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Abstract 

In the present study, the artificial intelligence meshless methodology of neural networks was 

used to predict hourly sea level variations for the following 24 hours, as well as for half-daily, daily, 

5-daily and 10-daily mean sea levels. The methodology is site specific; therefore, as an example, the 

measurements from a single tide gauge at Hillarys Boat Harbour, Western Australia, for the period 

December 1991 – December 2002 were used to train and to validate the employed neural networks. 

The results obtained show the feasibility of the neural sea level forecasts in terms of the correlation 

coefficient (0.7-0.9), root mean square error (about 10% of tidal range) and scatter index (0.1-0.2). 

 

 

1. Introduction 

 

The knowledge of future sea level heights in the nearshore environment is of great importance 

for protection of coastal and low-lying regions’ residents, for monitoring and prediction of changes 
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in complex marine ecosystems, harvest estimation for the fishery, as well as for planning and 

constructing coastal and offshore structures, and for the development and implementation of ocean-

based alternative energy technologies (e.g., Herbich, 1992; Charlier & Justus, 1993). In geodesy, 

national height reference systems are linked to local mean sea level, obtained by long-term 

measurements at one or more selected tide gauge stations (e.g., Poutanen, 2000). For instance, the 

Australian Height Datum (AHD) is tied to mean sea level observed over a 2-3 year period at 32 tide 

gauge stations around Australia (Roelse et al., 1971). 

The instantaneous measurements, as well as time-averaged values of sea level, are not stationary 

either spatially or temporally. They vary under the synergetic influence of changing tides, 

temperature, salinity, atmospheric forcing, and large-scale ocean currents (e.g., Chen et al., 2000; 

Douglas, 2000; Ingham, 1992), and sometimes result in storm surges and floods. The transition 

from deterministic ocean global circulation models with relatively large computational mesh size 

(tens of kilometres), which among other parameters produce sea level, to local fine scales is a 

difficult task that demands bulk mathematical apparatus and intensive computations (e.g., Carretero 

et al., 2000; Monbaliu et al., 2000). The arising problem is especially severe if such a model mesh 

contains the boundary between the water and land, and consequently large gradients of physical 

parameters (e.g., Bowden, 1983; Neumann & Pierson, 1966), which is a common situation in 

nearshore studies. 

To solve the tasks of nearshore sea level predictions, alternative meshless artificial intelligence 

approaches, like genetic algorithms, fuzzy logic or artificial neural networks, can be employed. For 

instance, artificial neural networks (ANNs), which are able to approximate any nonlinear 

mathematical functions (Hornik, 1993), allow plausible simulations of complex systems’ behaviour 

without any preceding knowledge of the internal relations among their components (Haykin, 1999) 

provided that a reasonably large amount of data has been collected and taken into consideration. 

The ANN approach has been successfully used in many studies related to geosciences, such as 

ocean (Agrawal & Deo, 2002), coastal (Mase et al., 1995; Tsai et al., 2000; Makarynskyy, 2004), 
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environmental (Huang & Foo, 2002) and land mapping (Mas, 2004) applications. Recently, ANNs 

were also involved in simulations of sea level variations using the data from the German coastal 

areas of the North and Baltic Sea (Ultsch & Roske, 2002), the sea harbours in Taiwan (Lee, 2003), 

and the Southern Shore of Long Island in the USA (Huang et al., 2003). 

The objectives of the current study are to develop and validate a neural methodology applicable 

to the tasks of site-specific short- and medium-term sea level forecasts. The characteristics of the 

neural networks, the technique of saliency analysis and the data used in this study are described in 

Section 2. Sections 3 and 4 discuss the hourly predictions for the next day and the simulations of 

averaged sea levels at the Hillarys test site, Western Australia, respectively. Some conclusions are 

presented in Section 5. Importantly, this paper does not mean to cover the environmental impacts of 

sea level predictions, but instead describe and verify the ANN methodology used. 

