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ABSTRACT

PROBABILISTIC APPROACHES TO THE DESIGN OF
WIRELESS AD HOC AND SENSOR NETWORKS

by

Zhen Guo

The emerging wireless technologies has made ubiquitous wireless access a reality and

enabled wireless systems to support a large variety of applications. Since the wireless

self-configuring networks do not require infrastructure and promise greater flexibility and

better coverage, wireless ad hoc and sensor networks have been under intensive research.

It is believed that wireless ad hoc and sensor networks can become as important as the

Internet. Just as the Internet allows access to digital information anywhere, ad hoc and

sensor networks will provide remote interaction with the physical world.

Dynamics of the object distribution is one of the most important features of the

wireless ad hoc and sensor networks. This dissertation deals with several interesting

estimation and optimization problems on the dynamical features of ad hoc and sensor

networks. Many demands in application, such as reliability, power efficiency and sensor

deployment, of wireless ad hoc and sensor network can be improved by mobility

estimation and/or prediction. In this dissertation, we study several random mobility

models, present a mobility prediction methodology, which relies on the analysis of the

moving patterns of the mobile objects. Through estimating the future movement of

objects and analyzing the tradeoff between the estimation cost and the quality of

reliability, the optimization of tracking interval for sensor networks is presented. Based

on the observation on the location and movement of objects, an optimal sensor placement

algorithm is proposed by adaptively learn the dynamical object distribution. Moreover,



dynamical boundary of mass objects monitored in a sensor network can be estimated

based on the unsupervised learning of the distribution density of objects.

In order to provide an accurate estimation of mobile objects, we first study several

popular mobility models. Based on these models, we present some mobility prediction

algorithms accordingly, which are capable of predicting the moving trajectory of objects

in the future. In wireless self-configuring networks, an accurate estimation algorithm

allows for improving the link reliability, power efficiency, reducing the traffic delay and

optimizing the sensor deployment. The effects of estimation accuracy on the reliability

and the power consumption have been studied and analyzed. A new methodology is

proposed to optimize the reliability and power efficiency by balancing the trade-off

between the quality of performance and estimation cost. By estimating and predicting the

mass objects' location and movement, the proposed sensor placement algorithm

demonstrates a significant improvement on the detection of mass objects with near-

maximal detection accuracy. Quantitative analysis on the effects of mobility estimation

and prediction on the accuracy of detection by sensor networks can be conducted with

recursive EM algorithms. The future work includes the deployment of the proposed

concepts and algorithms into real-world ad hoc and sensor networks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the rapidly increasing demand for connectivity, wireless communication becomes

more and more important. Most of the portable communication devices have the support

of fixed base stations or access points. However, this support is not available in some

extreme scenario where it may not be possible to get access to fixed access points, e.g.,

natural disasters, military settings, and exploration. This led to the necessity for wireless

self-configuring networks, such as Mobile Ad-hoc NETworks (MANET), and Wireless

Sensor Networks (WSN). Today's wireless networks have become highly flexible and

can be configured and adapted to different environment much more rapidly. In particular,

practical emergence of the mobile ad hoc networks and also sensor networks is widely

considered revolutionary because their flexibility provides one of the missing

connections between pervasive networks and physical world [1]. Since wireless ad hoc

networks and sensor networks are capable of dealing with mobile objects, probabilistic

estimation on mobile objects is becoming an attractive choice for wireless ad-hoc

networks and also in sensor networks.

This chapter discusses the background of this dissertation, which includes the

fundamental of mobile ad-hoc networks and wireless sensor networks, the mobility

estimation of the objects under these networks, the performance analysis of the

prediction effects on the Mobile ad-hoc networks and sensor networks, and recursive

learning algorithm for estimating the distributions of moving objects in sensor networks.

1
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Then contributions of this dissertation are briefly presented, which include a probability-

based reliable ad-hoc network multi-path selection framework, a predictive object

tracking methodology, the optimization of power consumption of wireless sensor

networks, and adaptive optimal coverage method for sensor networks. At the end, the

outline of this dissertation is given.

The advancement in wireless communications and light-weight, small-size,

portable computing devices have made pervasive and mobile computing possible. One

wireless network that has attracted a lot of attention recently is the mobile ad hoc

network (MANET). A MANET is a wireless network consisting of a set of mobile hosts

which may communicate with one another and roam around at their will. Mobile hosts

may communicate with each other indirectly through a sequence of wireless links

without passing base stations (i.e., in a multi-hop manner). This requires each mobile

host serve as a router. A scenario of MANET is illustrated in Fig 1.1.

Figure 1.1 An example of mobile ad hoc network (MANET).
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Applications of MANETs occur in situations like battlefields,  festival grounds, and

emergency rescue actions, where networks need to be deployed immediately, but base

stations or fixed infrastructures are not available [2]. For example, in an earthquake

disaster, all base stations may be down since there is no electricity. In this case, a

MANET driven by battery power can be quickly deployed to set up a network

environment. Such technology has been recently applied to wireless sensor networks

and personal-area networks too. Because of its flexibility and dynamic topology,

MANET is attracting much research efforts on the route reliability issues. When

choosing a routing path among several candidates, there are usually many factors to be

considered, such as route length, route quality, signal strength, and route lifetime. All of

those factors are dependent on the moving pattern of the mobile nodes. Motivated by the

work in [2],[3], this work studies the impact of a mobility model on route reliability. It is

believed that a good model of mobility prediction can evaluate the reliability of links,

help the source find a most reliable route, and finally improve the performance of the

entire MANET.

As the advances in wireless technology have enabled the development of tiny

low-power devices capable of performing sensing and communication tasks, wireless

sensor networks have emerged and received the attention of many researchers. Wireless

sensor networks are a special type of ad hoc networks, where wireless devices get

together and spontaneously form a network without the need for any infrastructure [3].

Fig. 1.2 shows the architecture of a sensor network in which sensor nodes are shown as

small circles. Because of the lack of infrastructure, sensor networks inherit the multi-hop

communication environment from the ad hoc networks. Although they are a special type
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of ad hoc networks, sensor networks have their own characteristics, such as very limited

energy sources, high density of nodes deployment, and cheap, perhaps unreliable sensor

nodes.

Among the technical issues to be addressed in developing sensor networks for

object tracking, power efficiency is probably the most critical one since the sensor nodes

are often powered by batteries which could be difficult to replace. The ideas of utilizing

mobility estimation to save power are not new in mobile computing systems. For

example, in cellular networks, probability based predictive techniques are proposed to

reduce the paging overhead by limiting search space to a set of cells that mobile users

may enter [4], [5]. Similarly in wireless sensor networks, mobility estimation and

prediction based on the past reading history can reduce the number of transmission [6].

Figure 1.2 Architecture of a Sensor Network.

Sensor placement is another important issue which can be studied and/or solved

with help of probabilistic estimation to learn mass characteristics of object distributions.

Based on the estimations, the sensors are informed to move to the updated optimal



5

locations accordingly. Due to dynamics of real world applications and uncertainty

associated with object movement, the parameters of object distribution should be

estimated with maximum likelihood or maximum a posteriori solution in a timely

manner. Considering real scenarios, a large number of moving objects attracted by

several points of interests are often assumed to be distributed in the Gaussian Mixture

model. Given a sufficient set of observations, the parameters of Gaussian mixture can be

approximately learned. With this learning process, sensors can be placed according to

the estimated distributions of thousands of targets.

1.2 Contributions of Dissertation Research

This dissertation presents a formal model to predict the lifetime of a route in a MANET

[7]. It is assumed that each mobile host roams around following some specific mobility

models. Given a sequence of mobile hosts which form a routing path, the joint

probability distribution of route lifetime is derived based on the mobility model. This

differs from most existing works which directly calculate the lifetime of a wireless link

based on the current locations and roaming directions of two neighbor hosts by

assuming that their roaming directions do not change. The proposed model of predicting

the route reliability includes: node mobility study, prediction of link availability, and

evaluation of route lifetime. Based on the quantitative analysis, a reliable path selection

algorithm to improve the reliability of routing in MANET is developed.

When applying the mobility estimation and prediction in wireless sensor

networks, we conduct mathematical analysis of the objects' moving pattern, and then

propose a prediction based object tracking approach in which the future motion of the
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detected objects can be predicted so as to make use of redundant local transmissions to

compensate for the lack of long distance transmissions [8]. The simulation results show

that this predictive object tracking approach significantly reduces the power

consumptions in wireless sensor networks and outperforms the compared approaches.

Obviously the accuracy of prediction depends on the "tracking interval". Here

the tracking interval is defined as the time length between two consecutive sensing

points with the intuition that as the resolution becomes finer, the miss probability

decreases. As the tracking interval becomes lower, in other words "more frequent", the

tracking power consumption is increased. As it increases, the miss probability increases,

thereby lower the tracking quality. The failure of locating a target should be recovered

by a certain mechanism, which leads to extra power consumption for re-capturing the

target. Hence, an analytical framework is highly desired in order to determine an

optimum value of tracking intervals. By analyzing the effect of mobility estimation and

prediction on power consumption in wireless sensor networks, the work constructs a

quantitative model to find such an optimal tracking interval, studies the effect of the

tracking interval on the miss probability, and proposes a scheme called Predictive

Accuracy-based Tracking Energy Saving (PATES) to achieve the optimal power

efficiency by exploiting the tradeoff between the accuracy and cost of sensing operation.

Similarly, optimal sensor placement can also be achieved by taking advantage of

probabilistic estimation on the moving pattern of objects. More research attention should

be drawn to the issues of monitoring and tracking a large number of moving objects.

Given sufficient observations, it is desired to know where the sensors should be

deployed so that optimal coverage and detection accuracy can be achieved. An
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unsupervised learning method for estimating the object distributions is proposed to

obtain the required knowledge for sensor placement. The proposed method is aimed at

optimal sensor placement for detecting a mass of objects with maximal detection

accuracy. The adaptive optimal sensor placement method proposed in this dissertation

provides for the first time a probabilistic solution to adaptively learn the distribution of

objects and move the sensors to the optimal locations with the maximal detection

accuracy. Meanwhile, it can also estimate the real-time updated boundary of the targets

adaptively.

1.3 Outline of Dissertation

Chapter 2 proposes a mobility prediction model for maximizing the reliability to use for

the reliable routing path selection, trying to maximize the route lifetime. Section 2.2

describes briefly the mechanism to estimate the reliability in ad hoc networks. Section

2.3 presents statistical analysis of the stability and link selection. Section 2.4 proposes a

simple reliable routing scheme based on the proposed link stability prediction and

presents specifications. Section 2.5 is performance analysis of the proposed reliable

routing approach and its comparison with some existing routing protocols.

