8125 0.7335 0.7710

English-only Tweets
(750 tweets)

Standard NER (narrow location) – 0.7982 0.6273 0.6831
Standard NER (broad location) – 0.7528 0.6547 0.7001

NeuroTPR [101] ∼ 19 million 0.8197 0.7943 0.8021
TRM ∼ 182 million 0.8263 0.7610 0.7835

Re-designed TRM ∼ 181 million 0.8371 0.7732 0.7923

Finnish-only Tweets
(750 tweets)

Re-trained FinBERT ∼ 110 million 0.8024 0.7542 0.7798[99]
TRM ∼ 182 million 0.7362 0.6239 0.6831

It is interesting to see the multilingual BERT NER (cased multilingual BERT NER, broad
location) that keeps various tags (i.e., LOC, FAC, GPE and ORG) achieves very close perfor-
mance in Precision compared to TRM, which shows the strong capability of BERT as a NER
tool to recognise toponyms. However, low performance in Recall indicates many correct
locations are not identified. This is because the NER model [13] managed to identify city
names or countries (i.e., Helsinki or Finland that commonly exists in tweets), while it failed
to identify more fine-grained toponyms such as street names, especially when the names
of the streets are in Finnish. Meanwhile, the multilingual BERT NER that keeps LOC only
(cased multilingual BERT NER, narrow location) achieves the worst performance among all
models since many toponyms are classified as other entities; thus, merely relying on LOC
tags in the NER model is not enough for toponym recognition tasks.

We also introduced two neural network-based approaches using cross-lingual NER [74]
and multilingual BERT (re-trained cased multilingual BERT in Table 2), which were retrained
on our prepared training data and tested with the defined toponym recognition task. The
BERT was trained with a BiLSTM as the backend and combined with a CRF layer to pro-
duce tags for the toponyms. As shown in Table 2, the re-trained multilingual BERT outper-
formed the retrained cross-lingual NER, which demonstrates and agrees with most existing
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studies that BERT can achieve state-of-the-art performance that superior to many previ-
ously developed models [93]. Despite slight lower Precision, Recall and F1-score, re-trained
cased multilingual BERT achieved a performance level that was close to our TRM. A closer
examination of this comparison results shows that the combination of the character-level
embedding layer demonstrates a stronger ability to capture misspelling errors in the text.

4.2 Ablation studies

Previous experiments showed the strong capabilities of TRM in addressing bilingual to-
ponym recognition tasks. As a bilingual model, it provides the ability to work in a single
language usage context. To demonstrate the flexibility of TRM, we designed individual ex-
periments to compare our proposed model with a set of state-of-the-art models in English-
only and Finnish-only settings with the prepared Twitter dataset.

4.2.1 English-only tweets

There is a large body of literature on toponym recognition tools developed for English be-
cause it is a high-resourced language. We compared TRM with the off-the-shelf Stanford
NER tool (two versions), and a deep learning-based model (NeuroTPR) designed explic-
itly for toponym recognition in English social media text. We tested the models using
750 English tweets introduced in Section 3.2.2, and the results are summarised in Table
2. We adopted the widely used three-class Stanford NER tool in the experiments that pro-
duced PERSON, ORGANISATION, and LOCATION as identified entities. Narrow location
for Stanford NER tool means the model only keeps LOCATION as the output; meanwhile,
broad location is that Stanford NER tool keeps all entity types that might be related to loca-
tions (i.e., LOCATION and ORGANISATION).

As shown in Table 2, despite both TRM and NeuroTPR outperforming the Stanford
NER tool, such a classic NER tool still demonstrates its effectiveness recognising toponyms.
NeuroTPR achieves the highest performance in Recall and F1-score, which indicates the
model is more robust in recognising correct toponyms comparing with our proposed TRM.
It is interesting from a linguistic point of view that a bilingual or multilingual model might
not be able to understand linguistic features and words better than language-specific mod-
els. To further address such a point, we proposed an additional experiment tested with
English-specific TRM (re-designed TRM in Table 2). We replaced the static multilingual word
embedding layer as introduced in Figure 1 with pre-trained English Twitter-specific word
embeddings [38] to represent the words in a tweet. We also replaced multilingual BERT
layer with a cased English BERT (“bert-large-cased” from Wolf et al. [106]; see also the
online document on the Hugging Face15 website) to extract embeddings from the text. The
performance of such an English-specific model is superior to the original TRM on toponym
recognition in English. However, although the performance of both model is similar, Neu-
roTPR seems still slightly better according to Recall and F1-score. As mentioned in Section
3.1, our model was inspired by the success of NeuroTPR [101] and it has a similar but
distinctive model architecture. One of the main differences is that we dropped the part-
of-speech tagging embedding layer entirely. The part-of-speech tagging embedding layer
informs the model about the word type (noun, verb, adjective, preposition, etc.) so that
NeuroTPR can learn how location-indicative words are used and placed in a sentence (e.g.,

