16 research outputs found

    Analysis and design of antennas and radiometers for radio astronomy applications in microwave, Mm-wave, and THz Bands

    Get PDF
    Mención Internacional en el título de doctorWe are living in interesting times for astronomy science, since the birth of the radio astronomy field in the 20th century by Karl Jansky, the availability of new and better radio astronomy receivers is in increasing demand to push the human understanding of the universe. In this thesis, various components (antennas, baluns, antenna-arrays, and radiometers) are proposed for radio astronomy receivers. The proposed designs are belonging to three receiver topologies (direct detection, down-conversion, and up-conversion) that operate at different frequency bands from MHz up to a few of THz. Also, to demonstrate that the same proposed design is capable of working efficiently at different operating frequencies, multiple adjusted designs are presented for several practical radio astronomy and space applications. Firstly, a receiver based on the direct detection of the Electromagnetic (EM) radiation through a radio telescope working on cryogenic cooling conditions. In this part, the focus is on designing conical log-spiral antennas and baluns (balanced to unbalanced transformers) to be used as feeds for VLBI Global Observing System (VGOS) ground-based radio telescopes. The feeds cover the Ultrawideband (UWB) from 2 GHz to 14 GHz with Circular Polarization (CP) radiation and stable radiation patterns. After integration of the feeds to the radio telescope, the whole system operates with high aperture efficiency and high System Equivalent Flux Density (SEFD) over the whole required wide range. The fabrication, assembly, and measurements for single-element and four-elements array are provided for achieving the requirements for single CP and dual CP operation. Also, in the same first part, the proposed single-element feed (antenna + balun) is readjusted for being used for CryoRad spaceborne Earth observations. This feed has a single CP over low-frequency UWB from 400MHz to 2 GHz with low weight and physical size compared to standard horn feeds. The second part of the thesis is dedicated to a THz source to be used as a local oscillator for heterodyne radio astronomy THz receivers in which the down-conversion of the THz radiation to a lower frequency occurs. The source is based on an array of self-complementary bow-tie antennas and photomixers that lies on a dielectric lens. The source can be scaled easily to cover different UWB ranges, three ranges are analyzed from 200 GHz to 2 THz, 100 GHz to 1 THz, and 50 GHz to 0.5 THz. Additionally, in this part, a complete study for the effects of metal losses on such THz planar antennas is performed which are not well-investigated in literature yet, the physical explanations behind such effects are also provided. Although these proposed THz sources themselves can work at room temperature, the receiver probably still needs the cooling for the other receiver components (such as the mixer) to work efficiently at such high frequencies. This is the motivation for the third part of this thesis which presents a different type of radio astronomy receiver that is completely able to work without cooling. The third receiver is based on the nonlinear up-converting of the microwave radiation into the optical domain using Whispering Gallery Mode (WGM) resonators which can work at room temperature efficiently. For such advantage and since this concept is naturally narrow-band, it can be a proper candidate for Cosmic Microwave Background (CMB) spectroscopy and space applications. The system design and its performance are analyzed for Ku band at 12 GHz with proposing a novel microwave coupling scheme for enhancing the up-conversion photonic efficiency which is the main limitation for such upconversion systems. Likewise, several high gain 3D-printed Dielectric Resonator Antenna (DRA)s are proposed in both isolated and array configurations to have a direct coupling of the microwave radiation to the proposed scheme. Another practical application for such receiver is presented for CubeSat missions at the mm-wave band (183 GHz) for climate change forecasting. It is clear here that removing the cryogenic cooling conditions decreases satellite weight and cost, which in turn significantly increases its lifetime. Also, it is worth noting that besides the radio astronomy applications, the proposed receivers (and/or their antenna/components) can be used for many other applications. For example, the UWB antennas in the first part can be used as wideband scalable probes for EM compatibility testing or other wireless systems that require single or dual CP such as radar and military applications. This is because the solutions provide constant beam characteristics with good CP polarization purity and stable performance over the operating UWB. In the same way, the proposed THz source in the second part can be used in several THz applications such as very high-speed wireless communications, highresolution imaging for medical and security purposes. This is because of its key benefits as decade bandwidth, compact size, low noise, low power demand, high tunability, and the ability to work at room temperature. For the up-conversion scheme proposed in the third part, due to its high photonic efficiency, low noise level which enables it to work at room temperature, and its scalability from a few GHz up to several THz, it is suitable for low-cost and high sensitivity applications. Specifically, the ones that need to get rid of the hard cryogenic cooling conditions, or at least, relax them and allow the system to work efficiently at higher temperatures. For instance, portable mm-wave and THz systems for quality control, security, and biochemistry. Finally, in this part, the proposed DRA elements and arrays, due to their low cost, high gain, and low losses, can be used for sensing applications and 5G base station antennas.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Raed Shubair.- Secretario: Adrián Amor Martín.- Vocal: José Manuel Fernández Gonzále