Chapter 3 proposes a prediction-based tracking algorithm in which the future

motion of the detected objects can be predicted so as to make use of redundant local

transmissions to compensate for the lack of long-distance transmissions. Section 3.2

describes a general system structure, preliminary assumptions on 1-D mobility model of

the tracked object and topology for illustration and further analysis, and finally proposes

an object tracking framework. Section 3.3 proposes an energy calculation model, and
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compares the energy consumption in the proposed method with those of other

algorithms. Section 3.4 makes a performance analysis, in which the proposed method is

compared with PREMON algorithm and naïve system, in order to quantify the

difference of performance via a case study. Section 3.5 ends the chapter 3 with some

conclusions.

Chapter 4 proposes a quantitative analytical model to find an optimal tracking

interval, studies the effect of the tracking interval on the miss probability and proposes a

scheme called Predictive Accuracy-based Tracking Energy Saving (PATES) by

exploiting the tradeoff between the accuracy and cost of sensing operation. Section 4.2

describes the predictive tracking sensor network architecture, and presents the predictive

accuracy-based tracking energy saving scheme. Section 4.3 develops a quantitative

method to optimize the power efficiency by choosing an optimal tracking interval, and

presents an example with an optimal result.

Chapter 5 presents the adaptive optimal sensor placement method. This chapter

utilizes a recursive learning process to estimate the dynamical distribution of objects,

and then proposes an adaptive optimal sensor placement strategy for detecting the

objects with maximal detection accuracy. This chapter also presents the real-time

estimation of boundary of object distribution. Section 5.2 briefly reviews the related

works. Section 5.3 formalizes the problem of optimal sensor placement, and analyzes

the distribution of mass objects. The detection coverage is modeled as a Gaussian

Mixture Model. The EM and recursive EM solutions are presented to solve the coverage

problem based on the Gaussian Mixture model in Section 5.4. Section 5.5 proposes a

possible choice for the distributed implementation of EM algorithms in sensor networks.
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The details of simulation and detection performance are discussed in Section 5.6.

Section 5.7 concludes this chapter.

The dissertation is concluded in Chapter 6, which briefly reviews the algorithms,

methods and their contributions. The promising applications and techniques of

probabilistic estimation for wires ad-hoc and sensor networks are also discussed.



CHAPTER 2

RELIABLE PATH ESTIMATION FOR MOBILE AD HOC NETWORKS

2.1 Introduction

Mobile ad hoc networks are difficult to support QoS-driven services because of their

unpredictable and frequent topology changes. One of the important concerns is the

reliability of routes. Although finding the optimal path for MANET is an NP-complete

problem, specific routing protocols may sacrifice efficiency for the reliability. In

particular, typical reliable routing protocols use redundant paths to achieve reliability.

This chapter proposes a probabilistic model for maximizing the reliability in order to

select the most reliable route, and increase the lifetime of the route.

The information flow over paths is constantly disrupted by the link breakage due

to topology changes, which affects the QoS for MANET. Using stable links is crucial

for establishing stable paths between connection peers. Rerouting results in unexpected

overhead and delays to the connections.

A promising technique for coping with link breakage is to find the strongest link,

i.e., the link with lowest failure probability, between nodes, based on the mobility

information of nodes and the current ages of links.

The residual lifetime of a link is the time span during which the link stays

connected. This chapter assumes that two nodes are connected if and only if they are

within a given range. It is straightforward that a path with higher lifetime can be deemed

as the most stable path between the connection peers. A path is deemed to be connected

if all links included in the path are connected. Much recent work [9], [10], [11], [12], [13]

10
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addresses the problem of predicting the link stability in a quantitative way. However,

these models alone are not sufficient because none of them presents the estimation

model for route reliability by combining the availability of links.

Some existing reliable routing protocols use instant GPS information to obtain

the estimated link life, and then determine which path is optimal. By using mobile

node's random mobility pattern, one can predict the future state of a network topology

and thus provide the most stable route [13]. Using the current age in addition to the

mobility information of the connection pairs to predict the lifetime remains unexplored.

This raises the problems of how to find a simple method for link selection based upon

the statistical analysis of link duration.

The rest of this chapter will be organized as follows. The following section

briefly describes the mechanism to estimate reliability in ad-hoc networks. Section 2.3

presents statistical analysis of the stability and link selection. Section 2.4 proposes a

simple reliable routing scheme based on link stability prediction and presents

specifications. Section 2.5 discusses performance analysis results of the proposed

reliable routing approach in comparison with some existing routing protocols.

2.2 Estimation Models for Reliability

This section presents a Brownian motion-based mobility model for analyzing and

characterizing the distribution of node movement. On the basis of analysis of node

movement, the link and path availability can be predicted by analyzing the two-body

mobility problem. In [9] a discrete approximate model for Brownian motion is presented

to provide the basis for analytical derivation of random-independent link availability.
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This chapter assumes that the 2-D free space transmission model is used. Hence

the link status is determined by the distance between nodes. The basic assumptions of

the proposed estimation algorithm are similar to those used in [9] and [10]. Hereby,

some definitions are presented here, they were also used by McDonald and Znati[9].

Definition 2.1 Mobility epoch is a random length interval during which a node moves in

a constant direction at a constant speed.

Definition 2.2 Mobility profile is defined for a given node moving according to a

random ad-hoc mobility model based on three parameters: mobility epoch, the mean

speed and the speed variance. Before a mobility model is described, some assumptions

are made in developing this model:

• The epoch lengths are Identically, Independently Distributed (IID) with mean //An .

• The speed during each epoch is an IID distributed random 'variable with mean pn and

variance an, and remains constant only for the duration of the epoch.

• The direction of a mobile node during each epoch is IID uniformly over (0,2n) and

remains constant only for the duration of the epoch.

• Speed, direction and epoch are uncorrelated.

2.2.1 Node Mobility Models

Currently four mobility models widely used are Random Waypoint model, Reference

Point Group Mobility model, Freeway Mobility model, and Manhattan Mobility model.

1. Random Waypoint Model 

Each node chooses a random destination and moves toward it with a random velocity

chosen from [0, Vmax]. After reaching the destination, the node stops for a duration



13

defined by the "pause time" parameter. After this duration, it again chooses a random

destination and repeats the whole process again until the simulation ends.

2. Reference Point Group Mobility Model 

Each group has a logical center (group leader) that determines the group's motion

behavior. Each node within a group has a speed and direction that are derived by

randomly deviating from that of the group leader.

3. Freeway Mobility Model 

Each mobile node is restricted to its lane on the freeway. The velocity of a mobile node

is temporally dependent on its previous velocity. If two mobile nodes on the same

freeway lane are within the Safety Distance (SD), the velocity of the following node

cannot exceed the velocity of its preceding node.

4. Manhattan Mobility Model 

The movement of mobile nodes can be viewed as random vectors. These vectors

characterize the direction and distance moved by a mobile node during a single epoch.

This work assumes the nodes operate in a truly ad-hoc manner, hence the

mobility should be random, and link breakages caused by motion of nodes are

independent events. Suppose that a node can obtain the instant mobility information

from a GPS system periodically. The movement of each node is assumed to be a 2-

dimensional space motion model. Two more assumptions for the movement of mobile

nodes are needed:

• Mobility epoch lengths are assumed to be exponentially distributed with mean la.

E(T) = P{ epoch length <T} = 1— eT

• Node mobility is uncorrelated.



14

Definition 2.3 f?„(t)is the random mobility vector for node n. Its magnitude R(t) is

equal to the distance from Mc), Y(t)) to (X( t + d t) , Y( t+ d t)), where ( X(t), Y(t)) is

the position of the node at time t. Its phase angle 0(t) is the angel of line joining the

node's initial position to its position at time t. The random mobility vector can be

expressed as a random sum of the epoch random mobility vectors:

Pn (t)=EN(I) P„

The work in [11] derives the mobility vector as follows. Its expected value of the

equivalent random mobility vector is,

E[i? „,,n (t)] = it-
L Al (6.2 ++)+--(o	 + pn ) ',+(

6m
2

)

The following mobility metrics are used:

Relative Speed (mobility metric I)

The average magnitude of the relative speed of two nodes over all neighborhood pairs

and all time

_	 1 T NN
RS = LEEE v(i, t) - i;(i 3 O1)

1=0 , J .1
J.,

Spatial Dependence (mobility metric II)

The extent of similarity of the velocities of two nodes that are not too far apart, average

over all neighbor pairs and through all the time

spatial 	
1 •'n' 	j ,t))

x 
 i(i,t)• -f(j,t)

P	 max(i;(i, 0,17(j, t)) 	 i;(i,	 t)
Jti

Temporary dependence (mobility metric III)
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The value of extent of similarity of the velocities of a node at two time slots that not far

away, average over all neighborhood pairs and all time

iN T T minMi, 	)) 	0 • 17(i, )
bfr. =E 

1"raiy 	P ,=, 1=0 	max(i; (i	 (i ,t )) 1 v(i, 011 f; (i , t )1

2.2.2 Link Stability Prediction

In this section, the prediction for link availability in form of time t is proposed based on

the distribution of the distance between two mobile nodes during each mobility epoch.

The term "link availability" defined in this chapter is different from that in [9].

Definition 4: Link availability is the conditional probability that an active link, which is

available between two nodes at time t o is continuously available from to to to +tc .

Since it is assumed that the 2-dimensional free space transmission mechanism is

used, a link between two nodes is considered as "available" at any time if and only if the

distance between the two nodes is smaller than the transmission. Suppose that the joint

location distribution of every two nodes is given. The link maintenance probability can

be predicted by

P j (t) =	 f f 	 f (z, (t), z j (t))dz,(t)dz j (t)
12, (t)-2 (t)kr

where f (z ,(t), z j (t)) is the joint PDF for locations of nodes i and j. Since the motions of

mobile nodes are assumed independent with each other as following,

f (z,(t), z j (t)) = f (zi (t))- f (z j(t))
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Figure 2.1 Link availability.

The authors in [2] proposed an estimation model for the link reliability, which

gives an expression for link availability at moment tp .

The numerical analysis in [10] gives an approximate formula,

The link availability
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2.2.3 Path Stability

Section 2.2.2 demonstrates how the link availability is calculated. Now this metric can

be used by a routing algorithm in order to construct paths that support a maximum

reliable probability over an interval. Preliminarily the path availability model has to be

studied as the basis for the construction of the reliable route. Lots of papers, such as [12],

[14], [15], make similar assumptions on path availability. One of those assumptions,

discussed in this section, is independent link failure. From this assumption, path

availability can be expressed as

Omk ,,,(t) = Fl 13,,,(t)	 (2.1)
(1, Ack

where 0,;,,(t) is the availability of the path between nodes m and n. p, j is the link

availability between nodes i and j. Based upon this assumption, Dijkstra algorithm can

be used to find the most reliable path by using log(p, j ) as the "link cost".