 

 

2. Techniques and data used 

 

ANNs are basically parallel information-processing systems. A particular network consists of 

several neurons, or computational nodes. Taking a weighted input, the node produces the 

corresponding output by means of an activation, or transfer, function. Several neurons can be 

combined in a layer. An ANN can contain one or more interconnected layers of neurons where all 

the neurons are connected to one another. The input layer admits the incoming information, the 

hidden layer, or layers, processes it, and the output layer presents the network’s outcome. The 

pattern of such interconnections between the nodes in the layers is called the architecture. During 

the learning process, the weights of the interconnections and the neural biases are iteratively 

adjusted to minimize the network performance function, which for feed-forward networks is the 

average squared error between the network outputs and the teaching, or target, outputs. The 

adjusted weights and biases urge the entire network to perform in some expected way. More 
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detailed explanations on artificial neural networks can be found elsewhere (e.g., Zeidenberg, 1990; 

Fausett, 1994; Bishop, 1995). 

Three-layer feed-forward networks were employed in this study, with a non-linear differentiable 

log-sigmoid transfer function in the hidden layer and linear transfer function in the output layer. The 

nets were trained with the resilient backpropagation algorithm in 200 training epochs. The 

feasibility of such networks to geophysical studies was proved by Hornik (1993) and demonstrated 

in a number of previous works (e.g., Agrawal & Deo, 2002; Huang & Foo, 2002; Lee, 2003; 

Makarynskyy, 2004; Mase et al., 1995; Tsai et al., 2000). An appropriate size of the ANNs was 

determined applying saliency analysis (Abrahart et al., 2001). Saliency analysis is a technique 

derived from the idea that an ANN has to stay operational even in the case of incomplete input, or if 

an internal component faults. The technique allows estimation of the relative importance of the 

input and processing nodes of a network, as well as its consequent optimization by intentional 

introduction of missing neurons. 

Hourly sea level measurements were obtained from a SEAFRAME (SEA-level Fine Resolution 

Acoustic Measuring Equipment) station deployed at Hillarys Boat Harbour (Fig.1) at latitude 31.82o 

South and longitude 115.73o East (Geocentric Datum Australia 1994). Since 1991, the equipment 

has been operated and maintained by National Tidal Centre, Australia, as part of the Australian 

Baseline Sea Level Monitoring Project in the Australian Greenhouse Science Program. In this 

study, the whole available period from December 1991 to December 2002 was employed (Fig.2). 

The raw measurements demonstrate a prominent seasonal variability with annual minima during the 

Southern Hemisphere summers and maxima in the winters which occur mainly due to the 

astronomical forcing of the Sun’s and Moon’s gravitational attractions. The observed values 

oscillate between –140mm (December 1993) and 1680mm (July 1995) with respect to the 

unspecified local datum on this decadal time scale, while in a usual year the tidal range does not 

exceed 1200mm. This is a relatively mild tidal variation compared to the sites in the north of 

Western Australia, where the tidal range is of order of several metres. Nevertheless, the study area 
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is somewhat challenging because the tide gauge is enclosed in the harbour (Fig.1) that may affect 

the sea level changes by some internal periodic and/or aperiodic resonant oscillations, but these lie 

beyond the scope of this case study. Therefore, the results obtained here may not necessarily be 

generalized for other locations on the Western Australian coast, where independent site-specific 

studies should be performed. 

 

 

Fig. 1. Location of the SEAFRAME tide gauge (star) at Hillarys Boat Harbour 

 

 

Fig. 2. Hourly sea level observations from the Hillarys Boat Harbour SEAFRAME tide gauge. 

Three time series for independent training of the forecasting (first part), correcting (second part) 

ANNs, and for general validation (third part) are separated by vertical solid lines 
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3. Hourly sea level forecasts 

 

3.1. Predictions 

 

In the first set of experiments, the measurements from the Hillarys tide gauge were divided into 

three equal-length data sets of 32324 sea level observations. The first part of the observations 

(December 1991-September 1995) was used to train the forecasting ANNs; the second part 

(September 1995-May 1999) was used for independent training of the correcting networks, while 

the last portion (May 1999-December 2002) served for validation of both (Fig. 2). The performance 

was evaluated in terms of the correlation coefficient R, root mean square error RMSE, and scatter 

index SI, computed as  

R=

∑ ∑

∑

= =

=

−−

−−

N

i

N

i
ii

N

i
ii

yyxx

yyxx

1 1

22

1

)()(

))((
, (1) 

RMSE=
N

xy
N

i
ii∑

=

−
1

2)(
, (2) 

SI=
x

RMSE , (3) 

where xi is the value observed at the i-th time step, yi is the value simulated at the same moment of 

time, N is the number of time steps, x is the mean value of the observations, and y is the mean value 

of the simulations. 

