9 research outputs found

    Advances in Laser Materials Processing

    Get PDF
    Laser processing has become more relevant today due to its fast adaptation to the most critical technological tasks, its ability to provide processing in the most rarefied and aggressive mediums (vacuum conditions), its wide field of potential applications, and the green aspects related to the absence of industrial cutting chips and dust. With the development of 3D production, laser processing has received renewed interest associated with its ability to achieve pointed to high-precision powder melting or sintering. New technologies and equipment, which improve and modify optical laser parameters, contribute to better absorption of laser energy by metals or powder surfaces and allow for multiplying laser power that can positively influence the industrial spread of the laser in mass production and advance the existing manufacturing methods. The latest achievements in laser processing have become a relevant topic in the most authoritative scientific journals and conferences in the last half-century. Advances in laser processing have received multiple awards in the most prestigious competitions and exhibitions worldwide and at international scientific events. The Special Issue is devoted to the most recent achievements in the laser processing of various materials, such as cast irons, tool steels, high entropy alloys, hard-to-remelt materials, cement mortars, and post-processing and innovative manufacturing based on a laser

    Numerical Modelling and Simulation of Metal Processing

    Get PDF
    This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    Proceedings of the 2nd Energy Security and Chemical Engineering Congress

    Get PDF
    Mechanical engineering is a field that is continuously evolving as a profession to provide sustainable design, products and technologies for society. Mechanical engineering products, in conjunction with technological advances in other sectors, contribute to noise, water and air pollution, and the degradation of land and landscape. The rate of production, both energy and products, is increasing at such a rapid rate that natural regeneration can no longer sustain. Emission control is a fast-growing topic for mechanical engineers and others, encompassing the development of machines and processes that produce fewer pollutants as well as new materials and processes that can decrease or eliminate pollution that has already been generated. And, in an increasingly environmentally conscious world, the concept of sustainability is also intrinsically important to the success or failure of any engineering product or processes. Mechanical engineers thus play a central role in applying a truly modern approach for enabling the global transition to green energy and sustainable prac-tices. To address climate change, researchers are progressively looking into a wide range of novel solutions for energy conversion, engine efficiency, alternative fuels, nature-inspired materials, enhanced manufacturing processes and so on. In this context, this book presents part of the proceedings of the Mechanical and Materials track of the 2nd Energy Security and Chemical Engineering Congress (ESChE 2021) as presented by the academics, researchers and postgraduate students. The book provides insights into different aspects of mechanical processes, nanoma-terials and alternate fuels that set the stage for development of sustainable techno-logical solutions. The content of this book will be useful for students, researchers and professionals working in the areas of mechanical engineering, materials, energy technologies, optimization and allied fields

    Proceedings of the DOE chemical/hydrogen energy contractor review systems

    Get PDF
    Chemical/hydrogen energy system contracts were reviewed. The review served as an effective means to (1) give all contracts an insight into the background and objectives of thirty-nine hydrogen-related tasks, (2) show the status of the studies or technical effort, (3) relate any problems that had impeded the progress, and (4) state projected solutions for resolving the identified problems

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural health monitoring damage detection systems for aerospace

    Get PDF

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    A mathematical and experimental analysis of friction stir welding of steel

    Get PDF
    In the last decade there has been significant research into joining steel alloys using the Friction Stir Welding technique due to its ability to carry out welding below the melting point of the parent material and without using fillers such as in fusion welding techniques. This coincided with the increased use of DH36 and EH46 steel grades for ship building. The main reason for joining these steel grades by the friction stir welding technique is to reduce the weight of the vessel, as well as, the high welded joint quality especially mechanical properties such as fatigue and impact resistance. Other improved physical characteristics include increased tensile strength, microhardness and surface finish. This research project has attempted to model friction stir welding using Computational Fluid Dynamics (CFD). Three different approaches have been used when considering the interface between the tool and the workpiece; these are torque, sticking/slipping and fully sticking. The project also investigates the mechanical properties of the welded joints including tensile, fatigue and microhardness. The microstructural evolution of welded joints carried out using different welding parameters is also investigated. The phenomenon of elemental precipitation/segregation during the friction stir welding process has been investigated and the limit of tool rotational speed at which the segregation occurs has been determined by modelling and also by heat treatment to simulate FSW. The purpose of the heat treatment trials was to attempt to replicate the temperature and time that the parent materials experiences during the FSW process. Defects in the weld joints associated with unsuitable friction stir welding parameters were also investigated and two new types of defect have been identified for the first time. Finally, tool wear has been investigated in the different weld joints in order to understand the suitable welding parameters that can prolong tool life. The results from the mathematical modelling of FSW using CFD showed that the fully sticking assumption is the most effective approach for modelling friction stir welding of steel. The model also revealed that local melting at the advancing-trailing side of the tool is likely to occur at high tool rotational speeds. The experimental findings were in agreement with the results from the CFD model as the high tool rotational speed welded joints showed elemental segregation of Mn, Si, Al and O which only occurs when the peak temperature during welding approaches the melting point of steel. Experimental work has also shown significant improvement in the mechanical properties of the welded joints in terms of fatigue and tensile strength after friction stir welding compared to the parent metal. However, the joints welded at high tool rotational/traverse speeds have shown lower mechanical properties as a result of defects such as weld root defect and microcrackes which have been introduced. Tool wear was found to increase with the increasing tool rotational speed as a result of the tools W-Re binder softening. Tool wear was also found to increase with increasing plunge depth as a result of the high shear stress originating from the high thermo-mechanical action at the FSW tool surface. The current project has contributed to knowledge in the friction stir welding of steel by revealing the limits of tool speed that causes elemental segregation. The new technique for estimating the peak temperature and cooling rate using TiN precipitates can also be an alternative to thermocouple measurements which can significantly underestimate the tool-workpiece interface temperature
    corecore