Each node periodically broadcasts its neighbor information. It can periodically

compute the link active probability with each 1-hop neighbor based on the probability

method described in Section 2.2.2.

Considering the example shown in Fig 2.2, one can view the reliable path

selection mechanism as the reliability maximization problem of a parallel-series graph

system [3]. A MANET can be modeled as a probabilistic graph Gp = { V,E} with

probabilities of link activity assigned to the edges.
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Figure 2.2 An example of topology graph.

The algorithm starts by locally constructing several paths as its detail is

presented in Section 2.3.2. Each path comprises several links, and these paths may share

some common links. As a result, some discovered paths may consist of unreliable links.

Consequently, the goal is to choose the most reliable links to form a specific path.

For a given path, which is analogy to a series system, the overall reliability is

worse than or equal to each of its links. But for a path set from source to destination,

which is a parallel system, the overall optimum path should be better than each of single

paths in the path set [16]. This work summarizes this system with Ropt {G} as the

reliability of optimal path and R(links) as the reliability of each link in a given path as

follows:
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However, the path availability from the experiment does not match the Equation

2.2 very well. The reason for this mismatch is that the probability that two neighboring

links are broken cannot be considered to be independent with each other, since these two

parameters depend on the movement of the same node. Fig. 2.3 shows the simulation

and analytical results of the path availability. The mismatch of the simulation and

calculation can be observed from the dashed line and dotted line in Fig. 2.3. The solid

lines pl, p2 and p3 stand for the connected probability of the links, 2 and 3, respectively.

It is noted that as the time goes by, the mismatch of the calculation and simulation

becomes larger and larger. Hence, the two links sharing a same intermediate node can

not be assumed to be independent with each other is drawn.

Figure 2.3 Simulation and analysis of path stability.
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2.3 Path Prediction and Selection

Although a closed form expression of path availability model has yet to propose so as to

match the experiment data very well, a common sense that the path availability mainly

depends on the availability of the weakest link is straightforward. Based on the

connected probability of each link in the whole network, a routing framework, referred

as Probability Based Reliable Multi-path Selection (PBRMS) is proposed. By

broadcasting the RREQ message and receiving the RREP message from the other nodes,

the source node is able to obtain the global information of the link availabilities. The

route constructed by PBRMS is expected to be the route of which the weakest link has

greater availability than the weakest link of every other possible route.

2.3.1 PRMS Description

The shortest path routing is not suitable for wireless ad hoc networks due to the mobility

of nodes. Since the topology changes frequently, the shortest route may be the most

unreliable route among all possible paths because it chooses the route with the smallest

hop count, where the chosen links are potentially too long and tend to be broken easily.

The objective of reliable routing is to minimize the expected number of transmissions

per route from source to destination, given by E = po) , where P, j and

P is the link reliability, and each link is symmetric.

The PRMS constructs a set of reliable paths iteratively. It begins with finding

the path with the highest active probability. As time goes on, the probability may be

decreasing, hence the previous optimal route may no longer be the most reliable one.

Many new paths are kept to be appended to the existing path set. Due to the highly
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dynamic topology of MANET, the adaptive reliability is a huge issue in the concern of

PRMS. The algorithm keeps comparing the reliability of the paths in the path set.

Hence, one has to compromise the computational overhead to reach high route

reliability.

Path Hop count Expect # of Retransmission

A-IC 1 4

A--B-->C 2 2.34

2.3.2. Route Discovery Phase

When source node S requires a route to destination D, S enters the route discovery phase

and checks whether adequate "fresh" routes to D are available in the

FreshRoutesSache first. If some fresh routes to D are found, S sends packets simply

according to these existing routes. If not, S runs NewRouteDiscoveg_Process to find

a new route to the destination node.

Source node S broadcasts RREQ (Route discovery REQuest) to all neighbor

nodes, and then each neighbor node forwards them to their neighbors by flooding.

RREQ includes a sequence number field to distinguish every route discovery process

from the others, and a route content field records nodes' IDs along the path from S to D.

After the intermediate node receives RREQ from an upstream node X, it inserts its ID

and the predicted lifetime of the link between itself and its upstream node into the route

content field and lifetime field, respectively, of the RREQ, then sends this modified

RREQ to its neighbor nodes (except the upstream node X). The RREQ_caches of the
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intermediate nodes also store the routing information, including the sequence number of

the RREQ and the IDs of neighbor nodes.

If a node receives the RREQ with the same sequence number from another

neighbor, e.g., Y, then it checks whether the route content of RREQ includes its ID; if so,

the node discards this RREQ. Otherwise the node inserts its ID into the RREQ, and then

checks whether Y is in the RREQ_cache. If so, the node clears Y from the

RREQ_Cache, and then forwards the RREQ again to its neighbors, specified in the

RREQ_Cache. If Y has no more downstream nodes in the RREQ_Cache, the RREQ is

discarded. The node discards only the duplicate RREQ with its ID in the route content of

RREQ. Hence, it not only avoids the infinite loops but also protects the existence of

multipath.

After the destination node D receives the first RREQ, and waits for more RREQ

packets in a tolerable period T, when the clock of node D reaches T, D collects the

lifetime information of each link, and finds out which RREQ is correspondent to the

route where the minimum lifetime value of its links is greater than those of all others.

The route whose weakest link has greater lifetime than the weakest link in every other

route is the most reliable route among all the routes [17].

As the process of reliable path selection is completed, Node D sends back

RREP( Route discovery Response) packet to the source node S according to the most

reliable route recorded in the chosen RREQ.

2.3.3. An network example

Figure 2.2 presents an example of MANET with some probability of link activity

assigned to each link. The algorithm starts by finding an initial path from 1 to 12, say,
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{16, 7, 5, 12}, and appends it to the path set G. The first iteration is completed. At the

following iterations, it appends all other possible paths to the end of the path set. By

multiplying every link active probability, the proposed algorithm can choose an optimal

path with maximum P,, (t) at moment t. In this example, the path (1,8,9,10,7,4,5,12)

is chosen. Thus, at moment t it is the optimal path between nodes 1 and 12.

2.4 Performance Analysis

This section compares the performance of PRMS with a shortest path algorithm , e.g.,

Ad hoc On-demand Distance Vector (AODV). In the following simulations, each

experiment is repeated 10 times, each time the topology is different from others.

Network size is 2060 nodes, which are randomly distributed in an area of 1000meters x

1000 meters. The power range of each node is assumed to be 200 meters.

The free space propagation function is used, i.e., the link between two nodes stay

connected if and only if they are within 200 meters apart. The pair of nodes with the

longest distance is selected as the source-destination pair. Each experiment is repeated

100 times to study the performance of the proposed algorithm, and the averages are

taken.

Three metrics are used to compare the performance of PRMS with that of AODV.

They are: the expected path lifetime, hop count of the selected path and number of

overhead packets. Note that the route with the minimum hop count may not be the most

reliable one. The expected number of retransmissions per sending request is given by

E 1/ (p,,. Pp ) and used as a measure of the path life. The lower this number is, the

longer the path lasts.
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The lifetime of Dynamic Source Routing (DSR) vs. reliable routing with lifetime

prediction is shown in Fig. 2.4. Each data point is obtained from the experiments

repeated 1000 times on 500m*500m square where free space transmission is assumed.

From Fig. 2.4, it can be observed that the lifetimes of a reliable path are 50% to 100%

longer than those of the shortest paths. The hop count of reliable and shortest paths is

shown in Fig. 2.5 where each experiment is repeated 1000 times. The hop count of

reliable paths is found to be greater than those of shortest paths. The overhead routing

packets of reliable and shortest path routing is shown in Figure 2.6. It is found that

shortest path routing has no much change in the number of overhead packets as the

network size increases, while the overhead of reliable routing is much lower and

decreases with the increase of the network size.

Figure 2.4 Lifetime study.



Figure 2.6 Routing overhead packet.
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2.5 Summary

The QoS applications of MANET motivate this research on the probabilistic model of

dynamically changing topology. In order to construct the most reliable route for each

moment, Probability-based Reliable Multi-path Selection (PRMS) is proposed to find

and maintain the most reliable route. With the use of PRMS, one can take advantage of

redundant routing overhead to make route impervious to link failures due to topology

changes.

Theoretical analysis of the lifetime of a routing path should be extended, and

takes into account the correlation between lifetimes of the neighbor links in the path.

Based on this analysis the routing protocol can be modified, and additional experiments

can be designed and performed.



CHAPTER 3

PREDICTION-BASED OBJECT TRACKING ALGORITHM

3.1 Introduction

Power efficiency is one of the major concerns of wireless sensor network applications.

Most existing power efficient routing algorithms for wireless sensor networks

concentrates on finding efficient ways to forward data. Yet not much work has been done

on collecting local data, tracking the detected objects, predicting the future motion, and

then generating the data report. This chapter presents the effect of object tracking

prediction on power saving for wireless sensor networks. An object tracking prediction

method, i.e., Prediction-based Object tracking Algorithm with Load balance (POTL) has

been proposed to achieve significant power savings by reducing unnecessary

transmission. Performance analysis, based on numerical analysis for one dimensional

case, demonstrates that the proposed scheme can dramatically reduce the power

consumption and improve the lifetime of the overall network system.

More and more research efforts have been conducted on energy efficiency for

wireless sensor networks deployed for the remote interaction with the real world. A good

energy efficient protocol is expected to conserve as much power as possible while

ensuring the given QoS requirement. The lifetime of a wireless sensor network strongly

depends on the energy efficiency of the employed protocol. The proposed protocol in this

chapter aims at reducing the redundant sampling and transmission, which is one of major

methods of improving energy efficiency for wireless sensor networks.

27
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Object tracking consists of detecting and monitoring locations and motions of

real-world objects. Numerous applications of tracking are currently in place, such as air

traffic control, railway monitoring and habitat monitoring. Networked sensors have been

demanded for use for this tracking purpose [18][19][20].

Most of the existing sensor boards provide four different modes for radio

transmission: Transmit, Receive, Idle and Sleep [21], in which transmit and receive mode

are so called active modes. Power consumption studies on wireless sensor networks

conclude that:

1) Long distance transmission consumes much more power than short distance one

does at wireless integrated network sensors (WINS) nodes;

2) Idle mode consumes nearly as much power as receiving mode does;

3) Sleeping mode consumes only around one-sixth of the power in active modes.