Using the saliency analysis technique (Section 2), ANNs with architectures ranging from 72 

input neurons -145 processing neurons - 24 output neurons (hereafter referred to as 72 x 145 x 24, 

and likewise for other architectures) to 12 x 25 x 24 were explored to produce one-day (24 hours) 

forecasts of hourly sea level variations (Table 1). The quasi-diurnal (K1, O1 and P1) and quasi-

semidiurnal (M2) tide waves are the dominant ones in the area of Hillarys Boat Harbour (e.g., 
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Australian National Tide Tables 2003). Therefore, taking the semidiurnal and diurnal periodicities 

into account in the learning phase, the measurements were fed into the predicting networks in 12-

hour increments. Thus, during one training epoch, the input-output pattern presented, for instance, 

to the network 72 x 145 x 24 was as follows. In the first learning step, the observations from hours 

1 to 72 served as the input information, while the sea levels from hours 73-96 were introduced to 

the network as the target values. In the second learning step, the measurements from hours 13-84 

were the input and from hours 85-108 were the target, and so on. The learning process continued 

until all the data in the training subseries were used. 

 

Table 1. Number of nodes in the input and hidden layers of the forecasting ANNs. The presented 

statistics were averaged over the 24-hour interval of forecast 

Input 

neurons 

Hidden 

neurons 

Averaged  

R 

Averaged 

RMSE (mm) 

Averaged  

SI 

72 145 0.816 139 0.195 

60 121 0.830 130 0.182 

48 97 0.859 118 0.165 

36 73 0.859 119 0.166 

24 49 0.875 111 0.155 

12 25 0.823 122 0.172 

 

Figure 3 displays time-series plots of the hourly sea level forecast statistics and ensemble 

average values. The latter are the mean of the statistical characteristics obtained over each lead-time 

from 1 hour to 24 hours. From an analysis of Fig. 3 and Table 1, it follows that, in general, all the 

networks perform in a similar way. However, the two networks with the largest numbers of neurons 

in the input and hidden layers (i.e., 72 x 145 x 24 and 60 x 121 x 24) produce predictions with 

consistently lower accuracy than the three neural nets of simplified architecture (48 x 97 x 24, 36 x 
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73 x 24 and 24 x 49 x 24). The overall best performance was attained with the network with an even 

number of input-output nodes, and a number of hidden units, or processing neurons, equal to (input 

nodes + output nodes) + 1 (see also Huang & Foo, 2002). That is, the net with 24 input units, 49 

processing neurons, 24 output nodes. The averaged statistics over all 24 predicting intervals confirm 

the same trends (Table 1). This means that, for this case study, too much initial information and an 

overcomplicated network architecture deteriorate the quality of simulations because the more 

complex networks are not able to detect any consistent relations among so many input-processing-

output components. This, in turn, underlines the suitability of saliency analysis for the improvement 

of sea level forecast in terms of resulting accuracy. The decrease of the number of neurons also 

leads to smaller computational efforts. 

From Fig. 3 and Table 1, the network with the fewest number of input and processing units 

simulates sea levels slightly better than the others tested for time intervals of 1-2 and 14-24 hours 

ahead, and worse in the forecasts for 5-10 hours. The latter clearly affects the ensemble and the 

network’ s time averages. Therefore, as the main interest lies in the overall quality of one-day hourly 

predictions, it was inferred that too few initial data (12 hourly measurements for this case) are not 

sufficient for an accurate simulation of the sea level variability for the next 24 hours. This is 

plausible given the typical tidal periods. 

Another noteworthy feature present in Fig. 3 is an abrupt decrease in accuracy between the fifth 

and tenth hours of the forecasts. This is attributed to the use of 12-hour training increments. 

