971 research outputs found

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights

    Get PDF
    This article proposes an approach to multiattribute decision making with incomplete attribute weight information where individual assessments are provided as interval-valued intuitionistic fuzzy numbers (IVIFNs). By employing a series of optimization models, the proposed approach derives a linear program for determining attribute weights. The weights are subsequently used to synthesize individual IVIFN assessments into an aggregated IVIFN value for each alternative. In order to rank alternatives based on their aggregated IVIFN values, a novel method is developed for comparing two IVIFNs by introducing two new functions: the membership uncertainty index and the hesitation uncertainty index. An illustrative investment decision problem is employed to demonstrate how to apply the proposed procedure and comparative studies are conducted to show its overall consistency with existing approaches

    Full Issue

    Get PDF

    An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives

    Get PDF
    This article proposes a framework to handle multiattribute group decision making problems with incomplete pairwise comparison preference over decision alternatives where qualitative and quantitative attribute values are furnished as linguistic variables and crisp numbers, respectively. Attribute assessments are then converted to interval-valued intuitionistic fuzzy numbers (IVIFNs) to characterize fuzziness and uncertainty in the evaluation process. Group consistency and inconsistency indices are introduced for incomplete pairwise comparison preference relations on alternatives provided by the decision-makers (DMs). By minimizing the group inconsistency index under certain constraints, an auxiliary linear programming model is developed to obtain unified attribute weights and an interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS). Attribute weights are subsequently employed to calculate distances between alternatives and the IVIFPIS for ranking alternatives. An illustrative example is provided to demonstrate the applicability and effectiveness of this method

    Modified EDAS Method Based on Cumulative Prospect Theory for Multiple Attributes Group Decision Making with Interval-valued Intuitionistic Fuzzy Information

    Full text link
    The Interval-valued intuitionistic fuzzy sets (IVIFSs) based on the intuitionistic fuzzy sets combines the classical decision method is in its research and application is attracting attention. After comparative analysis, there are multiple classical methods with IVIFSs information have been applied into many practical issues. In this paper, we extended the classical EDAS method based on cumulative prospect theory (CPT) considering the decision makers (DMs) psychological factor under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, the original EDAS method based on the CPT under IVIFSs (IVIF-CPT-MABAC) method is built for MAGDM issues. Meanwhile, information entropy method is used to evaluate the attribute weight. Finally, a numerical example for project selection of green technology venture capital has been given and some comparisons is used to illustrate advantages of IVIF-CPT-MABAC method and some comparison analysis and sensitivity analysis are applied to prove this new methods effectiveness and stability.Comment: 48 page

    A novel approach to multi-attribute group decision-making based on interval-valued intuitionistic fuzzy power Muirhead mean

    Get PDF
    This paper focuses on multi-attribute group decision-making (MAGDM) course in which attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More explicitly, this paper introduces new aggregation operators for IVIF information and further proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean (MM) are two powerful and effective information aggregation technologies. The most attractive advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values on the information aggregation results. The prominent characteristic of the MM operator is that it is flexible to capture the interrelationship among any numbers of arguments, making it more powerful than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-making information is introduced. Finally, a numerical example is provided to show the performance of the proposed method
    • 

    corecore