These findings provide the clues of power savings for wireless sensor networks,

i.e., higher energy efficiency can be achieved by reducing the amount of long distance

transmission with the cost of utilizing more local communication. This chapter proposes

a prediction-based object tracking approach in which the future motion of the detected

objects can be predicted so as to make use of redundant local transmissions to

compensate for the lack of long distance transmissions. Another design goal is fault-

tolerance, which means the mechanism of load balance should be utilized to improve the

Max-Min value of power residue of sensor nodes in the whole system. Hence, the

lifetime of the whole sensor network can be increased. It is believed that this work

contributes to improve the reliability performance and lifetime of the wireless sensor

networks by using object-tracking prediction.
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3.2 Object Tracking Mechanism

This section describes a general system structure, preliminary assumptions on 1-D

mobility model of the tracked object and topology for illustration and further analysis,

and finally proposes an object tracking framework.

3.2.1 System Structure

Generally, each sensor node consists of two different functional units: sensing and

communication. This chapter focuses on communication unit. The term "sensor node"

refers to its communication unit, unless otherwise stated.

Zone-based hierarchy is used in the proposed approach to improve the power

efficiency and reliability. Zone head token is initiated and assigned to one sensor node

within the zone randomly when the system starts. As the time goes by, the zone head will

consume more power than any other sensors. Hence in order to balance the load, the

token is passed to other nodes periodically according to the proposed algorithm to be

described later. A node broadcasts the prediction information to its neighbors and the

zone head. Only zone head is responsible for sending predictions to base station every k

(>1) time slots, the other nodes do not send data to the base station over long distance

transmission unless they receive the head token. Inside the zone, TDMA is used as the

MAC protocol, and sensor nodes contact each other with low power paging channel.

Suppose that each zone covers n nodes, each slot is assigned to each sensor node evenly,

the period of the round robins is T sec. Hence in each cycle, a time slot each sensor node

takes T/n sec to broadcast information to its neighbors. Otherwise it is in sleep mode to

save power. Furthermore, sensor nodes can be awaked by requests from other nodes.
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The regions covered by sensor nodes are highly overlapped. From Fig. 3.1, it can

be observed that wherever the object appears, at least two sensors should be able to detect

it. Obviously, the device redundancy is doubled, while the total power consumption

almost remains unchanged due to the load balance consideration in the proposed

algorithm. Furthermore, since more nodes share the power consumption, the reliability

and lifetime of the whole system can be significantly improved.

3.2.2 Mobility Model and Object Tracking

Before the mobility model and object tracking algorithm is described, it is necessary to

make some preliminary definitions:

Definition 3.1 Moving average is a series of successive averages of a defined number of

the past variables.

The proposed method can predict the trend of next values. As each new variable

is included in calculating the average, the oldest variable of the series is deleted.
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Definition 3.2 Moving window is a predefined number of the past variables based on

which the future value can be predicted.

The movement of tracked objects can be viewed as random vectors. Since only

one dimensional sensor networks application are concerned in the proposed algorithm,

the movement characters are all 1-D vectors. These vectors characterize the direction and

distance moved by an object during a single time slot.

The sensor nodes detect and measure the motion of the object. Considering 1-D

applications, this work focuses on 1-D motion only in this chapter. Initially, the sensors,

that succeed in detecting the objects track the objects based on the monitoring and

positioning utility of the sensors. The following assumptions are made:

1. All the sensor nodes are static and capable of obtaining the instant position and
velocity of the moving objects by its stand-alone positioning utility within the
coverage area.

2. The moving objects can be tracked by at least two sensors.

3. The speed during each time slot is an Independent, Identically Distributed (IID)
random variable.

4. Sensors do not broadcast predictions unless the actual location or movements
are different from those of predictions.

For object tracking applications, the state of a moving object, such as direction,

velocity and route, can be retrieved by sensor nodes through collecting moving patterns

of the tracked objects. For example, the current movement of an object is a reflection of

the patterns of the moving history. Hence a sensor node may be able to predict the

object's future moving patterns. Let 1, be the predicted location of the node at time t, v i

be the velocity of the node at time t, the moving average window size is w and s is the

length of each time slot. Then,
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is a moving average of acceleration of an object. The moving information of an object,

such as location and velocity, can be obtained by target locating functional units of the

sensor nodes. The moving history, i.e., the values of the past velocity and location, are

transferred from one node to its neighbors. The prediction and transmission part of the

proposed algorithm is described next.

3.2.3 Prediction-based Routing and Scheduling

Prediction models refer to the prediction functions that incorporate the topology

knowledge and strategies to predict objects' movement.

From Equation (3.1), the future location of an object is predicted based on the

moving history information by using the moving average method to predict the

acceleration and then the location in the next time slot. The sensing units of nodes are

always active in detecting and tracking the objects, but the communication units are not.

Furthermore, a sensor does not transmit prediction information to base station over long

distance transmission unless the head token arrives. For the convenience of description,

POTL is separated into 3 phases: Initiation, information collection, and decision making

Initiation:

Suppose that an object enters the area covered by the sensor network. The first

sensor node that detects and monitors the object is called the initial node. The initial node

bewares of the object, obtains its moving information during the first several time slots

until moving window size is reached, tracks it and loads its moving information into the

processing unit. As long as the moving window is filled up with the available historical
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data, i.e., the number of past data equals to the window size, the next state of the location

and velocity of the tracked object can be predicted.

Information collection:

As mentioned before, TDMA is assumed as a MAC protocol for transmission

between sensor nodes and their zone head. Zone head is responsible for collecting

moving information of the objects and transmitting it to each sensor node in its zone

during each different time slot. An object can be monitored by two sensor nodes, but

only the one with more power residue sends report to zone head to balance power. The

occupancy of the head token and power residue information of each node are transmitted

by broadcasting to all nodes within the zone through low power paging channel

periodically. Hence in every zone, the zone head should switch to other sensor nodes

periodically. A sensor node cannot send and receive data reports to/from the zone head

until its assigned time slot is on duty. During the non-duty time slots, its communication

unit stays asleep except when it is time to broadcast the power residue information over

low power paging channel.

Decision making:

The zone head collects the moving information of the tracked objects, make

predictions based on the information according to Equation (3.1). The expected location

in the next interval can be predicted. The zone head sends a prediction report to the node

that is expected to cover the predicted location, its zone head broadcasts alert to all the

nodes within the zone and the base station, only if the corresponding sensor node does

not find the objects. The global information is then quickly released from the base station
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and broadcasted to all the zone heads. All the nodes are activated and trying to catch the

object. Again the information is collected by the corresponding zone head.

3.3 An Energy Model

The parameters used in the analysis are summarized in Table 3.1. A popular energy

model [22], [23] is as follows:

Energy consumption in transmitting a P-bit message over a distance D,

represented by ET  (P, D) , consists of two parts: the energy required to run the transmitter,

ET„-d„ 	 '
(P) - and the energy needed for the transmitter amplifier, ET

..-..7
 (P, D) can be

expressed by:

Energy consumption in receiving this message is,

where Ed„ is the energy required to run the transmitter or receiver with a typical value of

50nYbit, and E is the energy needed for the transmitter amplifier with a typical value of

0.1nRbit/m2 .

In POTL, the energy consumption should include the energy for correct

prediction and incorrect prediction as well as the energy for overhead (including the head

token switch overhead, and the broadcasting missing alert overhead). For convenience of

expression, this work summarizes the calculative parameters' definition into Table 3.2 as

shown. The energy consumption should be expanded in the form as follows
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(3.4)

where m is the number of sensor nodes in each zone, and c is the number of intervals in

which the overheads are broadcasted.

Table 3.1 System Parameters

Parameters Description

N Number of sensor nodes involved in object tracking

K Number of transmissions between sensors and zone head

m The number of sensor nodes in each zone

P Size of the message in transmission

D Distance of transmission

C Number of intervals involved in overhead broadcasting

L Length of a TDMA time slot

a Accuracy of prediction

c Energy needed for the amplifier of transmitter
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Table 3.2 Definitions of POTL calculative parameters

Ebroadcast The consumed energy for the zone head's broadcasting

Ppred►ction The size of prediction packet

Dhead Average distance from nodes to its zone head

Pnaive The size of a packet that were transmitted without prediction

In a naïve system, i.e., a system without using prediction, the energy consumption

is as follows.

In PREMON [24], the moving history is transmitted when the sensor node clocks

to communicate the zone head no matter whether the readings differ from the prediction

or not, and the size of a prediction packet from a zone head, referred to PREMON packet,

is much bigger than that of POTL. The total energy consumption in PREMON is:

By subtracting Equation (3.4) from (3.6), the amount of saved power consumption used

in POTL compared with Premon can be:
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3.4 Performance Analysis

This section compares POTL with PREMON algorithm and naïve system, in order to

quantify the difference of performances via a case study. Suppose that these algorithms

are applied to a sensor network for monitoring a railway system. This system can be

simplified as a 1-D application for wireless sensor network. In this case it is assumed

that the average of distance between sensor nodes and zone head is 25 m, or Dhead = 25.

Let K and N be 500 and 50, respectively, in other words, the total number of

transmissions between sensors and zone head is 500, and among them only 50 are

actively sending data packets from sensors to zone head. This system is also assumed to

be event-driven networked sensor system, i.e., it supports the function of retrieving only

critical event information and sending them out. Finally P- naive, Ppremon,

assumed to be 8, 7, and 7, respectively, although PPOTL is supposed to be much smaller

than Ppremonpremon because in POTL, the prediction packet only consists of its current motion

information without its neighbour information. For example, a PREMON packet with 7

bytes long is composed of current motion information of 5 bytes and neighbour

information of 2 bytes, while a POTL packet has 5 bytes long only. Using the same

value is merely for the demonstration purpose.

From Equations (3.4)-(3.6), the energy consumptions in Naive, PREMON and

POTL are calculated respectively with different value of prediction accuracy. Obviously

prediction accuracy has much effect on the power consumptions.

Figure 3.2 illustrates the effect of prediction on the power consumption. In a

naïve system, it stays the same as the prediction accuracy varies from 0 to 1, but in

PREMON and POTL, as the prediction accuracy increases, the power consumption

and PPOTL are
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declines significantly. It is easy to understand----incorrect prediction causes re-

monitoring and re-calculation overhead, which leads to the higher power consumptions.