15https://huggingface.co/transformers/pretrained models.html
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a preposition phrase is often followed by a location). However, in the context of bilingual
tasks, Finnish and English have different grammars; thus, the different use patterns of the
words might confuse the model and decrease the performance. Therefore, we removed that
layer to reduce the impact of English and Finnish’s distinctive linguistic features during the
training. Nevertheless, the results in Table 2 suggest that such a part-of-speech tagging em-
bedding layer can benefit the model performance when applied to language-specific tasks.

4.2.2 Finnish-only tweets

We retrained the FinBERT (Finnish BERT model) [99] with our prepared training data
(Finnish-only) introduced in Section 3.2 as a comparison to our proposed TRM. Like the
results of the experiments presented in Section 4.2.1, language-specific model FinBERT out-
performed our TRM. In terms of comparisons between language-specific models and our
proposed bilingual model, the performance difference between FinBERT and TRM was
much more significant than the difference between TRM and NeuroTPR. This is because
of the more abundant English training data (3300 sentences) compared with the Finnish
training data (1587 sentences), as we introduced in Section 3. Thus, TRM seemed to learn
limited linguistic features in Finnish compared to English.

The ablation studies reinforced the concept that “multilingual is not enough” [99]. That
is, in language-specific use context, designing and training a deep learning model that can
specifically focus on the language’s linguistics and word patterns would perform better
than applying a bi- or multilingual framework.

5 Showcase study for sport and exercise-related tweets

In the previous sections, we have introduced our proposed TRM for toponym recognition
tasks from social media messages. This section presents a showcase study using “real-
world” social media data (i.e., tweets) collected by TRM. There are two primary research
objectives of this showcase study. Our first aim is to validate the usability of the TRM,
and show how the model can be generalised to practical research tasks and benefit the
data collection process. Our second aim is to explore the potential of social media as a
source of information on sports and exercise in cities based on aggregated spatial data.
This showcase study operationalised the concept mentioned in Section 2 that place repre-
sentation described by UGC is the amount and type of information available in an area [7,8]
to quantify the spatial relationships between tweets and socio-economic variables. Such a
showcase study contributes to our understanding of the informational dimension of place
by comparing the spatial Twitter data with a specific focus on sport and exercise-related
activities to their socio-economic and physical infrastructural (i.e., sport facilities) context
that impacts the production process.

5.1 Usability of TRM

Figure 3 is a showcase of using our proposed TRM as a toponym recognition tool together
with a Google Geocoding API16 as a toponym resolution tool to perform geoparsing. Note
that one can replace Google Geocoding API with other tools, such as geocoding function

16https://developers.google.com/maps/documentation/geocoding/overview
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English tweets

Finnish tweets

TRM Google Geocoding
API

Figure 3: A showcase of the potential geoparsing workflow using TRM.

from GeoPandas17, or other services. It is worth noting that these services do not auto-
matically perform place name disambiguation since they don’t know the contexts under
which these toponyms are mentioned. However, as the showcase study in this section will
focus on the city of Helsinki, the names of streets or places mentioned in the text would
not be highly ambiguous; thus, it will be acceptable to use Google Geocoding API for the
preliminary results showcase.

We followed the same matching-on-form approach as described in Section 3.2.2 to col-
lect tweets that mention sport and exercise-related activities in English and Finnish from
the original Twitter dataset. Note that a similar issue remains in the dataset; there are still
many tweets that are “noisy” because the matching-on-form approach is relatively naive
in filtering out sport and exercise-related tweets. However, such an issue is beyond the
scope of this paper, and one to be investigated and addressed in our future research. It
is also worth noting that we decided to exclude hashtags in the analysis as a designing
choice. Hashtag is often considered a very useful self-reporting tool for users to locate
themselves [48, 82], however, through our manual inspection of the tweets, the locations
reported using hashtags are often too general, and the most common seen hashtags used
in tweets refers to the city name (i.e., “Helsinki”) or the country name (i.e., “Finland”).
This is may due to the fact that the more general hashtags users are using for location
self-reporting the more attention are likely to be gotten on the Internet. As one of the objec-
tives of this study is to collect as fine-grained toponyms in the text as possible, we exclude
hashtags of tweets in this analysis.

