1,856 research outputs found

    Modeling CPUE series for the fishery along northeast coast of India: A comparison between the Holt- Winters, ARIMA and NNAR models

    Get PDF
    Mathematical as well as statistical models not only help in understanding the dynamics of fish populations but also enables in short-term predictions on abundance. In the present study, three univariate forecasting techniques viz., Holt-Winters, Autoregressive Integrated Moving Average and Neural Network Autoregression were used to model the CPUE data series along northeast coast of India. Quarterly landings data which spans from January 1985 to December 2014 was used for building the model and forecasting. The accuracy of the forecast was measured using Mean Absolute Error, Root Mean Square Error and Mean Absolute Percent Error. Based on the comparison of the model, performance of Holt-Winter’s model was found to provide more accurate forecasts than the Autoregressive Integrated Moving Average and Neural Network Autoregression model. A Holt-Winters model with smoothing factors α = 0.172, β = 0, γ = 0.529 was found as the suitable model. The presence of seasonality in the series is evident from gamma value. An ARIMA model with one non-seasonal moving average term combined with two seasonal moving average terms was found to be suitable to model the CPUE series based on the Akaike Information Criteria. Among the Neural Network Autoregression models used to fit the CPUE series, a configuration of 13 lagged inputs and one hidden layer with 7 neurons provided the best fit

    Assessing the role of environmental factors on Baltic cod recruitment, a complex adaptive system emergent property

    Get PDF
    For decades, fish recruitment has been a subject of intensive research with stock–recruitment models commonly used for recruitment prediction often only explaining a small fraction of the inter-annual recruitment variation. The use of environmental information to improve our ability to predict recruitment, could contribute considerably to fisheries management. However, the problem remains difficult because the mechanisms behind such complex relationships are often poorly understood; this in turn, makes it difficult to determine the forecast estimation robustness, leading to the failure of some relationships when new data become available. The utility of machine learning algorithms such as artificial neural networks (ANNs) for solving complex problems has been demonstrated in aquatic studies and has led many researchers to advocate ANNs as an attractive, non-linear alternative to traditional statistical methods. The goal of this study is to design a Baltic cod recruitment model (FishANN) that can account for complex ecosystem interactions. To this end, we (1) build a quantitative model representation of the conceptual understanding of the complex ecosystem interactions driving Baltic cod recruitment dynamics, and (2) apply the model to strengthen the current capability to project future changes in Baltic cod recruitment. FishANN is demonstrated to bring multiple stressors together into one model framework and estimate the relative importance of these stressors while interpreting the complex nonlinear interactions between them. Additional requirements to further improve the current study in the future are also proposed

    City electric power consumption forecasting based on big data & neural network under smart grid background

    Full text link
    With the development of the electric power system, the smart grid has become an important part of the smart city. The rational transmission of electric energy and the guarantee of power supply of the smart grid are very important to smart cities, smart cities can provide better services through smart grids. Among them, predicting and judging city electric power consumption is closely related to electricity supply and regulation, the location of power plants, and the control of electricity transmission losses. Based on big data, this paper establishes a neural network and considers the influence of various nonlinear factors on city electric power consumption. A model is established to realize the prediction of power consumption. Based on the permutation importance test, an evaluation model of the influencing factors of city electric power consumption is constructed to obtain the core characteristic values of city electric power consumption prediction, which can provide an important reference for electric power related industry

    Forecasting drought using modified empirical wavelet transform-ARIMA with fuzzy C-means clustering

    Get PDF
    Drought forecasting is important in preparing for drought and its mitigation plan. This study focuses on the investigating the performance of Auto Regressive Integrated Moving Average (ARIMA) and Empirical Wavelet Transform (EWT)-ARIMA based on clustering analysis in forecasting drought using Standard Precipitation Index (SPI). Daily rainfall data from Arau, Perlis from 1956 to 2008 was used in this study. SPI data of 3, 6, 9, 12 and 24 months were then calculated using the rainfall data. EWT is employed to decompose the time series into several finite modes. The EWT is used to create Intrinsic Mode Functions (IMF) which are used to create ARIMA models. Fuzzy c-means clustering is used on the instantaneous frequency given by Hilbert Transform of the IMF to create several clusters. The objective of this study is to compare the effectiveness of the methods in accurately forecasting drought in Arau, Malaysia. It was found that the proposed model performed better compared to ARIMA and EWT-ARIMA

    Water Demand Forecast in the Baiyangdian Basin with the Extensive and Low-Carbon Economic Modes