    High spectral purity microwave sources based on optical resonators

    Get PDF
    L'optique constitue aujourd'hui une solution performante pour la réalisation de sources très pures en hyperfréquences, en particulier grâce à l'approche de l'oscillateur électro-optique (OEO). La pureté spectrale de ces sources est essentielle pour les applications spatiales, militaires et pour la métrologie du temps et des fréquences. Durant cette thèse, nous avons réalisé et étudié différents types d'OEO à résonateur optique en vue d'optimiser le bruit de phase de ce système. Nous avons en particulier orienté nos travaux vers une approche originale utilisant un anneau résonant fibré (ARF) passif. Ce type de résonateur présente en effet des coefficients de qualité optiques supérieurs à 109 pour des longueurs de fibre restant relativement faibles (L ~ 10 m) et facilement intégrables dans un support planaire. En parallèle, nous avons mené un travail important sur les oscillateurs à base de résonateurs optiques 3D. Concernant l'OEO à ARF, des progrès spectaculaires ont pu être obtenus grâce à une meilleure compréhension des phénomènes de bruit intrinsèques à ce système. Les deux types de bruit prépondérants étaient la conversion du bruit du laser (FM et AM) en bruit de phase RF par différentes non-linéarités (dont la photodiode) et le déclenchement d'effets non-linéaires optiques à l'intérieur du résonateur. Le contrôle de ces effets a permis en particulier d'éliminer des remontées importantes de bruit sur le spectre de l'oscillateur, et d'atteindre un niveau de bruit de phase de -128 dBc/Hz à 10 kHz de la porteuse à 10.2 GHz en utilisant un OEO à base d'un ARF passif de 100 mètres de longueur, optimisé et immunisé contre les effets non-linéaires optiques.Optics represents an elegant and reliable solution to generate high spectral purity microwave signals, especially the approach using the optoelectronic oscillator (OEO). The spectral purity of these sources is very important for space and military applications and also for time and frequency domain metrology. During this thesis, we have fabricated and studied many types of resonator based OEO in order to optimize the system phase noise. We have especially investigated an original approach using a passive fiber ring resonator (FRR). This resonator type can feature optical quality factors higher than 109 when only few meters of optical fibers are used (L ~ 10 m) and it can be easily integrated in a planar setup. Moreover, we have performed an important work on 3D WGM resonators based oscillators. In the FRR based OEO, spectacular progresses have been achieved thanks to a good understanding of the system intrinsic noise phenomena. Actually, we have found that the most important noise parameters were the laser FM and AM noise conversion into RF phase noise by means of different nonlinearities in the system (like the photodiode nonlinearity), but also by the generation of nonlinear optical effects inside the resonator. By controlling these effects, we have been able to reduce the OEO phase noise level and to reach a -128 dBc/Hz noise level at 10 kHz offset frequency from a 10.2 GHz carrier. This has been achieved using an OEO based on a 100m-long passive FRR, which has been optimized and immunized against different nonlinear optical effects

    Microwave sources based on high quality factor resonators; modeling, optimization and metrology