The next step was to use TRM to recognise the candidate location-indicative words
(i.e., toponyms) in the tweets. In our experiments, we compare the time cost using TRM
that is directly applied to both English and Finnish tweets with the time cost applying
language-specific models to the two languages separately (FinBERT for Finnish tweets and
NeruoTPR for English tweets) in chronological order. The TRM demonstrates a 32.2% time
efficiency improvement, which indicates a bilingual model can simplify the data collection
process. Note that we explicitly excluded tweets that only mention toponyms as the city
name of Helsinki or the country name of Finland. Therefore, the tweets left in the dataset
are the tweets with toponyms on the resolution at neighbourhood scales (e.g., names of
postcode areas) or more fine-grained point-of-interest scales (e.g., building, street names
and parks). Such a step is to demonstrate the usability of TRM in recognising toponyms
at fine-grained resolutions. As a result of this step, we got 56,784 tweets and their corre-
sponding toponyms. Meanwhile, our TRM also demonstrates a strong ability to handle
“code-switching” in the text where both English and Finnish are presented. Taking the

17https://geopandas.org/docs/user guide/geocoding.html
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sentence “Upea sää Kumpulassa (great weather in Kumpula, Kumpla is a verdant neigh-
bourhood in Helsinki), nice walk in Helsinki University” as an example, TRM can recognise
both “Kumpulassa” and “Helsinki University” as toponyms to geo-locate but NeuroTPR
can only recognise “Helsinki University” and FinBERT only recognises “Kumpulassa”.

After obtaining toponyms from tweets, Google Geocoding API performed geocoding
on the toponyms and converted them into geo-coordinates that can be visualised on the
map. We aggregated the data into postcode areas in Helsinki. Despite the potential issues
of the modifiable areal unit problem (MAUP) and uncertainties that irregular boundaries
may cause [78], postcode areas are widely adopted within urban studies to visualise geo-
graphical patterns and compare places based on the data aggregated at the neighbourhood
scale, and they are the ideal spatial units for this showcase study. Note that for tweets
that have more than one toponyms, for example, “Rowing from Töölönlahti (Töölö bay)
to Kaisaniemenlahti (Kaisaniemi bay)”, we map such activity in both postcodes of where
“Töölönlahti” and “Kaisaniemenlahti” are located. Figure 4 (a) presents a map visualised
with the tweets collected from all of Helsinki over 84 postcode areas.

We further compared Figure 4 (a) with the data collected from LIPAS sport facility
GIS-database [97]. LIPAS is Finland’s national database of sports facilities and contains
all sports facilities in Finland. The sport facilities and built environment can be consid-
ered as a potential physical infrastructural context that encourages sport-related content
production from Twitter users when they are engaging into sport and exercise-related ac-
tivities. There are three data types: point data for sports facilities like swimming halls,
line data for walking, running, skiing and biking routes, and polygon data for recreational
areas like national parks or natural reserves. In this showcase study, we aggregated sports
facilities (point data) and the centroids of polygon data into postcode areas and presented
the results in Figure 4 (b). Because parks and natural reserves widely attract various kinds
of sport activities (e.g., walking, hiking, etc), such a map broadly covers both formal and
informal sport activities in Helsinki. As mentioned above, LIPAS is a national database
designed for registered sport facilities suitable for analysing sport activities at known lo-
cations. However, because one of the aims of this paper is to investigate all sport at both
known and arbitrary locations at the same time, adopting the data of parks might be one
of the few possible ways to include some facilities that can support “informal sport” in the
LIPAS. Future research will require data from other sources (e.g., surveys) to include more
locations that are facilitated for “informal sport”. Note that our approach, which aggre-
gated polygon data using centroids, is naive in displaying how parks and natural reserves
are located in Helsinki. However, we consider more sophisticated aggregation methods
(e.g., count polygon data in the corresponding postcode areas they spread across) beyond
the scope of this showcase study and one to be pursued in our future research.

A visual comparison between 4 (a) and (b) indicates some correlation between the dis-
tribution of sport and exercise-related tweets and sport facilities across the city of Helsinki.
Some postcode areas that have high numbers of tweets also have high numbers of sport
facilities. To further model the geographies of tweets, we calculated the correlation coeffi-
cients among socio-economic variables, sport facilities and tweets at the postcode level in
the next subsection.
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(a) A showcase of TRM results in Helsinki.

(b) LIPAS dataset in Helsinki.