It can be also observed that POTL needs much lower accurate prediction model to

consume the same amount of power as PREMON does. The performance comparison

shows only when the prediction model's accuracy is approximately above 70%, the

PREMON can save power than a naïve system, though POTL can save power even if the

prediction model achieves only 5% accuracy. This is because, for PREMON, the

reduction of transmitting readings from sensor nodes is at the cost of transmitting

motion information whenever the time slot arrives, thus the predictions overhead is

much bigger than that of POTL.

Figure 3.2 Power consumptions of three algorithms.
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3.5 Summary

This chapter proposes a prediction based approach for minimizing power consumption

in wireless sensor networks---POTL. This chapter makes three main contributions. First

the effects of prediction accuracy on power consumption have been studied and

presented. Second, this chapter describes an approach of routing and scheduling to

reduce the power consumptions. Third, load balance is taken into concern to utilize

redundant devices without consuming much higher total energy but significantly

improve the reliability and lifetime of the whole networked sensor system.

The following chapter studies the effect of tracking interval on the power

consumption given the known prediction accuracy curves.



CHAPTER 4

OPTIMAL TRACKING INTERVAL FOR SENSOR NETWORKS

4.1 Introduction

An important application of wireless sensor networks is the tracking of moving objects.

Prediction-based techniques have been proposed to reduce the power consumption in

wireless sensor networks by limiting the sensor active time. This chapter proposes a

quantitative method to optimize the power efficiency by analyzing the effect of

prediction on the energy consumption in wireless sensor networks. This work is the first

attempt to calculate the optimal tracking interval for a given predictive tracking

algorithm. Based on this method, the lifetime and power efficiency of the sensor

networks can be effectively improved.

Object tracking is an important application in wireless sensor networks, e.g.,

terrorist attack detection and traffic monitoring. Since a node in wireless sensor

networks is battery-powered, power efficiency demands much concern. Object tracking

consists of detecting and monitoring locations and motions of real-world objects.

There has been much research on object detection and tracking with sensor

networks. Most of them concentrate on tracking objects and finding efficient ways to

forward the data reports to the sinks. Goel and Imielinski [24] argue that readings at a

sensor node can be predicted based on the past reading history and spatio and temporal

relationships of readings from surrounding sensors. Predictive tracking algorithms

accommodate the sensor-hibernation mechanism to save energy and prolong the sensor

network's lifetime. At any time, only those sensors that are chosen to sense the targets
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need to be active, while all others can still hibernate. This is made possible by predicting

the target's next location. While the "putting-sensor-into-hibernation" mechanism does

save energy, it also induces the overhead of information collection and computing power

consumption.

Obviously the accuracy of prediction depends on the "tracking interval". This

work defines the tracking interval as the time length between two consecutive sensing

points with the intuition that as the resolution becomes finer, the miss probability

decreases. As the tracking interval becomes lower, in other words "more frequent", the

tracking power consumption increases. As it increases, the miss probability increases,

thereby lowers the tracking quality. The failure of locating a target must be recovered by

a certain mechanism, which leads to extra power consumption for re-capturing the target.

Hence, an analytical framework is highly desired in order to determine an optimum

value of tracking intervals. This chapter intends to 1) propose a quantitative analytical

model to find such an optimal tracking interval, 2) study the effect of the tracking

interval on the miss probability, and 3) propose a scheme called Predictive Accuracy-

based Tracking Energy Saving (PATES) by making good tradeoff between the accuracy

and cost of sensing operation.

4.2 Predictive Tracking Sensor Network Architecture

4.2.1 Object Tracking Sensor Networks

An object tracking sensor network refers to a wireless sensor network designed to

monitor and track the mobile targets in the covered area [21]. Generally, each sensor

consists of three functional units: Micro-Controller Unit (MCU), sensor component and
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RF radio communication component. To facilitate the energy conservation, most of

today's sensor nodes allow these three basic components to be inactivated separately

when they are not needed. These sensor nodes are responsible for tracking any mobile

objects that intrude the covered region, and reporting the properties of the moving

targets to the applications in a specified frequency. The sensor nodes sample the

environment for a certain interval, referred to as sampling duration, to obtain the

properties of the moving objects. During sampling, the MCU and sensor components are

activated for data collecting and processing, while the radio components can be turned

off if no communication is needed. The sampling happens with certain tracking interval

adjustable based on the prediction and application requirements.

4.2.2 Predictive Accuracy-based Tracking Energy Saving

Based on the application requirements in the object tracking sensor networks

described before, a scheme called Predictive Accuracy-based Tracking Energy Saving

(PATES) is proposed to improve the power efficiency. In PATES, three modules must

be in use.

1) Monitoring and tracking:

A sensor node monitors and collects the moving information of the tracked

objects, and then reports to the base station. According to the prediction received from

the base station, a sensor node is activated only when the object is supposed to enter its

detected area with a given tracking interval that is also included in the packets from the

base station. By monitoring the mobile objects, the sensor nodes are able to decide

whether or not the prediction reflects the real states of the object movements. If the

prediction is consistent with the monitored states, the sensor nodes continue monitoring
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and tracking the object with the certain resolution. If the prediction is not consistent with

the real trajectory of the object, i.e., the targets are missed, then the recovery module is

initiated

2) Prediction and reporting:

Initially each sensor node reports the moving history of the objects to the base

station. On the server side predictions are made and sent by the base station based on the

moving history. Upon receiving the prediction packets, each sensor node is informed of

the tracking interval and what time it is supposed to be activated for monitoring the

target. Meanwhile information about each sensor itself, such as residual power level, is

communicated between the base station and each sensor through low-power paging

channel periodically [6]. If during tracking interval, the monitored states of the moving

objects are consistent with the prediction, no updates need to be sent to the base station,

which will save considerable power by reducing the long distance communication.

Although the base station receives no packets through the transmission channel, it can

determine whether the power is depleted or not by periodically paging through low-

power paging channel. Otherwise, the sensor networks are responsible for recovering

the failure of monitoring resulting from the inaccurate predictions.

3) Recovery:

No matter what prediction algorithm is used, it is impossible to guarantee 0%

missing probability. Therefore, a recovery mechanism is necessary to relocate the target

when the object is lost. To be conservative to the energy resource, the recovery module

is divided into two stages: a) ALL NBR recovery. All the neighbor nodes around the

current sensor are waked up to make up the deficiency of the prediction. When the
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current sensor realizes that the target is not in its covered area, it broadcasts and wakes

up all the nodes around it. This reduces the probability of object missing, though it is

still not guaranteed that the missed objects be relocated by the neighbor nodes. A more

aggressive approach takes place at the second stage if the object is not found. The sensor

node that captures the missed object has to not only notify the current node, thus

preventing the second stage of the recovery, but also report the updated moving

information to the base station. b) ALL_ NODE recovery, the current sensor wakes up all

the nodes in the network for object relocation, which ensures the maximal probability of

re-capturing the target. The sensor node that captures the target has to report to the base

station so that the updated prediction can be made and sent out by the base station.

4.3 Power Optimization and Quantitative Analysis

Depending on the sensor topology and application, several different prediction

algorithms for tracking mobile objects have been reported in the literature [25].

Obviously, different prediction algorithms result in different tracking accuracy. Hence,

the relationship between missing probability and tracking interval varies with the

prediction algorithms. Furthermore, the missing probabilities of a specific prediction

algorithm with the same tracking intervals on a mobile object with different moving

pattern are different too. Based on the simulations, it can be observed that relation

between missing probability and tracking interval, in the concerned span, can be fitted

into a quadratic function P(s) = as 2 + bs + c , where s is the tracking interval, a, b, and c

are the constants, Since probability, P(s), is positive for any s (>0), the constant part c

must be greater than zero. For the convenience of description this chapter makes a
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simple prediction model, Heuristic AVERAGE, as an example, in which the current

location and velocity of the mobile object is derived from the average of the object

movement history. The result of a simulation is shown in Fig. 4.1, in which a walking

person whose average speed is lmile/hour tracked by a sensor network with 100 sensor

nodes under the Heuristic AVERAGE prediction algorithm. The values of tracking

intervals above 10 sec are screened out of the curve fitting since they are beyond the

accurate tolerance and should be ignored. From the curve fitting in Fig.4.1, the

approximate function of missing probability can be written

as P(s) = 0 .0013s 2 + 0.025s + 0.062 , based on the quadratic fitting shown with the solid

line in Figure 4.1.

Figure 4.1 The impact of tracking interval on prediction accuracy.
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A more rigorous study of the statistical characteristics of the missed targets is

presented here to find the power consumed by the network. During each tracking

interval, the expression of the total energy consumed by a sensor network is given by

where Esuccess is the energy consumed by the sensor node if the prediction is accurate and

is the energy for the failure recovery.Ere cov ery

, where the energy consumed by the low power paging channel is negligible.

where m is the number of the neighbor sensors around the current sensor node, N is

the total number of sensors in the whole network, p	 is the probability that the
isi - re coy ery

first stage recovery succeeds, and Esensor„,„ is the energy consumption of the sensor

when it is active. Emcu_ach„ is the energy consumption of an MCU when it is active,

Ereport 2BS is the energy consumption for reporting the discovery of object from the sensor

to base station, and Er,01,fica,on is the energy needed for notifying the current sensor of the

success in relocating the object.

Observed from the Equation (4.1), Erecovery is always strictly greater than Esuccess . As

described in Section 4.2, the recovery module consists of two stages. If first recovery

fails, the second stage recovery mechanism is activated and all nodes are waked up. In
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the first recovery stage only the neighbor sensor nodes around the current node are

activated, and when a neighbor node detects the target, it sends a notification to the

current node to avoid the current sensor from initiating the 2nd stage recovery request to

all the sensors while reporting the actual moving states to the base station. Thus during a

given period T, the total energy consumed by all the sensor nodes can be written as,

Now the optimum value of tracking interval can be calculated by setting the

derivative of Eso,„, with respect to s to zero

The minimum value of 
Etotal 

is proved to exist by using second derivative test:

Since c > 0, E cov > E success , hence,

exists as a positive real number under the condition of a >0, which means if and only if

the second degree's coefficient is greater than zero, the optimality of energy

consumption can be obtained.



48

Figure 4.2 Power consumption vs. tracking interval.

For these experiments, N=100 nodes, m=7 nodes, E„ cov„y =9656mJ, Esuccess =

42mJ, and T=25 seconds, so the optimal tracking interval is 7.1451 seconds. Fig. 4.2

shows the relationship between the power consumption and tracking interval. The power

consumption with tracking interval at about 7 sec is the minimum. From Fig. 4.2, it can

be concluded that choosing an optimum value considerably saves power consumptions

for tracking mobile objects in wireless sensor networks.