    Get PDF
    La technologie photonique-RF offre une alternative intéressante à l'approche purement électronique dans différents systèmes micro-ondes pour des applications militaires, spatiales et civiles. Un composant original, l'oscillateur optoélectronique (OEO), permet la génération de signaux RF stables et à haute pureté spectrale. Il est basé sur une liaison photonique micro-onde utilisée comme boucle de rétroaction et comportant soit une fibre longue, soit un résonateur à fort coefficient de qualité. Différentes études ont été menées au cours de cette thèse afin d'optimiser et d'améliorer la performance en termes de stabilité et de bruit de phase pour le cas de l'OEO à résonateur. La caractérisation fine et la modélisation des résonateurs est une première étape de la conception globale du système. La métrologie du résonateur optique est réalisée par une technique originale, dite de spectroscopie RF. Les résultats expérimentaux ont révélé que cette technique permet d'une part d'identifier le régime de couplage du résonateur et d'autre part de déterminer avec une grande précision tous les paramètres d'un dispositif résonant, comme les facteurs de qualité interne et externe ou les facteurs de couplage. Une deuxième étude a été orientée vers l'implémentation d'un modèle non-linéaire fiable du dispositif. Dans un tel modèle, la photodiode rapide nécessitait une description plus précise, dans le but de contrôler la conversion du bruit d'amplitude optique en bruit de phase de l'OEO. Un nouveau modèle non-linéaire d'une photodiode hyperfréquence a été développé sous un logiciel commercial: Agilent ADS. Ce nouveau modèle rend effectivement compte de cette conversion de bruit. Une puissance optique optimale à l'entrée de la photodiode a été déterminée, pour laquelle la contribution de RIN du laser au bruit de phase RF pourrait être négligeable. La performance de l'OEO est affectée par diverses perturbations entrainant un décalage en fréquence entre la fréquence du laser et la fréquence de résonance du résonateur. Il est donc important d'utiliser un système de stabilisation pour contrôler cette différence de fréquence. Des séries d'expériences et de tests ont été menées pour étudier la possibilité, d'une part, de remplacer l'électronique commerciale utilisée auparavant pour le système de verrouillage en fréquence (boucle de Pound-Drever-Hall) par une électronique faible bruit et, d'autre part, d'utiliser un laser à semi-conducteur. Un bilan de ces approches est présenté.RF photonics technology offers an attractive alternative to classical electronic approaches in several microwave systems for military, space and civil applications. One specific original architecture dubbed as optoelectronic oscillator (OEO) allows the generation of spectrally pure microwave reference frequencies, when the microwave photonic link is used as a feedback loop. Various studies have been conducted during this thesis on the OEO, especially the one that is based on fiber ring resonators, in order to optimize and improve its phase noise performance and its long-term stability. Precise characterization and modeling of the optical resonator are the first step towards overall system design. The resonator metrology is performed using an original approach, known as RF spectral characterization. The experimental results have demonstrated that this technique is helpful for the identification of the resonator's coupling regime and the accurate determination of the main resonator parameters such as the intrinsic and extrinsic quality factors or the coupling coefficients. A second study was directed toward implementing a reliable nonlinear model of the system. In such a model, the fast photodiode require an accurate description, in order to reduce the conversion of the optical amplitude noise into RF noise. A new nonlinear equivalent circuit model of a fast photodiode has been implemented in a microwave circuit simulator: Agilent ADS. This new model is able to describe the conversion of the laser relative intensity noise (RIN) into microwave phase noise at the photodiode output. An optimal optical power at the photodiode's input has been identified, at which the contribution of the laser RIN in RF phase noise is negligible. When it comes to practical applications, the desired performance of an OEO is threatened by various disturbances that may result in a frequency shift of both the laser frequency and the transmission peak of the resonator, which causes a malfunction of the OEO. Therefore it is desirable to use a stabilization system to control the difference between the laser frequency and the resonator frequency. A series of tests and experiments have been carried out to investigate the possibility, on one hand, to replace the commercial servo controller that was used up until now in the Pound-Drever-Hall loop, with a low noise homemade one and, on the other hand, to use a semiconductor laser to reduce the system size. A detailed review of these approaches is presented