Figure 4: A showcase of TRM results and the comparison to the LIPAS dataset. Map tiles
by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

5.2 The geographies of sport and exercise-related tweets

Kahma (2012) [55] identified age, education background, and level of income conveyed
some crucial differences in sporting activity participation in Finland, based on survey ques-
tionnaires. For example, taking income into account revealed that those with higher in-
come were more likely to participate in sports. To investigate whether the digitised place
might reveal different aspects of sporting participation, we also included population in
different age groups (18-54 yrs.), education and income categories in our paper as socio-
economic variables collected from Finnish Statistics [76] to compare the distribution with
Twitter data. In the remainder of this section, we use the data mentioned above to quan-
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tify the spatial relationships between sport and exercise-related tweets and socio-economic
variables, based on the ties-adjusted rank correlation coefficient (Spearman’s ρ).
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Figure 5: Spearman’s correlation coefficients between demographic and UGC variables (84
postcode areas). Data normalised per 100 people. Significance levels: ∗p<0.05; ∗∗p<0.01;
∗ ∗ ∗p<0.001.LIPAS in the figure refers to the distribution of sport facilities recorded in the
LIPAS system.

Figure 5 demonstrates correlation coefficients between all relevant variables introduced
above at the postcode area level. When normalising data per 100 people, sport and exercise-
related tweets demonstrate a significant positive correlation with the LIPAS sport facilities
(0.519, p<0.001). Such a strong correlation indicates that the built physical environment
(i.e., sport facilities) and parks for recreational activities contribute to most sport and exer-
cise activities on Twitter. Although the correlation analysis suggests social media users are
more likely to post their sport and exercise content when they are using formal physical
sports facilities or exercising in parks, it is worth noting that the spatial units (i.e., post-
code areas) we adopted in this study are too large to observe detailed correlation between
tweets and sporting facilities. Spatial units at finer resolutions (see discussion in Section 6)
are needed for our future research.

Meanwhile, the distribution of tweets demonstrates significant correlations with pop-
ulation groups that have high education background (university degrees) (0.265, p<0.05)
and high income (0.254, p<0.05). Such a finding echos many existing studies that Twit-
ter tends to be more representative of wealthier urban areas, inhabited by more educated
populations than average [7, 8, 87]. Interestingly, the sports facilities in the LIPAS system
seem to have no significant correlations with most socio-economic variables, suggesting an
overall success of the government’s agenda in promoting equal accessibility to sport facil-
ities [94]. However, the accessibility of sport facilities can be improved for young adults
because they demonstrate a significant negative correlation with the population at the age
group between 18 and 34 (-0.270, p<0.05).
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The correlation comparison presented above indicates that despite the overall equal ac-
cessibility of sport facilities in Helsinki for different population groups, Twitter conveys
that sport and exercise-related tweets are more representative for the areas with popula-
tion that has high income and good education background, indicating population in those
areas is more willing in participating in sporting activities. Such an outcome supports the
research finding proposed by Kahma (2012) [55] using more abundant user-generated con-
tent (i.e., tweets) online, suggesting potential segregation in the sport participation due to
different socio-economic backgrounds of the residents in the city. It is important to note
that following similar research methods in Ballatore and De Sabbata (2020) [8], the agnos-
tic relationship between the geographies of content (i.e., where tweet is) and residential
geographies of the content producers (i.e., where users live) is out of the scope for this
showcase study but one limitation to overcome in our future research.

6 Conclusion and outlook

The primary contribution of this paper is TRM, a novel approach to the exploratory anal-
ysis of sport and exercise-related social media content. TRM is capable of identifying
location-indicative words (i.e., toponyms) straightforwardly from the bilingual text so that
it can simplify the data collection process and benefit studies of urban places using the
collected spatial data. An important advantage of TRM is its ability to recognise many
fine-grained toponyms, which off-the-shelf NER tools are often struggled with in bilin-
gual context usage. Meanwhile, TRM demonstrates a strong ability to address the issue of
“code-switching” that is commonly seen in social media texts, leading to broader coverage
of spatial data collection when two languages are presented in one piece of text. This paper
also contributes a quantitative framework to investigate “informal activities” that could po-
tentially be restricted to specific locations and facilities if users choose to post online. Data
and locations retrieved from social media using our TRM can be served as supplementary
data for the national database of sport facilities (i.e., LIPAS) to include more possible lo-
cations that are used for sporting activities. It is important to emphasise that despite that
our model being primarily designed for the toponym recognition task targeting on tweets
posted in Finland, TRM can easily be adapted and extended to other languages or further
developed as a multilingual tool with carefully prepared training data. We additionally
presented a showcase study demonstrating the usefulness of our TRM using tweets col-
lected at the level of the city of Helsinki, and it can be integrated easily into a geoparsing
workflow.