It should be noted that in Figure 4.2 the energy consumed by the low-power

paging channel is excluded, as it is almost negligible in the calculation. While doing

simulations, it is also observed that the miss probability is inversely proportional to the

target's speed. This implies that a fast moving object needs a small tracking interval to

counter the rise in the miss probability. Since one can identify the concerned span of
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tracking intervals in which the curve can be quadratic fitted, this proposed work can be

well applied. In summary, the power consumption with respect to tracking intervals can

be minimized with a quadratic miss probability function under a given prediction

algorithm. A predictive tracking scheme to optimize the power efficiency with two

stages of recovery is proposed. The method can successfully make good tradeoff

between the prediction accuracy and tracking cost.



CHAPTER 5

ADAPTIVE OPTIMAL SENSOR PLACEMENT AND BOUNDARY
ESTIMATION

5.1 Introduction

Wireless sensor networks have been under intensive studies. Sensor networks become a

bridge between the physical world and the information systems. Since the set covering

problem is NP-hard, where NP stands for non-polynomial, optimal sensor placement

problem that is equivalent to the former is also NP-hard. Hence, computationally

efficient sensor placement approaches with maximal detection probability are highly

desired.

Object tracking in sensor networks received much research attention recently.

Most of the work focuses on identifying and tracking one or more individual objects

[6][8][27]. Unfortunately, sufficient research efforts have yet to conduct on the issues of

monitoring and tracking a large number of objects in sensor networks. It is in demand

that a large number of objects be monitored and tracked concurrently by a sensor

network. There are some examples of monitoring and tracking a large number of objects,

such as a surveillance system to monitor many people in a public area, vehicles in a

highway, and wild animals. These objects with large population, referred as mass

objects in this chapter, are usually distributed in a certain way because several interest

points are attractive to them and thus located densely. In many real world applications,

it is necessary to place sensors optimally to locate the mass objects with the maximal

detection probability and resolution by deploying a limited number of sensors only.

Figure 5.1 illustrates an example of a sensor network monitoring a large number of trees

50
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and vehicles in a wild area. In such cases, this work focuses on the locations of mass

objects instead of individual ones. Even though the individual objects are moving

frequently, the topology of the mass objects is less likely to change very fast.

Figure 5.1 An example of sensor networks for mass objects monitoring.

With the recent advances in sensor technologies, people are allowed to make use

of mobile sensors, which can move to the correct places to provide the required

coverage. They are used to detect targets collaboratively and monitor environments

across the area of deployment. As the mass objects' topology changes slowly, they are

capable of acknowledging and moving to the desired place. The coverage may be

inferior to the application requirement. Location estimation for mass objects based on

signal strength received from sensors have been proposed and implemented in

[28][29][301 The positions are calculated by modeling signal propagation, which

requires adequate signal detection. Hence, one of the most important issues in sensor

networks for monitoring and tracking mass objects is the selection of sensors locations.

Proper sensor placement is needed to provide adequate signal coverage and also

maximize the probability of accurate detection and localization of the whole mass of
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objects. Sensor placement directly influences resource management and the type of

back-end processing and exploitation that must be carried out with sensed data in

distributed sensor networks. A key challenge in sensor resource management is to

determine a sensor field architecture that minimizes cost [39], and provides high sensor

detection and resilience to sensor failures. The detection optimization is inherently

probabilistic due to the uncertainty associated with sensor coverage. This chapter

proposes a methodology for maximizing the detection probability under the constraints

of the limited number of sensors and limited signal strength. To the best knowledge, this

work is the first effort that adaptively selects the sensor locations, maximizes the

detection probability and estimates the dynamical probabilistic boundary for mass

objects through an online unsupervised learning method.

The rest of this chapter is organized as follows. Section 5.2 briefly reviews the

related works. Section 5.3 formalizes the problem of optimal sensor placement, and

analyzes the distribution of mass objects. The detection coverage is modeled as

Gaussian Mixture Model. The Expectation-Maximization and recursive Expectation-

Maximization solutions are presented to optimize the coverage problem based on

Gaussian Mixture model in Section 5.4. Section 5.5 proposes a possible choice for the

distributed implementation of EM algorithms in sensor networks. The details of

simulation and detection performance are discussed in Section 5.6. Section 5.7

concludes this chapter.
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5.2 Related Work

There has been much research on sensor deployment. Wang et al. [36] propose a

movement-assisted deployment approach based on Voronoi diagrams to find coverage

holes and move sensors from densely deployed area to sparse area in order to improve

coverage of sensor networks. With uncertainty-aware topology of sensor placement, Zou

et al. [37] develop a probabilistic model that is targeted at average coverage as well as at

maximizing the coverage of vulnerable areas. Lin et al. employ a simulated annealing

method to place the sensors in a min-max optimization model in [38]. All these methods

aim at covering monitored areas with optimal or near-optimal efficiency and accuracy.

In real scenario, the essential goal is to locate the targets that are usually moving.

Considering the problem of optimally detecting thousands of targets, if the mass

characteristics of the targets can be learned dynamically, an optimal sensor placement

strategy can be achieved accordingly. Hence the "target-oriented" approaches are more

powerful than "area-oriented" ones.

The challenge here is to estimate the mass characteristics of objects. Nowak [35]

proposes a distributed version of EM algorithm to estimate the density of targets for

sensor networks. Although the density can be well estimated, this approach is not

applicable to dynamic scenarios because the estimates are static and cannot be updated

according to the dynamics of mass characteristics. The recursive EM algorithm [33] is

proposed to update the estimates of observations dynamically. It is believed that a well-

designed distribution implementation of a recursive EM algorithm can provide an

applicable solution to optimal sensor placement for dynamically locating the mass

objects.
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5.3 Problem Formulation

Accurate and computationally feasible sensor detection models are required for optimal

sensor deployment. This work starts with the assumption used in [31] that the

probability of detection of a target by a sensor varies exponentially with the distance

from it to the target. In other words, a target is correctly detected by a sensor distance d

away with probability of e - 19 d , where p is a parameter used to model the quality and the

rate at which its detection probability diminishes with distance. Obviously, the detection

probability is equal to 1 if the target locates exactly where the sensor does. Recognizing

that the covered regions are usually overlapped, an object may therefore be detected by

several sensors. The probability of an individual object being precisely detected should

be the mixture probability that sums up the conditional detection probability of a certain

sensor multiplied with its mixture weight.

In many practical instances, objects are symmetrically distributed around the

point of interest. Such cases provide us with assumptions that the probabilistic model of

locations where objects appears should be Gaussian. To improve the individual object's

detection and monitoring capability, the sensor has to be placed closer to the target. To

monitor mass objects, this work proposes a method to reduce the sum of distances

between sensors and all the objects in the covered area. Based on the above assumptions

and analysis, the sensors should be located at the position with the local maximal object

density in order to maximize the detection and monitoring performance. The

observations of objects' previous locations collected by sensors therefore can be used to

estimate and learn the centers of object clusters and their boundaries. As an example,

consider three groups of mass objects distributed in a 2-D covered area illustrated in
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Figure 5.2. Based on the observations, there must be at least three points (regions) of

interests, and each of them must be covered by at least one sensor.

Scatter points shown in Figure 5.2 are observations of object locations collected

by sensors. Note that the observations are the previous positions where individual

objects are located. During an interval of information collection, each individual object

may appear at several different locations. With the objective to monitor mass objects,

the proposed method focuses rather on the distributions of clusters than any individual

object's movement. In this sense, one individual object may correspond to several

observations because of the uncertainty in their movement.

Figure 5.2 (a) Mass objects locations, and (b) Sensor placement.
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The observations, recording all locations where objects have been, are a good

clue of building a probabilistic model that describes how likely the objects appear at a

specific location. Here an analogy of "electron cloud" can be taken, each point in the

Gaussian mixture does not necessarily mean that some object appears at that location

currently. Rather, it describes how likely objects appear at the position. The

observations are simply a combination of previous locations where objects have

happened to be. For example, there are 1000 observations, shown as scatter points in

Figure 5.2(a), but in fact there may be only 500 objects present in the area. Sensors do

not have to identify each individual object and to track how and when it moves. Instead,

the objective of this work is to analyze the historical observations of object locations,

learn the maximum likelihood parameters for Gaussian mixtures and estimate centers

and boundaries of all clusters. In summary, this work considers the problem of

optimizing sensor placement for locating mass objects as a group in a statistical way

rather than identifying and deterministically analyzing individual objects' movement.

Figure 5.2(b) illustrates an example of optimal sensor deployment to maximize the

coverage performance given three sensors. The central points are the positions of

sensors, and their covered areas are enclosed by three circles.

In this section, this problem is formulated in statistics. Suppose that a set of N

observationslz,1 = {(x,,y,)} E S, i N is given, which are previous locations of objects. In

real scenarios, they are likely to be distributed in Fig. 5.2(a). The task of this work is to

learn the statistical parameters of each cluster and then move the sensors to the cluster's

center which has the largest probability density in the cluster. The sensor detection

probability for mass objects can be maximized if the sensor that is responsible for
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covering each cluster is placed at the center of the cluster where mass objects are most

likely to appear, i.e., the position with maximal probability density in each cluster. In

Gaussian mixture model, the proposed method uses the following expression to

approximate the real observation distribution:

where p(z,) is the mixture probability density of i-th observation, i.e., the probability

density of the observation i in the mixture of Gaussian distributions. The parameter 6 1

= (a 1-1 a), is the combination of mixture weight, mean value and variance of a cluster

which describe the distribution of a single component of Gaussian mixture (i.e. cluster).

0 , to be used later, is the whole set of B's , a j is the mixture weight, which means the

probability that observations appear in the j-th cluster and p(z, I B1 ) is the conditional

probability density of i-th observation with respect to cluster j, accurately detected by

the j-th sensor given that the location of the sensor j is known and object i is covered by

sensor j. M is the number of mixture components, in other words it is the number of

clusters, and N is the number of observations.

In order to model the location distribution of these objects, obviously the

tracking algorithms can take advantage of the limited observations previously collected

by the sensors. However, they are referred as incomplete data due to the lack of the

cluster label information. Based on the limited knowledge, the maximum likelihood

estimate of the parameters of an underlying distribution is desired from a given data set

when the data is incomplete. The incomplete-data log-likelihood expression is as

follows:
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,

where the likelihood function can be defined as

._.

This function is also called the likelihood of the parameters given the observations. The

likelihood function of parameter estimates is in fact a measure of coverage likelihood for

mass objects by limited sensors. In Equation 5.3, it is estimated from the product of

mixture probability density function and the assumption of Independent, Identical

Distribution of individual observations.

The optimization problem for coverage and detection now becomes the

maximization of the likelihood function.