    Bio-sensing using toroidal microresonators & theoretical cavity optomechanics

    Get PDF
    In this thesis we report on two matters, (i) time-resolved single particle bio-sensing using a cavity enhanced refractive index sensor with unmatched sensitivity, and (ii) the theoretical analysis of parametric normal mode splitting in cavity optomechanics, as well as the quantum limit of a displacement transducer that relies on multiple cavity modes. It is the unifying element of these studies that they rely on a high-Q optical cavity transducer and amount to a precision measurement of an optical frequency. In the first part, we describe an experiment where a high-Q toroidal microcavity is used as a refractive index sensor for single particle studies. The resonator supports whispering gallery modes (WGM) that feature an evanescent fraction, probing the environment close to the toroid's surface. When a particle with a refractive index, different from its environment, enters the evanescent field of the WGM, the resonance frequency shifts. Here, we monitor the shift with a frequency resolution of df/f=7.7e-11 at a time resolution of 100µs , which constitutes a x10 improvement of the sensitivity and a x100 improvement in time resolution, compared to the state of the art. This unprecedented sensitivity is the key to real-time resolution of single lipid vesicles with 25nm radius adsorbing onto the surface. Moreover -- for the first time within one distinct measurement -- a record number of up to 200 identifiable events was recorded, which provides the foundation for a meaningful statistical analysis. Strikingly, the large number of recorded events and the high precision revealed a disagreement with the theoretical model for the single particle frequency shift. A correction factor that fully accounts for the polarizability of the particle, and thus corrects the deviation, was introduced and establishes a quantitative understanding of the binding events. Directed towards biological application, we introduce an elegant method to cover the resonator surface with a single lipid bilayer, which creates a universal, biomimetic interface for specific functionalization with lipid bound receptors or membrane proteins. Quantitative binding of streptavidin to biotinylated lipids is demonstrated. Moving beyond the detection limit, we provide evidence that the presence of single IgG proteins (that cannot be resolved individually) manifests in the frequency noise spectrum. The theoretical analysis of the thermo-refractive noise floor yields a fundamental limit of the sensors resolution. The second part of the thesis deals with the theoretical analysis of the coupling between an optical cavity mode and a mechanical mode of much lower frequency. Despite the vastly different resonance frequencies, a regime of strong coupling between the mechanics and the light field can be achieved, which manifests as a hybridization of the modes and as a mode splitting in the spectrum of the quadrature fluctuations. The regime is a precondition for coherent energy exchange between the mechanical oscillator and the light field. Experimental observation of optomechanical mode splitting was reported shortly after publication of our results [cf. Gröblacher et al., Nature 460, 724--727]. Dynamical backaction cooling of the mechanical mode can be achieved, when the optical mode is driven red-detuned from resonance. We use a perturbation and a covariance approach to calculate both, the power dependence of the mechanical occupation number and the influence of excess noise in the optical drive that is used for cooling. The result was one to one applied for data analysis in a seminal article on ground state cooling of a mechanical oscillator [cf. Teufel et al., Nature 475, 359--363]. In addition we investigate a setting, where multiple optical cavity modes are coupled to a single mechanical degree of freedom. Resonant build-up of the motional sidebands amplifies the mechanical displacement signal, such that the standard quantum limit for linear position detection can be reached at significantly lower input power.In dieser Dissertation werden zwei Themen behandelt. Im ersten Teil widmen wir uns experimentell der zeitaufgelösten Messung von Liposomen mit Hilfe eines Nahfeld-Brechungsindex-Sensors. Der zweite Teil handelt von der theoretischen Beschreibung des Regimes der starken Kopplung zwischen einem mechanischen Oszillator und dem Feld eines optischen Resonators. Des Weiteren erörtern wir ein Messschema, das es erlaubt eine mechanische Bewegung, mit