7,610 research outputs found

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Using artificial intelligence in routing schemes for wireless networks

    Get PDF
    For the latest 10 years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore the performance of two very well-known routing paradigms, directed diffusion and Energy-Aware Routing, and our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    Analysis and evaluation of the establishment and maintenance of paths in a MANET used for industrial process monitoring

    Full text link
    The use of wireless networks is having an ever greater impact on systems controlling automation, industrial manufacturing, distributed control and supervision. Wireless technologies in particular have penetrated quickly the area of control of public utilities networks, and typical examples of this are remote control and supervision of large water, gas or electricity distribution networks. These types of networks are usually formed of a central station and different remote stations, and remote clients who are able to remotely monitor or even control the working of the system. To improve the use of the system, the remote stations must have the capacity to exchange information between each other and with the central station. The spontaneous generation of wireless networks in remote stations to exchange information between workers is a possible solution. Taking into account the characteristics of this type of monitoring system, the paper has proposed a scenario (number of nodes, area size, mobility) and has modeled, using stochastic activity networks (SAN), the operation of an ad hoc network that uses a reactive routing protocol to determine if the network is able to offer the typical services of these facilities (images or video streaming and alerts).This work was supported by the MCyT (Spanish Ministry of Science and Innovation) under the projects TIN2010-21378-C02-02, whose are partially funded by FEDER. The first author has been further supported by the ITI (Instituto Tecnologico de Informatica).Albero Albero, T.; Sempere Paya, VM.; Mataix Oltra, J. (2013). Analysis and evaluation of the establishment and maintenance of paths in a MANET used for industrial process monitoring. Simulation Modelling Practice and Theory. 37:79-98. https://doi.org/10.1016/j.simpat.2013.05.009S79983

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Probabilistic approaches to the design of wireless ad hoc and sensor networks

    Get PDF
    The emerging wireless technologies has made ubiquitous wireless access a reality and enabled wireless systems to support a large variety of applications. Since the wireless self-configuring networks do not require infrastructure and promise greater flexibility and better coverage, wireless ad hoc and sensor networks have been under intensive research. It is believed that wireless ad hoc and sensor networks can become as important as the Internet. Just as the Internet allows access to digital information anywhere, ad hoc and sensor networks will provide remote interaction with the physical world. Dynamics of the object distribution is one of the most important features of the wireless ad hoc and sensor networks. This dissertation deals with several interesting estimation and optimization problems on the dynamical features of ad hoc and sensor networks. Many demands in application, such as reliability, power efficiency and sensor deployment, of wireless ad hoc and sensor network can be improved by mobility estimation and/or prediction. In this dissertation, we study several random mobility models, present a mobility prediction methodology, which relies on the analysis of the moving patterns of the mobile objects. Through estimating the future movement of objects and analyzing the tradeoff between the estimation cost and the quality of reliability, the optimization of tracking interval for sensor networks is presented. Based on the observation on the location and movement of objects, an optimal sensor placement algorithm is proposed by adaptively learn the dynamical object distribution. Moreover, dynamical boundary of mass objects monitored in a sensor network can be estimated based on the unsupervised learning of the distribution density of objects. In order to provide an accurate estimation of mobile objects, we first study several popular mobility models. Based on these models, we present some mobility prediction algorithms accordingly, which are capable of predicting the moving trajectory of objects in the future. In wireless self-configuring networks, an accurate estimation algorithm allows for improving the link reliability, power efficiency, reducing the traffic delay and optimizing the sensor deployment. The effects of estimation accuracy on the reliability and the power consumption have been studied and analyzed. A new methodology is proposed to optimize the reliability and power efficiency by balancing the trade-off between the quality of performance and estimation cost. By estimating and predicting the mass objects\u27 location and movement, the proposed sensor placement algorithm demonstrates a siguificant improvement on the detection of mass objects with nearmaximal detection accuracy. Quantitative analysis on the effects of mobility estimation and prediction on the accuracy of detection by sensor networks can be conducted with recursive EM algorithms. The future work includes the deployment of the proposed concepts and algorithms into real-world ad hoc and sensor networks

    Homesick L\'evy walk: A mobility model having Ichi-go Ichi-e and scale-free properties of human encounters

    Full text link
    In recent years, mobility models have been reconsidered based on findings by analyzing some big datasets collected by GPS sensors, cellphone call records, and Geotagging. To understand the fundamental statistical properties of the frequency of serendipitous human encounters, we conducted experiments to collect long-term data on human contact using short-range wireless communication devices which many people frequently carry in daily life. By analyzing the data we showed that the majority of human encounters occur once-in-an-experimental-period: they are Ichi-go Ichi-e. We also found that the remaining more frequent encounters obey a power-law distribution: they are scale-free. To theoretically find the origin of these properties, we introduced as a minimal human mobility model, Homesick L\'evy walk, where the walker stochastically selects moving long distances as well as L\'evy walk or returning back home. Using numerical simulations and a simple mean-field theory, we offer a theoretical explanation for the properties to validate the mobility model. The proposed model is helpful for evaluating long-term performance of routing protocols in delay tolerant networks and mobile opportunistic networks better since some utility-based protocols select nodes with frequent encounters for message transfer.Comment: 8 pages, 10 figure
    corecore