Reducing the increments to 6 or 3 hours, or to one hour, would assist in revealing consistent 

patterns disguised in the measurements. However, some negative effects itemized below of a finer 

partition may manifest themselves. Firstly, refining time increments will serve more training 

patterns demanding more computational resources without providing any additional new data to the 

ANNs. Secondly, an enhanced number of training pairs may eventually lead to the problem of 

overfitting, or overlearning, when an ANN extracts too much information from some individual 

cases and becomes unable to reproduce important general features. 
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Fig. 3. Correlation coefficients (R), root mean square errors (RMSE) and scatter indexes (SI) for 

each leading time of initial simulations 

3.2. Correcting predictions 

 

The use of saliency analysis allowed partial improvement of the methodology’ s performance. 

Assuming that a network of different internal structure might be trained for reproducing a more 

plausible output, an additional neural procedure was developed in attempt to correct the initial sea 

level simulations. The ancillary nets used had 24 nodes in both the input and output layers 

according to the number of the prediction intervals in the initial and final simulations, and 49 

neurons in the hidden layer. These correcting nets were trained as described in Section 3.1. 

A scrutiny of Fig. 4 results in the following observations. The differences in correlation 

coefficients of the initial (48 x 97 x 24 and 36 x 73 x 24 networks) and corrected predictions are 

mostly negative, while the differences in the RMSE and SI are generally positive. These indicate 

that the quality of the initial simulations was improved by employing the supplementary neural 

procedure. Scatter diagrams “simulations versus measurements” (Fig.5) illustrate the improvement, 

showing a generally higher degree of spreading of the initial forecasts around the exact fit line 

compared to the corrected predictions.  

Notably, fairly accurate initial simulations produced by the 24 x 49 x 24 network (Table 1) were 

not improved at all. This is attributed to the fact that the correction procedure merely adds to the 

total number of training epochs of the net with the same architecture, thus leading to the negative 

effect of overlearning. 
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Fig. 4. Differences between correlation coefficients (R), root mean square errors (RMSE) and scatter 

indexes (SI) of the hourly initial forecasts (Rif, RMSEif and SIif, respectively) by three different 

neural networks and corrected forecasts (Rcf, RMSEcf and SIcf, respectively)  
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Fig. 5. Scatter plot of simulations 3 hours (a), 6 hours (b) and 9 hours (c) ahead versus observations 

and the line of exact fit. Predicting network 48x97x24 

 

a) 

b) 

c) 
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4. Simulations of average sea levels 

 

To accomplish the second imposed task of mid-term forecast of mean sea level, the initial data 

were averaged over time intervals of 12, 24, 120 and 240 hours (Fig. 6). Thus, compared to the 

previous set of experiments, the resulting numbers of the available input-output pairs were 

significantly reduced. To provide quality training on fewer numbers of patterns, it was decided to 

skip the correction procedure in this case and to use three-quarters of the series (December 1991-

March 1999) for training purposes, and the rest of the data (March 1999-December 2002) for an 

independent validation (see Eqs.1-3) of the ANNs used. 

Based on the previous findings, the neural networks with even number of input and output 

neurons, and a number of processing units = (input nodes + output nodes) + 1 were employed. The 

learning algorithm and training epochs used were the same as in Section 3.1. Saliency analysis of 

the predictions obtained applying the networks 10 x 21 x 10, 8 x 17 x 8, 6 x 13 x 6, 4 x 9 x 4 (not 

shown) and 3 x 7 x 3 (Table 2) exhibited a higher accuracy of the net with the simplest architecture, 

independent of the averaging interval. Hence, four different ANNs of the same architecture 

spanning three previous averaged values were used to predict the mean sea level up to three steps 

(time intervals) ahead. 