Hilfe von mehreren optischen Resonatormoden genauer auszulesen. Die Gemeinsamkeit beider Arbeiten besteht darin, dass es sich jeweils um eine Präzisionsmessung einer optischen Frequenz handelt. Im experimentellen Teil benutzen wir Toroid-Mikroresonatoren mit extrem hoher optischer Güte als Biosensoren. Dabei handelt es sich um eine ringförmige Glasstruktur, entlang welcher Licht im Kreis geleitet wird. Dazu muss eine Resonanzbedingung erfüllt sein, die besagt, dass der (effektive) Umfang des Rings einem ganzzahligen Vielfachen der optischen Wellenlänge entspricht. Ein Teil des zirkulierenden Lichts ist als evaneszente Welle empfänglich für Brechungsindexänderungen nahe der Oberfläche des Resonators. Ein Partikel, dessen Brechungsindex sich von dem der Umgebung unterscheidet, induziert beim Eintritt in das evaneszente Feld eine Frequenzverschiebung der optischen Resonanz. Im Rahmen dieser Arbeit lösen wir relative Frequenzverschiebungen mit einer Genauigkeit von df/f=7.7e-11 und einer Zeitkonstante von 100µs auf. Dies stellt eine Verbesserung des derzeitigen Stands der Technik um einen Faktor x10 in der Frequenz und einen Faktor x100 in der Zeit dar. Diese bisher unerreichte Empfindlichkeit der Messmethode ist der Schlüssel zur Echtzeitdetektion einzelner Lipidvesikel mit einem Radius von 25nm . Zudem gelingt es uns innerhalb einer Messung, bis zu 200 Einzelteilchenereignisse aufzunehmen, welche die Basis für eine aussagekräftige Statistik liefern. Bemerkenswerterweise konnten wir Dank der außerordentlichen Präzision und der Vielzahl der Ereignisse eine Abweichung zur bis dato akzeptierten und angewandten Theorie feststellen. Wir ergänzen das Model um einen Korrekturfaktor, der die Polarisierbarkeit des Teilchens vollständig berücksichtigt und erlangen dadurch ein umfassendes und quantitatives Verständnis der Messergebnisse. Im Hinblick auf biologisch relevante Fragestellungen zeigen wir eine elegante Methode auf, die es erlaubt, den Resonator mit einer einzelnen Lipidmembran zu beschichten. Wir kreieren somit eine biomimetische Schnittstelle, welche das Grundgerüst für eine spezifische Funktionalisierung mit lipidgebundenen Rezeptoren, Antikörpern oder Membranproteinen darstellt. Des Weiteren zeigen wir, dass der Empfindlichkeit eine fundamentale Grenze durch thermische Brechungsindexfluktuationen gesetzt ist. Hierzu wird ein theoretisches Modell speziell für den relevanten niederfrequenten Bereich errechnet. Im zweiten Teil der Arbeit beschäftigen wir uns mit der theoretischen Beschreibung eines optischen Resonators, dessen Lichtfeld an eine mechanische Schwingung gekoppelt ist. Obwohl sich die Resonanzfrequenzen der Optik und der Mechanik typischerweise um mehrere Größenordnungen unterscheiden, existiert ein Regime der starken Kopplung, in dem die Fluktuationen des Lichts und die mechanischen Vibrationen hybridisieren. Dies offenbart sich zum Beispiel im Phasenspektrum, wo sich das ursprüngliche Maximum der Resonanz in zwei Maxima aufspaltet. Die starke Kopplung stellt die Grundlage für kohärenten Energie- und Informationsaustausch zwischen Licht und Mechanik dar und ist daher von besonderem technischen und wissenschaftlichen Interesse. Es ist anzumerken, dass die starke Kopplung und die einhergehende Aufspaltung der Resonanz bereits kurz nach Veröffentlichung unserer theoretischen Beschreibung im Experiment beobachtet wurde [vgl. Gröblacher et al., Nature 460, 724--727]. Wenn der optische Resonator (zur längeren Wellenlänge hin) verstimmt von der Resonanz angeregt wird, kann über dynamische Rückkopplung eine effektive Kühlung der mechanischen Schwingung erreicht werden. Wir berechnen die thermische Besetzungszahl der mechanischen Mode (und somit die Temperatur) mit Hilfe eines störungstheoretischen und eines Kovarianzansatzes. Dabei berücksichtigen wir sowohl ein klassisches Rauschen des optischen Feldes als auch den Einfluss der optomechanischen Kopplung auf die Grenztemperatur. Der hergeleitete Ausdruck für die finale Besetzungszahl wurde eins zu eins für die Datenanalyse in dem wegweisenden Artikel über das Kühlen eines mechanischen Oszillators in den Quantengrundzustand verwendet [vgl. Teufel et al., Nature 475, 359--363]. Abschließend betrachten wir ein Schema, bei dem die Lichtfelder mehrerer optischer Resonanzen an eine mechanischen Schwingung gekoppelt sind. Die resonante Verstärkung der Information über die mechanische Bewegung in den optischen Seitenbändern ermöglicht es, eine durch das Standard Quantenlimit begrenzte Empfindlichkeit bei signifikant niedriger Eingangsleistung zu erreichen