By solving the above equation, the proposed method can find the positions with

local maximal density of each region of interests. They are the optimal locations to place

sensors. To update dynamically the optimal sensor placement, the maximum a posteriori

solution (MAP) can be used to estimate the dynamic distribution of objects. Similarly

the model selection techniques are based on maximizing the following type of criteria:

where log(L (0 I Z)) is the log-likelihood of the available data. This part can be

maximized using maximum likelihood (ML) solution as mentioned above. However,

introducing more sensors, hence increasing the mixture components always increase the

log-likelihood but also introduce unnecessary redundant sensors. A penalty function



59

P(M) is thus introduced to achieve the balance. P(M) is a function of M and increases

M
as the number of clusters, M, increases. In this work, it is n ot,:- which monotonically

m.i

increases with M.

5.4 Standard EM and Recursive EM Algorithm for Optimal Sensor Detection

5.4.1 Standard EM Algorithm for fixed infrastructure

The Expectation-Maximization (EM) algorithm is an iterative procedure that searches

for a local maximum of the log-likelihood function. In order to apply the EM algorithm

for detection optimization in sensor networks, the EM algorithm starts with initial

observations and parameter estimate 90 . The estimate Ok from the k-th iteration of the

algorithm is obtained using the previous estimate Ok_, :

This step, referred to as "expectation step (E-step)", finds the expected value of

the "complete-data" log-likelihood with respect to the unknown parameters given the

observed positions and current parameter estimates. The above E-step equation can be

expanded as follows:

where it is assumed that / is a random variable that label which region an individual

object belongs to, and the superscript g means that the referred parameter is available
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from the previous iteration [32]. Given eg the algorithm can easily compute

pi (z,I6y) for each observation i and cluster j. In addition, the mixture parameters, aj

can be thought of as prior probabilities of each mixture component, that

is a j = p(component j) , which are uncorrelated with the observations of z, . Therefore,

by applying Bayes's rule, recursive EM algorithm can compute the "ownership

function" [32]:

K.,

To maximize the expression, 0 = arg max Q(0 I ), the algorithm can maximize
0

the term containing a1 and the term containing GI independently since they are not

related. This step is referred to as Maximization step (M-step). The proposed method

introduces the Lagrange multiplier 2 with the constraint that E a 1 =1, and solve the

equation:

The following solution is obtained,

Taking the derivative of the second term of Equation (5.7) with respect to p, and setting

it to zero, then the other two parameters can be obtained:



61

Note that the parameters (anew , anew , .new) = O' calculated in M-step will be

substituted as eg into E-step to compute p(1 I z 	 ) and then p(1 I z 	 ) substituted

into M-step to get the new parameter One" . The EM algorithm usually converges to a

local maximum of the log-likelihood function. Hence it is a good choice for mixture

estimation and especially distributed (and unsupervised) applications like the mixture of

objects distributions in sensor networks. Because of the distributed property of sensor

networks, practical and feasible sensor networks prefer distributed computation over a

centralized process. A distributed implementation of the EM algorithm applied into

sensor networks is further described in Section 5.5.

5.4.2 Recursive EM Algorithm for Dynamic Topology

The recursive EM algorithm is an online discounting version of EM algorithm. A

stochastic discounting approximation procedure is conducted to estimate the parameters

recursively and adaptively. In real-time monitoring and tracking of dynamic objects'

topology in sensor networks, recursive EM algorithm is better in the sense that the new

observation updates the parameters estimate of the mixture with a forgetting factor

degrading the influence of the out-of-date samples on the new estimates. Hence sensor

networks implemented with recursive EM monitoring techniques can track better the
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topological dynamics of mass objects. Unlike the standard EM using maximum

likelihood estimate, recursive EM searches for MAP solution as mentioned in Section 3.

A brief description of recursive EM algorithm is given below, and its detailed one can

be found in [33].

Recalling from Section 5.3, the following type of criteria should be maximized.

where this work introduces a prior log p(9(M)) for the mixture parameters that penalize

redundant sensor and complex solution. For the MAP solution, it can be expressed as,

where K = t — Mc , and the parameters of the prior are

—c = —N I 2 . If it is assumed that the parameter estimates do not change much when

a new observation is added and the new ownership function p(l z; O'+') can be

approximated by p(l z,p' ) , the following recursive update equation can be obtained:

(5.15)

(5.16)



63

where x =11 T is a fixed forgetting factor that is used to forget the out-of-date statistics

more rapidly. It is equivalent to introducing an exponentially decaying envelope:

x(1— %)" being applied to the influence of the old observation z" . After the new

estimated mixture weight of each sensor is calculated, the online algorithm should check

if there are irrelevant components to make sure that no unnecessary redundant sensor is

used: If the mixture weight an;' <0, discard the component m, set M=M-1 and

renormalize the remaining mixture weights. As mentioned before, this mechanism of

discarding irrelevant component is achieved by introducing a penalty function. It is

straightforward that the penalty function always decreases with fewer clusters,

eventually the clusters could merge to fewer necessary ones. The rest of the parameters

are then updated as follows

(5.17)

The new parameter estimates are generated as output. From the most recent estimates,

sensors can slightly tune their locations to the updated local maxima and wait for new

observations to make next updated estimates iteratively.

5.5 Distributed Implementation of Optimal Sensor Placement

Assume that initially sufficient nodes are evenly distributed over the entire area. All

nodes have the local estimates on their observations. The next EM iteration 0' can be

computed by performing two message passing cycles through the sensor nodes. Each
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message passing operation involves the transmission of the sufficient statistics from one

node to another based on a prescribed sequence through the nodes.

Figure 5.3 Communication cycle for message passing.

Each node computes its local updates for the sufficient statistic. Note that these

local updates are computed from local observations and estimates only available locally

at each sensor node. In the forward path, in the prescribed cyclic order from 1 to H to 1

as illustrated in Figure 5.3, where the number of sensor H = 8 . It is assumed that

sufficient number of sensors is provided to be more than the number of clusters,

i.e. H > M . Each sensor increments the local estimates to the old cumulated estimates,

and passes the new cumulated estimates to the downstream sensors.

(5.18)

where 0 1 is the cumulative estimate of cluster j at time t, and 91h J is the local estimate

of cluster j by sensor node h at time t. This process is based on the fact that the E-step

can be separated into H separate expectations followed by accumulation [35]. At the last

sensor node H, the summary of complete sufficient statistics is available and passed over

to node 1. Thus, the summary of sufficient statistics is passed in the circle incrementally.

After two message-passing cycles, the incremental form of cumulative statistics of

observations collected by all nodes reaches every node in the circle. Therefore, all H
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sensor nodes have the sufficient statistics and can compute the M-step to obtain 01 + 1 .

This process is guaranteed to monotonically converge to a local maximum [35].

Figure 5.3 illustrates communication cycles in distributed implementation of the

recursive EM algorithm for wireless sensor networks. The small circles in Fig. 5.3

indicate the sensors deployed in the target area. The forwarded messages in the

algorithm proceed in a cyclic fashion with a predetermined order, i.e. messages are

passed between nodes in the order of 1, 2,..., H,1, 2..., H,1,....

Similarly, the recursive EM algorithm is implemented in a distributed manner to

fit the requirements of sensor networks by taking advantage of the accumulation of

separate E-steps as well. Each sensor node updates its local parameter estimates in a

recursive form by taking all the new local observations as inputs and then passes the

local estimates with cumulative estimates to the downstream one. As long as the global

statistics is reached after two message-passing cycles, each node can tune the parameter

estimates in their M-steps. By recursively adding new observations, the distributed

recursive EM algorithm can tune the parameter estimates to catch up with the change of

the topology of mass objects adaptively. The following part describes the distributed

version of recursive EM algorithm for sensor deployment.

Initially, H sensors are distributed evenly throughout the covered area, each

node collects a set of observations and makes its own local estimates. The cumulative

estimates are incremented with the local estimates of each node in a cyclic manner. Note

that it takes several message-passing cycles to converge to a local maximum, and the

EM algorithm can determine the convergence of the estimates by checking whether or

not the increase of the likelihood function in the current iteration is greater than previous
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likelihood function multiplied with a small coefficient	 (e.g., e =10' ), i.e.

L (el z) - L (et' z) > e IL (0' I Z)I

Algorithm 5.4.1

Initiation:
While (L (CY Z)— L (0" I Z)> IL (0" I Z)1) do

For node h=lto H
Compute 0:771 : local estimate for each cluster j

Increment the cumulative statistics for each cluster j with local estimate
einitial — pinitial j_ pinitial

-I- '12,j

If (h=H)
Transmit the cumulative estimates to node 1;

Else
Transmit the cumulative estimates to node h+1

End if
End for

End while
Compute locations for each sensor:
For 1 _12__M,sh =,tim,niE[1,A/1]

For M+11211 , sh = locations evenly distributed in uncovered area using

geometrical approaches

Dynamical Procedure:
While Loop
For node h=lto H

Collect new observations.
If z hnew z hold 1 < e

Recursively update estimates of parameters using Equation (13).
End if

Move to the current estimates of optimal location.
If ( h = H )

Transmit the cumulative estimates to node 1;
Else

Transmit the cumulative estimates to node h+1
End if

End for
End while

Figure 5.4 Dynamical Sensor Placement Algorithm.
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An experiment on the convergence rate is provided in Section 5.6. As long as the

estimates are converged, the recursive EM algorithm in a distributed manner is launched.

Essentially, node 1 collects the new observations. If the difference between new

observations, zhn' , and old ones , z,'" , is higher than a threshold ( ), it then

recursively updates cumulative estimates with one new observation in each iteration. If

the difference is lower than threshold, it skips the computation of updating estimates to

save power and time, then increments the cumulative statistics with its previous local

estimates. Each node updates the cumulative estimates by the new observations it

collects and then passes the summary of statistics to the downstream node in a cyclic

manner. Hence the distributed recursive EM algorithm can be summarized in Figure 5.4.

5.6 Simulation and Performance Analysis

5.6.1 Sensor Placement Applications

Figure 5.5 Optimal sensor placement simulation.
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A simulated sensor deployment application is presented here in Fig. 5.5 to

demonstrate the effectiveness of dynamical sensor placement method. The following

scenario is considered. Suppose a very large number of animals are present in a wild

area required to be covered by a sensor network. Understanding that there are several

points of attractions but these points are moving or hard to be localized, the probability

of presence around the interesting points is assumed to fall into Gaussian Mixture Model.

