1,983 research outputs found

    Review of Machine Vision-Based Electronic Travel Aids

    Get PDF
    Visual impaired people have navigation and mobility problems on the road. Up to now, many approaches have been conducted to help them navigate around using different sensing techniques. This paper reviews several machine vision- based Electronic Travel Aids (ETAs) and compares them with those using other sensing techniques. The functionalities of machine vision-based ETAs are classified from low-level image processing such as detecting the road regions and obstacles to high-level functionalities such as recognizing the digital tags and texts. In addition, the characteristics of the ETA systems for blind people are particularly discussed

    Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload

    Get PDF
    Powered wheelchair users often struggle to drive safely and effectively and in more critical cases can only get around when accompanied by an assistant. To address these issues, we propose a collaborative control mechanism that assists the user as and when they require help. The system uses a multiple–hypotheses method to predict the driver’s intentions and if necessary, adjusts the control signals to achieve the desired goal safely. The main emphasis of this paper is on a comprehensive evaluation, where we not only look at the system performance, but, perhaps more importantly, we characterise the user performance, in an experiment that combines eye–tracking with a secondary task. Without assistance, participants experienced multiple collisions whilst driving around the predefined route. Conversely, when they were assisted by the collaborative controller, not only did they drive more safely, but they were able to pay less attention to their driving, resulting in a reduced cognitive workload. We discuss the importance of these results and their implications for other applications of shared control, such as brain–machine interfaces, where it could be used to compensate for both the low frequency and the low resolution of the user input

    Use of Augmented Reality in Human Wayfinding: A Systematic Review

    Full text link
    Augmented reality technology has emerged as a promising solution to assist with wayfinding difficulties, bridging the gap between obtaining navigational assistance and maintaining an awareness of one's real-world surroundings. This article presents a systematic review of research literature related to AR navigation technologies. An in-depth analysis of 65 salient studies was conducted, addressing four main research topics: 1) current state-of-the-art of AR navigational assistance technologies, 2) user experiences with these technologies, 3) the effect of AR on human wayfinding performance, and 4) impacts of AR on human navigational cognition. Notably, studies demonstrate that AR can decrease cognitive load and improve cognitive map development, in contrast to traditional guidance modalities. However, findings regarding wayfinding performance and user experience were mixed. Some studies suggest little impact of AR on improving outdoor navigational performance, and certain information modalities may be distracting and ineffective. This article discusses these nuances in detail, supporting the conclusion that AR holds great potential in enhancing wayfinding by providing enriched navigational cues, interactive experiences, and improved situational awareness.Comment: 52 page

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Factors affecting augmented reality head-mounted device performance in real OR

    Full text link
    PURPOSE Over the last years, interest and efforts to implement augmented reality (AR) in orthopedic surgery through head-mounted devices (HMD) have increased. However, the majority of experiments were preclinical and within a controlled laboratory environment. The operating room (OR) is a more challenging environment with various confounding factors potentially affecting the performance of an AR-HMD. The aim of this study was to assess the performance of an AR-HMD in a real-life OR setting. METHODS An established AR application using the HoloLens 2 HMD was tested in an OR and in a laboratory by two users. The accuracy of the hologram overlay, the time to complete the trial, the number of rejected registration attempts, the delay in live overlay of the hologram, and the number of completely failed runs were recorded. Further, different OR setting parameters (light condition, setting up partitions, movement of personnel, and anchor placement) were modified and compared. RESULTS Time for full registration was higher with 48 s (IQR 24 s) in the OR versus 33 s (IQR 10 s) in the laboratory setting (p < 0.001). The other investigated parameters didn't differ significantly if an optimal OR setting was used. Within the OR, the strongest influence on performance of the AR-HMD was different light conditions with direct light illumination on the situs being the least favorable. CONCLUSION AR-HMDs are affected by different OR setups. Standardization measures for better AR-HMD performance include avoiding direct light illumination on the situs, setting up partitions, and minimizing the movement of personnel

    Enhancing the museum experience with a sustainable solution based on contextual information obtained from an on-line analysis of users’ behaviour

    Get PDF
    Human computer interaction has evolved in the last years in order to enhance users’ experiences and provide more intuitive and usable systems. A major leap through in this scenario is obtained by embedding, in the physical environment, sensors capable of detecting and processing users’ context (position, pose, gaze, ...). Feeded by the so collected information flows, user interface paradigms may shift from stereotyped gestures on physical devices, to more direct and intuitive ones that reduce the semantic gap between the action and the corresponding system reaction or even anticipate the user’s needs, thus limiting the overall learning effort and increasing user satisfaction. In order to make this process effective, the context of the user (i.e. where s/he is, what is s/he doing, who s/he is, what are her/his preferences and also actual perception and needs) must be properly understood. While collecting data on some aspects can be easy, interpreting them all in a meaningful way in order to improve the overall user experience is much harder. This is more evident when we consider informal learning environments like museums, i.e. places that are designed to elicit visitor response towards the artifacts on display and the cultural themes proposed. In such a situation, in fact, the system should adapt to the attention paid by the user choosing the appropriate content for the user’s purposes, presenting an intuitive interface to navigate it. My research goal is focused on collecting, in a simple,unobtrusive, and sustainable way, contextual information about the visitors with the purpose of creating more engaging and personalized experiences

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Robotic and Sensor Technologies for Mobility in Older People

    Get PDF
    Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age â\u89¥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers
    corecore