An analysis of the statistics in Table 2 demonstrates that, in general, mean sea levels were 

simulated reasonably well with low values of the RMSE and SI and high R. Especially successful 

were the predictions for the first two time steps. It is clear that 12-hour and 24-hour averaged sea 

levels provide a reliable basis for 12-hour and one-day-ahead forecasts. However, this was not the 

case when longer-term predictions for 36, 48 and 72 hours were concerned. Respectively, the 

quality of simulations of 5-day and 10-day averages was reasonably high over time intervals of 5, 

10 and 20 days, with less success in 15- and 30-day predictions. The lower accuracy of the “third 

time step” simulations might be attributed to the reduced number of training patterns as well as to 

weak interdependencies between the values used as input-target pairs. 
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Fig. 6. Mean sea levels averaged over 12- and 24-hour, and 5- and 10-day periods. Time series used 

for training and validation are separated by vertical solid line 
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Table 2. Statistics of the simulations of 12-hour, 24-hour, 5-day and 10-day averages 

12-hour average 24-hour average Prediction 

interval R RMSE (mm) SI 

Prediction 

interval R RMSE (mm) SI 

+12 hours 0.894 115 0.164 +24 hours 0.872 73 0.105 

+24 hours 0.859 87 0.125 +48 hours 0.667 115 0.165 

+36 hours 0.679 186 0.267 +72 hours 0.558 69 0.099 

5-day average 10-day average Prediction 

interval R RMSE (mm) SI 

Prediction 

interval R RMSE (mm) SI 

+5 days 0.722 81 0.114 +10 days 0.785 71 0.101 

+10 days 0.700 80 0.116 +20 days 0.736 90 0.129 

+15 days 0.669 87 0.124 +30 days 0.667 151 0.216 

 

 

5. Conclusions 

 

The sea level observations from the Hillarys Boat Harbour tide gauge on the coast of Western 

Australia were used for development and validation of an ANN methodology for sea level forecasts. 

The commonly used three-layer feed-forward networks with a non-linear differentiable log-sigmoid 

transfer function in the hidden layer and linear transfer function in the output layer were employed 

in this case study. In general, satisfactory predictions with the values of correlation coefficients 

equal to 0.7-0.9, root mean square errors of about 10% of the tidal range and scatter indexes equal 

to 0.1-0.2 were produced. The validated neural methodology can be successfully applied to other 

coastal regions provided site-specific trainings and validations are carried out appropriately. 

In the first set of simulations, the neural technique was successfully implemented to predict 

hourly sea levels with leading times from 1 to 24 hours and, further, to correct the results of the 

initial simulations. An ancillary correcting neural network improved the quality of the initial hourly 
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simulations when assimilating the outcomes of more complex nets, while its application led to 

overfitting when the input data were coming from the network with the same number of input-

processing-output units. 

The usefulness of saliency analysis was highlighted. This technique helps in optimal network 

architecture selection that may consequently lead to better performance of the net and smaller 

computational efforts needed to train it. 

In the second set of simulations, ANNs were implemented to forecast sea levels averaged over 

12-hour, 24-hour, 5-day and 10-day time periods, three time steps ahead. This produced high-

quality predictions over first two time steps rather than over the third time interval. The lack of 

accuracy in the latter was attributed to the reduced number of the input-output training pairs and 

weak interrelations among them. 

 

 

Acknowledgments 

This study was partially funded by the ARC Discovery-Project grant DP0345583 “Prediction of 

Sea Level Change around Australia and its Calibration and Validation by Satellite-Geodetic 

Measurements”. The authors are grateful to the National Tidal Centre of Australia for making 

available the tide gauge observations. Part of this work was done when Dina Makarynska was a 

doctoral fellow at the “Fundação para a Ciência e Tecnologia” of the Ministry of Science and High 

Education of Portugal. The authors also thank the reviewers for their constructive comments. 

 

 

References 

Abrahart, R.J., See, L., Kneal, P.E., 2001. Investigating the role of saliency analysis with neural 

network rainfall-runoff model. Computers & Geosciences, 27, 921-928, doi:10.1016/S0098-

3004(00)00131-X. 



 17 

Agrawal, J.D., Deo, M.C., 2002. On-line wave prediction. Marine Structures, 15, 57-74, 

doi:10.1016/S0951-8339(01)00014-4. 

Australian National Tide Tables 2003. Australian Hydrographic Publication 11, Department of 

Defence. 404pp. 

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, 504 pp. 

Bowden, K. F.,  1983. Physical Oceanography of Coastal Waters.  Halsted Press, 302pp. 