    Controlling, storing and manipulating light using on-chip Brillouin scattering

    Get PDF
    The importance of optical signal processing techniques is growing rapidly in recent years due to the exponentially increasing demand for bandwidth, capacity and power efficiency in communications and computing. However, due to their bosonic nature photons do not interact with each other, unless there is a nonlinear medium mediating the interaction. One of the strongest nonlinear effects is the interaction of light waves, photons, with sound-waves, acoustic phonons, which is known as stimulated Brillouin scattering (SBS). This thesis experimentally investigates SBS in photonic chips. It is shown in this thesis that the fundamental interaction strength between light and sound waves can be tailored by using one-dimensional photonic bandgap structures, completely suppressing the effect or alternatively enhancing the interaction to form phase-locked Brillouin frequency combs. It was shown furthermore that efficiently generating SBS on-chip enables the generation of stable RF signals that are widely tunable in frequency. Finally, it is shown in this thesis that SBS enables the storage of light signals on a chip, one of the holy grails of all-optical signal processing. Delaying optical signals is of key importance in optical networks to enable synchronization, buffering, and rerouting. SBS enables large delays by resonantly transferring an optical signal to an acoustic wave, that travels five orders of magnitude slower and retrieving it after a certain storage time. It is demonstrated in this thesis that a Brillouin-based memory (BBM) technique allows storing amplitude and phase of optical data pulses and operate at multiple wavelengths with minimal cross-talk. Replenishing of the acoustic wave to overcome storage time limitations imposed by the lifetime of the acoustic wave as well as non-reciprocal light storage is also shown

    All-optical spiking neurons integrated on a photonic chip

    Get PDF

    Multiplexed label-free integrated photonic biosensors

    Get PDF
    Optics and photonics enable important technological solutions for critical areas such as health, communications, energy, and manufacturing. Novel nanofabrication techniques, on the other hand, have enabled the realization of ever shirking devices. On-chip photonic micro-resonators, the fabrication of which was made possible in the recent decade thanks to the progress in nanofabrication, provide a sensitive and scalable transduction mechanism that can be used for biochemical sensing applications. The recognition and quantification of biological molecules is of great interest for a wide range of applications from environmental monitoring and hazard detection to early diagnosis of diseases such as cancer and heart failure. A sensitive and scalable biosensor platform based on an optimized array of silicon nitride microring resonators is proposed for multiplexed, rapid, and label-free detection of biomolecules. The miniature dimension of the proposed sensor allows for the realization of handheld detection devices for limited-resource and point-of-care applications. To realize these sensors, the design, fabrication, stabilization, and integration challenges are addressed. Especially, the focus is placed on solving a major problem in using resonancebased integrated photonic sensors (i.e., the insufficiency of wavelength scan accuracy in typical tunable lasers available) by using an interferometric referencing technique for accurate resonance tracking. This technique can improve the limit of detection of the proposed sensor by more than one order of magnitude. The method does not require any temperature control or cooling, and the biosensor platform does not require narrow linewidths necessary for the biosensors based on ultrahigh quality factor resonators, thus enabling low-cost and reliable integration on the biosensor platform.Ph.D

    Physics and Applications of Microresonator Solitons and Electro-optic Frequency Combs

    Get PDF
    Frequency combs are having a broad impact on science and technology because they provide a way to coherently link radio/microwave-rate electrical signals with optical-rate signals derived from lasers and atomic transitions. A new, miniature realization, the microcomb, that uses chip-based microresonators can potentially revolutionize instrumentation, time keeping, spectroscopy, and navigation. Microcombs were first demonstrated using a form of cascaded four-wave mixing. However, the recent discovery of dissipative soliton microcombs enables phase-locked spectra with reproducible envelopes, as required in many frequency comb applications. In addition, these solitons are confined in a high-Q microresonator, thereby creating a rich landscape for research in nonlinear optical phenomena. In this thesis, these solitons are demonstrated for the first time in a silica microcavity. Significantly, the device provides a microwave-detectable soliton repetition rate, which is essential to many comb applications. The unusual properties of the solitons are studied from a theoretical viewpoint using a Lagrangian formalism and predictions of the theory are confirmed experimentally. In the course of this work, a new optical soliton, the Stokes soliton, was also discovered. In addition to soliton mode locking, another novel and compact platform, the electro-optical modulation frequency comb, was studied. This type of frequency comb was used to demonstrate a novel electro-optic form of frequency division for stable microwave synthesis. It was also modified to perform astronomical calibration for exoplanet detection at the Keck Observatory in Hawaii.</p

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF
    corecore