    Get PDF
    The extensive and low-carbon economic modes were constructed on the basis of population, urbanization level, economic growth rate, industrial structure, industrial scale, and ecoenvironmental water requirement. The objective of this paper is to quantitatively analyze effects of these two economic modes on regional water demand. Productive and domestic water demands were both derived by their scale and quota. Ecological water calculation involves the water within stream, wetland, and cities and towns. Total water demand of the research region was obtained based on the above three aspects. The research method was applied in the Baiyangdian basin. Results showed that total water demand with the extensive economic mode would increase by 1.27 billion m3, 1.53 billion m3, and 2.16 billion m3 in 2015, 2020, and 2030, respectively, compared with that with low-carbon mode

    From multiple aspect trajectories to predictive analysis: a case study on fishing vessels in the Northern Adriatic sea

    Get PDF
    In this paper we model spatio-temporal data describing the fishing activities in the Northern Adriatic Sea over four years. We build, implement and analyze a database based on the fusion of two complementary data sources: trajectories from fishing vessels (obtained from terrestrial Automatic Identification System, or AIS, data feed) and fish catch reports (i.e., the quantity and type of fish caught) of the main fishing market of the area. We present all the phases of the database creation, starting from the raw data and proceeding through data exploration, data cleaning, trajectory reconstruction and semantic enrichment. We implement the database by using MobilityDB, an open source geospatial trajectory data management and analysis platform. Subsequently, we perform various analyses on the resulting spatio-temporal database, with the goal of mapping the fishing activities on some key species, highlighting all the interesting information and inferring new knowledge that will be useful for fishery management. Furthermore, we investigate the use of machine learning methods for predicting the Catch Per Unit Effort (CPUE), an indicator of the fishing resources exploitation in order to drive specific policy design. A variety of prediction methods, taking as input the data in the database and environmental factors such as sea temperature, waves height and Clorophill-a, are put at work in order to assess their prediction ability in this field. To the best of our knowledge, our work represents the first attempt to integrate fishing ships trajectories derived from AIS data, environmental data and catch data for spatio-temporal prediction of CPUE – a challenging task

    CHALLENGES AND OPPORTUNITIES PROVIDED BY SEASONAL CLIMATE FORECASTS: A LITERATURE REVIEW

    Get PDF
    Use of seasonal climate forecasts is a rapidly evolving area. Effective research and application of climate forecasts require close cooperation between scientists in diverse disciplines and decision makers. Successful collaboration requires all players to at least partially understand each other's perspectives. Issues associated with seasonal forecasts, through a selected review of both physical and social sciences literature, is presented. Our hope is that the review will improve research in this area by stimulating further collaborations.climate forecasts, review, value of information, Resource /Energy Economics and Policy, D80, D81, O30, Q00,

    Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia

    Get PDF
    In the present study, the artificial intelligence meshless methodology of neural networks was used to predict hourly sea level variations for the following 24 hours, as well as for half-daily, daily, 5-daily and 10-daily mean sea levels. The methodology is site specific; therefore, as an example, the measurements from a single tide gauge at Hillarys Boat Harbour, Western Australia, for the period December 1991-December 2002 were used to train and to validate the employed neural networks. The results obtained show the feasibility of the neural sea level forecasts in terms of the correlation coefficient (0.7-0.9), root mean square error (about 10% of tidal range) and scatter index (0.1-0.2)

    Water Quality Prediction Method Based on OVMD and Spatio-Temporal Dependence

    Get PDF
    Water quality changes at one monitoring spot are not only related to local historical data but also spatially to the water quality of the adjacent spots. Additionally, the non-linear and non-stationary nature of water quality data has a significant impact on prediction results. To improve the accuracy of water quality prediction models, a comprehensive water quality prediction model has been initially established that takes into account both data complexity and spatio-temporal dependencies. The Optimal Variational Mode Decomposition (OVMD) technology is used to effectively decompose water quality data into several simple and stable time series, highlighting short-term and long-term features and enhancing the model\u27s learning ability. The component sequence and spot adjacency matrix are used as the input of Graph Convolutional Network (GCN) to extract the spatial characteristics of the data, and the spatio-temporal dependencies of water quality data at different spots are obtained by combining GCN into the neurons of Gated Recurrent Unit (GRU). The attention model is added to automatically adjust the importance of each time node to further improve the accuracy of the training model and obtain a multi-step prediction output that more closely aligns with the characteristics of water quality change. The proposed model has been validated with real monitoring data for ammonia nitrogen (NH3-N) and total phosphorus (TP), and the results show that the proposed model is better than ARIMA, GRU and GCN+GRU models in terms of prediction results and it shows obvious advantages in the benchmark comparison experiment, which can provide reliable evidence for water pollution source traceability or early warning
    corecore