Carretero, J. C., Alvarez, E., Gomez, M., Perez, B., Rodríguez, I., 2000. Ocean forecasting in 

narrow shelf seas: application to the Spanish coasts. Coastal Engineering, 41 (1-3), pp. 269–293, 

doi:10.1016/S0378-3839(00)00035-1. 

Charlier , R.H., Justus, J.R., 1993. Ocean energies. Elsevier, 554pp. 

Chen, J.L., Shum, C.K., Wilson, C.R., Chambers, D.P., Tapley, B.D., 2000. Seasonal sea level 

change from TOPEX/Poseidon observation and thermal contribution. Journal of Geodesy, 73, 

638-647. 

Douglas, B.C., Kearney, M.S., Leatherman, S.P., 2000. Sea Level Rise History and Consequences, 

International Geophysics Series, Academic Press London, 75, 97-119. 

Fausett, L., 1994. Fundamentals of neural networks. Architectures, algorithms, and applications. 

Prentice-Hall, Upper Saddle River, NJ, 462 p. 

Haykin, S., 1999. Neural networks: a comprehensive foundation. Prentice-Hall, Upper Saddle 

River, NJ, 842pp. 

Herbich, J.B., 1992. Handbook of coastal and ocean engineering. Gulf Professional Publishing, 

1340pp. 

Hornik, K., 1993. Some new results on neural network approximation. Neural Networks, 6, 1069-

1072. 

Huang, W., Foo, S., 2002. Neural Network Modelling of Salinity Variation in Apalachicola River. 

Water Research, 36, 356-362, doi:10.1016/S0043-1354(01)00195-6. 



 18 

Huang, W., Murray, C., Kraus, N., Rosati, J., 2003. Development of a regional neural network for 

coastal water level predictions. Ocean Engineering, 30, 2275–2295, doi:10.1016/S0029-

8018(03)00083-0. 

Ingham, A.E., 1992. Hydrography for the surveyor and engineer. Blackwell Science UK, 132pp. 

Lee, T.L., 2004. Back-propagation neural network for long-term tidal predictions, Ocean 

Engineering, 31 (2), 225-238, doi:10.1016/S0029-8018(03)00115-X. 

Makarynskyy, O., 2004. Improving wave predictions with artificial neural networks, Ocean 

Engineering, 31 (5-6), 709–724, doi:10.1016/j.oceaneng.2003.05.003. 

Mas, J. F., 2004. Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS 

and artificial neural networks. Estuarine, Coastal and Shelf Science, 59 (2), 219-230, doi:10.1016/ 

j.ecss.2003.08.011. 

Mase, H., Sakamoto, M., Sakai, T., 1995. Neural network for stability analysis of rubble-mound 

breakwaters, J. Waterway, Port, Coastal and Ocean Engineering., ASCE, 121 (6), 294-299. 

Monbaliu, J., Padilla-Hernández, R., Hargreaves, J.C., Carretero Albiach, J.C., Luo, W., Sclavo, M., 

Günther, H., 2000. The spectral wave model, WAM, adapted for applications with high spatial 

resolution. Coastal Engineering, 41 (1-3), 41-62, doi:10.1016/S0378-3839(00)00026-0. 

Neumann, G., Pierson, W.J., 1966. Principles of physical oceanography. Prentice-Hall. Englewood 

Cliffs. 545 pp. 

Poutanen, M., 2000. Sea surface topography and vertical datums using space geodetic techniques. 

Publications of the Finnish Geodetic Institute, N.128, Kirkkonummi, 312pp. 

Roelse, A., Granger, H.W., Graham, J.W., 1971. The adjustment of the Australian levelling survey 

– 1970-71. Technical Report 12, Division of National Mapping, Canberra. 

Tsai, C.P., Hsu, J.R.-C., Pan, K.L, 2000. Prediction of storm-built beach profile parameters using 

neural network, Proc.27th Int. Conf. Coastal Engineering, ASCE, V.4, 3048-3061. 

Ultsch, A., Roske, F., 2002. Self-organizing feature maps predicting sea levels, Information 

Sciences, 144, 91–125, doi:10.1016/S0020-0255(02)00203-7. 



 19 

Zeidenberg, M., 1990. Neural network models in artificial intelligence. Prentice Hall, Ellis 

Horwood, Chichester, 268pp. 


