119,276 research outputs found

    Power quality disturbances assessment during unintentional islanding scenarios. A contribution to voltage sag studies

    Get PDF
    This paper presents a novel voltage sag topology that occurs during an unintentional islanding operation (IO) within a distribution network (DN) due to large induction motors (IMs). When a fault occurs, following the circuit breaker (CB) fault clearing, transiently, the IMs act as generators due to their remanent kinetic energy until the CB reclosing takes place. This paper primarily contributes to voltage sag characterization. Therefore, this novel topology is presented, analytically modelled and further validated. It is worth mentioning that this voltage sag has been identified in a real DN in which events have been recorded for two years. The model validation of the proposed voltage sag is done via digital simulations with a model of the real DN implemented in Matlab considering a wide range of scenarios. Both simulations and field measurements confirm the voltage sag analytical expression presented in this paper as well as exhibiting the high accuracy achieved in the three-phase model adopted.Postprint (published version

    Stochastic Model for Power Grid Dynamics

    Get PDF
    We introduce a stochastic model that describes the quasi-static dynamics of an electric transmission network under perturbations introduced by random load fluctuations, random removing of system components from service, random repair times for the failed components, and random response times to implement optimal system corrections for removing line overloads in a damaged or stressed transmission network. We use a linear approximation to the network flow equations and apply linear programming techniques that optimize the dispatching of generators and loads in order to eliminate the network overloads associated with a damaged system. We also provide a simple model for the operator's response to various contingency events that is not always optimal due to either failure of the state estimation system or due to the incorrect subjective assessment of the severity associated with these events. This further allows us to use a game theoretic framework for casting the optimization of the operator's response into the choice of the optimal strategy which minimizes the operating cost. We use a simple strategy space which is the degree of tolerance to line overloads and which is an automatic control (optimization) parameter that can be adjusted to trade off automatic load shed without propagating cascades versus reduced load shed and an increased risk of propagating cascades. The tolerance parameter is chosen to describes a smooth transition from a risk averse to a risk taken strategy...Comment: framework for a system-level analysis of the power grid from the viewpoint of complex network

    Image Embedding of PMU Data for Deep Learning towards Transient Disturbance Classification

    Full text link
    This paper presents a study on power grid disturbance classification by Deep Learning (DL). A real synchrophasor set composing of three different types of disturbance events from the Frequency Monitoring Network (FNET) is used. An image embedding technique called Gramian Angular Field is applied to transform each time series of event data to a two-dimensional image for learning. Two main DL algorithms, i.e. CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network) are tested and compared with two widely used data mining tools, the Support Vector Machine and Decision Tree. The test results demonstrate the superiority of the both DL algorithms over other methods in the application of power system transient disturbance classification.Comment: An updated version of this manuscript has been accepted by the 2018 IEEE International Conference on Energy Internet (ICEI), Beijing, Chin

    Optimized complex power quality classifier using one vs. rest support vector machine

    Get PDF
    Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.Fil: de Yong, David Marcelo. Universidad Nacional de RĂ­o Cuarto. Facultad de IngenierĂ­a. Departamento de Electricidad y ElectrĂłnica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Bhowmik, Sudipto. Nexant Inc; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de RĂ­o Cuarto. Facultad de IngenierĂ­a. Departamento de Electricidad y ElectrĂłnica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba; Argentin

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    A novel voltage sag approach during unintentional islanding scenarios: A survey from real recorded events

    Get PDF
    In this paper, a new voltage sag approach is analytically modelled and validated using both simulation and field measurements. The main aspect of this approach is to propose a new voltage sag feature which appears during unintentional islanding operations (IOs). The unintentional IO occurs when an induction motor is removed from the main utility following a circuit breaker (CB) clearing, transiently, the induction motors (IMs) are acting as generators maintaining the affected distribution feeder with voltage until it is reconnected. The voltage sag modelled in the current article follows an exponential form, as a matter of fact, here it will be demonstrated that the proposed model reaches satisfactorily the field measurements and evidences the dependability of the model adopted. Furthermore, it is worthwhile to note that this novel power quality (PQ) event has not been investigated yet and enhances voltage sag studies. Lastly, it is crucial to point out that all recorded events and a large amount of data needed so as to validate this transient, has been measured in a distribution network (DN) located in Spain.Postprint (published version