To maximize the coverage performance, the recursive EM algorithm should be

conducted to find the local maximum first, place critical sensors around the points with

local maximum density, and then place other sensors evenly in sparse area to monitor

rare event. Figure 5.5 illustrates a simulated application that mimics this situation with

area of 12km x 12km. In this work, 300 objects are simulated, 9000 observation of

those objects' locations are generated according to a Gaussian Mixture Model, and the

mixture weights are selected randomly. In a timely manner the proposed method

adaptively estimates the optimal sensor placement for the most recent 300 observations,

and the last 300 observations are shown in Figure 5.5. 14 sensors (shown as triangle in

Fig. 5.5), with covering circles whose radius are approximately 3km, are deployed and 3

groups of objects are clustered. As mentioned earlier, initially the 14 sensors are placed

evenly in the area, the dynamical sensor placement method estimates the updated

optimal location of sensors and moves sensors to the desired place adapted to dynamics

of observations, Figure 5.5 illustrates the output of the dynamical sensor placement after

the 9000 samples are taken into recursive estimation.
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Figure 5.6 Detection accuracy probability.

As mentioned in Section 5.3, the detection probability is e- I'd . In this simulation the

parameter is set: p = 0.1 (I km) . Figure 5.6 demonstrates the better coverage

performance of the recursive EM algorithm in comparison with evenly placed sensor

approach. It is straightforward to observe that with increment of the deployed sensors,

the detection probability is improved. As the number of sensors increases sufficiently,

the detection improvement by adding sensors becomes more and more moderate. This

presents a clue for selecting the number of deployed sensors to achieve satisfactory

detection probability with the fewest necessary deployed sensors only. The simulation

also demonstrates that the optimized algorithm adapt well with the topological change of

the mass objects so that it can fairly accurately cover most of mass objects with limited

sensors only.
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Figure 5.7 Histogram of probability (a) Estimated probability, (b) Empirical probability.

The estimates of object distribution may not exactly fit the real mass observations. This

work uses the normalized difference between the estimated and empirical probability to

measure how well the learned model fits the real observations. For convenience, the

empirical probability is compared with estimated probability in a discrete manner.

Basically, the region of a cluster is divided into several equal-sized segments. In practice,

the segments of a specific cluster all have elliptic or circular border with common center.

Hence a certain number of, say G , segments in a cluster should be G —1 "rings" and the

innermost circle (or ellipse). The empirical probability of a certain segment is calculated

by dividing the number of observations in that segment with the total number of

observations in the cluster. The estimated probability of a segment is calculated by

measuring how likely the points locate in that segment based on the estimated Gaussian

distribution. Figure 5.7 illustrates the histograms of estimated and empirical
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probabilities of segments in the simulated application. Each cluster is divided into 6

segments in the presented simulation.

Figure 5.7 provides a visualized judgement on how well the model fits the

observation. For quantitative analysis on the model fitness, "fitness score" is defined as

Equation (5.19):

In Equation (5.19), p„,„(g) and pest (g) , respectively, represents the empirical

probability and estimated probability of data points in g-th segment, 1/ G is the mean of

probabilities in all segments, and also the probability of uniform distribution. High fitness

score indicates that the mass data samples can be well reflected in the estimated Gaussian

mixture model. Note that the upper bound of fitness score is 100. Sufficient data are

needed to calculate the probabilities in all segments. The above example collects 5000

observations as a window of samples. The fitness score in this simulation is 89.31, which

demonstrates that the estimates of Gaussian mixture model reflect the mass observations

very well.

5.6.4 Adaptive Boundary Estimation

Based on the real-time estimates of mass characteristics of observations, the probabilistic

boundary of mass objects can also be estimated. With same simulated observations in the

sensor placement applications, this section focuses on dynamical topology of observed

locations. As shown in Fig. 5.8, the real-time "likely" boundary can be adaptively



72

estimated with certain probability coverage. Since prior knowledge about the cluster

information is unknown, the proposed algorithm starts with 20 clusters.

Figure 5.8 Adaptive boundary estimation at different Sampling times, a) Initial
observation b) Estimates after 150 samples c) Estimates after 300 samples
d) Estimates after 1500 samples e) Estimates after 3000 samples and f) Estimates after
9000 samples.

As mentioned in Section 5.4.2, a penalty function is utilized to discard those

unnecessary clusters. This explains why the first couples of estimates include several

unnecessary clusters and later on they merge to three clusters. Note that the "likely"

boundary in this work refers to the ellipse with certain probability coverage, and all the

points on the border have equal probability density. In the simulation shown above, the

proposed method chooses the boundaries with 95% probability coverage, which means

the expected percentage of observations that the boundary can enclose in a statistical
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sense. Figure 5.8.(a)-(f) illustrate the real-time boundary estimates in a timely manner as

the most recent estimates update the boundary of the observations.

5.6.5 Convergence Test

As mentioned earlier, initially the sensors are placed evenly throughout the target area.

The proposed algorithm starts with original observations and takes certain iterations and

communication cycles through all the nodes to achieve the initial convergence.

The initial convergence should be achieved before the dynamical optimal

estimates of sensor placement could be available. To some extent the performance and

feasibility of the proposed algorithm is affected by the initial convergence. An

experiment on the convergence is presented here to study how many communication

cycles are needed for different number of clusters, i.e., points of interests, and the number

of sensors deployed in the target area to achieve the convergence. Figure 5.9 shows the

result of convergence experiments. The simulation randomly generates a certain number

(e.g. 2, 4, 6, 8, 10 in the experiment) of points of attraction that are randomly placed in a

12km x 12km area. The experiments also show that the number of deployed sensors

imposes impacts on the convergence, as illustrated in Figure 5.9, the communication

cycles needed for sensor networks consisting of 10, 15, 20 sensors are studied. It is clear

that 1) the more points of attractions, the more communication cycles are needed for

convergence; and 2) the more sensors are deployed, the more communication cycles are

needed for convergence.
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5.7 Summary

This chapter proposes an adaptive optimal sensor placement method based on maximum

likelihood estimates of mass object locations. The proposed method studies the mass

characteristics of observations by assuming a Gaussian mixture model, and searches for

the optimal locations with online updating parameter estimates of the real-time

observations to place the sensors for maximizing detection probability. To the best

knowledge, it is for the first time that an unsupervised learning method on adaptive

optimal sensor placement for monitoring mass objects has been proposed. The

probability that an object can be detected by sensors is assumed to be a mixture

probability that sums up the conditional probability of object detection by different

sensors. The distributed implementation of the recursive EM algorithm is proposed as

well to reduce the communication cost. The proposed method is able to make sensors

placed at the positions with the local maximal density, which will eventually maximize

the detection accuracy of sensor networks. The proposed method is also useful in mass

objects' boundary estimation. Essentially, the online recursive learning on mass objects
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distribution can estimate the real-time elliptic boundary with certain probability coverage.

The simulation results demonstrate the effectiveness of the proposed method on adaptive

optimal sensor placement and real-time boundary estimation.



CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Conclusion

This dissertation has formulated several optimization and estimation problems in wireless

ad hoc and sensor networks, wherein optimal reliable routing path, optimal power

consumptions and optimal tracking interval and sensor placement are studied with

probabilistic estimation and prediction approaches to provide effective and efficient

services in wireless ad-hoc and sensor networks.

Wireless communication system could play an essential role in emergency or

extreme situations such as monitoring and detection of fire, wild animals and battlefields.

Unfortunately, the existing systems often provide insufficient information about the

topology of mobile objects and infrastructure of communications. As a result, the

stochastic problem of estimation and prediction on objects' location and movement

becomes crucial in the wireless communication world, especially for wireless ad-hoc and

sensor networks. Supplying the physical world with mobile ad-hoc agents or wireless

sensors can generate massive amounts of data that can be processed by probabilistic

estimation and prediction efficiently and usefully. This is where estimation and

optimization comes into work for wireless ad-hoc and sensor networks. Many techniques

can be applied in this field, such as learning theory, adaptive filter theory, statistical

pattern recognition, and time series analysis. This research area is promising and still in

progress. The proposed work in this dissertation is hence in demand for development and

76
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improvement. It offers beneficial perspectives for the ad-hoc and sensor network

community to consider.

6.2 Outlook

Most applications for sensor networks can be formulated as estimation on the

environment through examples. Stochastic estimation can be applied to many

applications for the object tracking in sensor networks. Usually, people are interested in a

particular feature of the environment that can be approximately represented by a

probabilistic model for estimation and optimization. Applying the estimation algorithms

to sensor networks involves these problems:

• How much computation should be distributed to individual nodes, and how much of
it should be centralized?

• Which stochastic model should be chosen?

• Which values of parameters for sensor deployment are the best?

Centralized computation requires much long-range communication with a base

station, which consumes much energy but might allow for more intensive data processing

by a more powerful base station computer. This is the usual tradeoff between

communication and computation in sensor networks. However, because transmitting a bit

of information is still an order of magnitude more expensive than computing it [40], a

more distributed computation is preferable. The following examples suggest how to

formulate particular sensor network applications from a stochastic estimation viewpoint.
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Intrusion and/or fault detection

When sensor networks are applied to hostile area, intrusion is very likely to

happen. Usually attackers may behave like a normal sensor and spoof ID's of other

sensors. These attacks are intelligent, however, through statistical learning algorithm or

linear regression model the normal behavior could learned and the attacks can be

separated from the normal behaviors.

Environmental monitoring

In this case, some unknown scalar environmental function defined on the covered

region should be estimated, such as temperature, air pressure, or humidity. It can be

assumed that the measurement of the function at each node is a normally distributed

random variable. When a certain stochastic estimation algorithm is applied, each node

obtains a local estimate. The upper bounds for the local estimation error can be predicted

with desired confidence.

Continuous object tracking

Suppose a plume of hazardous gas moving slowly is expected to be monitored

and tracked. Each node measures the concentration of the gas at its location and outputs 1

if the concentration is higher than some threshold; otherwise 0. Based on the labeled

observations, supervised learning techniques can be applied to estimate the boundary and

the moving speed.
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Sensor localization

Sensor localization can be achieved similarly. Suppose that a certain number of

nodes know their positions with certain accuracy. Often the sensor network's first task is

to localize the remaining nodes. Then the node with unknown position can communicate

with the neighbors who know their positions and gather the information of their locations

and an attribute data that indicates if the distance between them is less than a threshold or

not. Learning from the given observations, the node with unknown position obtains an

estimate of the indicator function. The optimal solution to its position is the point where

the maximum likelihood estimate converges.

Through the proposed research and outlook, it is demonstrated that stochastic

estimation offers an effective approach to design and operation of sensor networks. This

dissertation shows how well the estimation algorithms can be used in the context of

reliability optimization and object tracking. The proposed estimation should take into

account the power consumptions, which can also be optimized with stochastic estimation.
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