We hope to pursue this research in several directions in our future studies. First, as
mentioned in Section 3.2.2, we introduced a matching-on-form approach to collect sport
and exercise-related tweets. Although the matching-on-form approach is easy to imple-
ment, such an approach eventually results in a large amount of noise in the dataset, which
requires extra human interventions to clean the data. Our future research can integrate
TRM with a text classification tool (e.g., [32, 56, 92]) as a workflow to filter out sport and
exercise-related messages with toponyms to be identified more precisely. Going one step
further, we could use toponyms recognised by TRM as geographic information to con-
struct a graph-based representation of where the sport and exercise-related activities hap-
pen. Then we can utilise such a representation to classify tweets further into fine-grained
categories (e.g., swimming, jogging, etc.) [68] or study place characteristics [109]. Second,
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in Section 5, the geoparser adopted Google Geocoding API as a toponym resolution tool.
However, street names are highly ambiguous. Google Geocoding API does not perform au-
tomatic place name disambiguation; such an issue increases the challenge when applying
the geoparser to larger-scale geographic regions such as the national scale Finland. Taking
“Välskärinkatu”, a randomly picked street name as an example, if users do not specify
the city where Välskärinkatu is in their post, all the tweets mention this street will be au-
tomatically geocoded to a coordinates pair in Helsinki. However, Välskärinkatu is also
a street name in many other cities, leading to further uncertainties. Future research may
require us to combine place name disambiguation techniques [54] to reduce the impact of
such an issue. Third, many existing geoparsers geocode a toponym with a single pair of
coordinates in the form of point; however, research sometimes requires toponyms to be
geolocated in other forms of spatial footprints, such as lines and polygons. For example, in
the study presented in Section 5, for a sentence such as “Jogging in Fredrikinkatu”, the line
representation might be a better choice since Fredrikinkatu as a street crosses two postcode
areas. Merely counting based on the point data located in one area in such a case will raise
uncertainties on the research output.

This paper also provides a showcase study that compares the distribution of sport
and exercise-related tweets and physical sports facilities in the LIPAS dataset with socio-
economic variables. The aim of the study was to understand how social media and user-
generated content can be used as a source of information on sport and exercise in cities.
We outlined two interesting findings based on the case study presented in Section 5.2: 1).
the built physical environment (i.e., sport facilities) and parks for recreational activities
contributes to most sport and exercise activities on Twitter; 2). sport and exercise-related
tweets tend to be more representative of wealthier urban areas, inhabited by more educated
populations than average.

However, we would like to highlight several challenges in showcase study that will be
pursued in our future research. First, the conclusions are drawn from a relatively “noisy”
Twitter dataset, and such a dataset still has a large amount of “noises” that are not cleaned
after the matching-on-form approach introduced in Section 3.2. Our future research will
perform analysis on a cleaner Twitter dataset to draw more concrete conclusions. Second,
in the case study, we illustrate that parks and built physical environments are likely to
have sport and exercise-related activities. Further investigations into land type compar-
isons might provide a better indication of what types of land use correlate to a higher
number of sporting activities and sports facilities. Third, the scale of postcode areas we
adopted is too large to observe detailed correlations between Twitter and the distribution
of sports facilities. In our future research, we will investigate such correlations at finer
spatial resolutions (e.g., 250 metre × 250 metre spatial grids). Fourth, this study focused
on a single city. A comparative approach with other cities and rural or semi-rural areas
or not-so-dense near urban areas, in Finland and elsewhere, is necessary to observe the
geographical variation in the relationships between the place and the sport and exercise-
related activities that are carried out. Moreover, our analysis needs to include more land
use and census data to capture the role of urban function and mass population and other
socio-economic factors (e.g., occupations, as in [55]), prominent in many data-rich areas in
central Helsinki. Fifth, investigations of the impact of temporal-dimension of social media
activities are currently missing. Future research will investigate how places are represented
and perceived by sport and exercise-related content generated at different times of a day
or a year by performing temporal analysis.
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In summary, this paper provides new tools in geographical studies to collect spatial
data. It explores how sport contributes to understanding space and place by bridging
user-generated content from social media platforms and the development of a quantita-
tive artificial intelligence method. We consider our proposed TRM as a valuable addition
to the discipline of sports geography, and can be implemented more broadly in geograph-
ical information retrieval tasks or other geographical studies that require collecting user-
generated content from online platforms. In the development of quantitative models and
algorithms which incorporate user-generated content as an essential source of information
to study the relationships between users’ activities (including sport) and place, we are ulti-
mately able to identify ways that can benefit our understanding of the online socio-spatial
process in the urban context and its impact on the physical environment we are living in.
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