    A novel voltage sag approach during unintentional islanding scenarios: A survey from real recorded events

    Get PDF
    In this paper, a new voltage sag approach is analytically modelled and validated using both simulation and field measurements. The main aspect of this approach is to propose a new voltage sag feature which appears during unintentional islanding operations (IOs). The unintentional IO occurs when an induction motor is removed from the main utility following a circuit breaker (CB) clearing, transiently, the induction motors (IMs) are acting as generators maintaining the affected distribution feeder with voltage until it is reconnected. The voltage sag modelled in the current article follows an exponential form, as a matter of fact, here it will be demonstrated that the proposed model reaches satisfactorily the field measurements and evidences the dependability of the model adopted. Furthermore, it is worthwhile to note that this novel power quality (PQ) event has not been investigated yet and enhances voltage sag studies. Lastly, it is crucial to point out that all recorded events and a large amount of data needed so as to validate this transient, has been measured in a distribution network (DN) located in Spain.Postprint (published version

    Issues in integrating existing multi-agent systems for power engineering applications

    Get PDF
    Multi-agent systems (MAS) have proven to be an effective platform for diagnostic and condition monitoring applications in the power industry. For example, a multi-agent system architecture, entitled condition monitoring multi-agent system (COMMAS) (McArthur et al., 2004), has been applied to the ultra high frequency (UHF) monitoring of partial discharge activity inside transformers. Additionally, a multi-agent system, entitled protection engineering diagnostic agents (PEDA) (Hossack et al., 2003), has demonstrated the use of MAS technology for automated and enhanced post-fault analysis of power systems disturbances based on SCADA and digital fault recorder (DFR) data. In this paper, the authors propose the integration of COMMAS and PEDA as a means of offering enhanced decision support to engineers tasked with managing transformer assets. By providing automatically interpreted data related to condition monitoring and power system disturbances, the proposed integrated system offer engineers a more comprehensive picture of the health of a given transformer. Defects and deterioration in performance can be correlated with the operating conditions it experiences. The integration of COMMAS and PEDA has highlighted the issues inherent to the inter-operation of existing multi-agent systems and, in particular, the issues surrounding the use of differing ontologies. The authors believe that these issues need to be addressed if there is to be widespread deployment of MAS technology within the power industry. This paper presents research undertaken to integrate the two MAS and to deal with ontology issues

    Using real-time simulation to assess the impact of a high penetration of LV connected microgeneration on the wider system performance during severe low frequency

    Get PDF
    In addition to other measures such as energy saving, the adoption of a large amount of microgeneration driven by renewable and low carbon energy resources is expected to have the potential to reduce losses associated with producing and delivering electricity, combat climate change and fuel poverty, and improve the overall system performance. However, incorporating a substantial volume of microgeneration within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralized generation technologies. This paper investigates the impact of tripping substantial volumes of LV connected microgeneration on the dynamic performance of a large system during significant low frequency events. An initial dynamic model of the UK system based on a number of coherent areas as identified in the UK Transmission Seven Year Statement (SYS) has been developed within a real time digital simulator (RTDS) and this paper presents the early study results

    Backtesting VaR Accuracy: A New Simple Test

    Get PDF
    This paper proposes a new test of Value at Risk (VaR) validation. Our test exploits the idea that the sequence of VaR violations (Hit function) - taking value 1-α, if there is a violation, and -α otherwise - for a nominal coverage rate α verifies the properties of a martingale difference if the model used to quantify risk is adequate (Berkowitz et al., 2005). More precisely, we use the Multivariate Portmanteau statistic of Li and McLeod (1981) - extension to the multivariate framework of the test of Box and Pierce (1970) - to jointly test the absence of autocorrelation in the vector of Hit sequences for various coverage rates considered as relevant for the management of extreme risks. We show that this shift to a multivariate dimension appreciably improves the power properties of the VaR validation test for reasonable sample sizes.Value-at-Risk; Risk Management; Model Selection
    • …
    corecore