201 research outputs found

    Numerical product design: Springback prediction, compensation and optimization

    Get PDF
    Numerical simulations are being deployed widely for product design. However, the accuracy of the numerical tools is not yet always sufficiently accurate and reliable. This article focuses on the current state and recent developments in different stages of product design: springback prediction, springback compensation and optimization by finite element (FE) analysis. To improve the springback prediction by FE analysis, guidelines regarding the mesh discretization are provided and a new through-thickness integration scheme for shell elements is launched. In the next stage of virtual product design the product is compensated for springback. Currently, deformations due to springback are manually compensated in the industry. Here, a procedure to automatically compensate the tool geometry, including the CAD description, is presented and it is successfully applied to an industrial automotive part. The last stage in virtual product design comprises optimization. This article presents an optimization scheme which is capable of designing optimal and robust metal forming processes efficiently

    Design Optimization of the Aeronautical Sheet Hydroforming Process Using the Taguchi Method

    Get PDF
    The aluminium alloy sheet forming processes forging in rubber pad and diaphragm presses (also known as hydroforming processes) are simple and economical processes adapted to aeronautical production. Typical defects of these processes are elastic recovery, necking, and wrinkling, and they present di culties in control mainly due to property variations of the sheet material that take place during the process. In order to make these processes robust and unresponsive to material variations, a multiobjective optimization methodology based on the Taguchi method is proposed in the present study. The design of experiments and process simulation are combined in the methodology, using the nonlinear finite element method. The properties of sheet material are considered noise factors of the hydroforming process, the objective being to find a combination of the control factors that causes minimal defects to noise factors. The methodology was applied to an AA2024-T3 aluminium alloy sheet of 1 mm thickness stamping process in a diaphragm press. The results allowed us to establish the optimal pressure values, friction coeficient between sheet and block, and friction coeficient between sheet and rubber to reduce the elastic recovery variations and the minimal thickness before noise facts

    Quality comparison of Y-shape joints by tube hydroforming with and without counterforce

    Get PDF
    The design capability, strength, and structural rigidity provided by tube hydroforming (THF) are successfully used in many applications to produce high-strength parts and assemblies with improved mechanical properties, optimized service life, and weight features. In tubular metal forming, output parameters such as branch height, distribution of tube wall material thickness, distribution of damage factor, metal flow, effective stress, and effective strain significantly affect the quality of the product after the forming process. Therefore, this paper aims to evaluate the manufacturing quality of Y-shape joints from AISI304 material steel tube through output parameters of THF process with and without counter punch force on numerical simulation base. The Finite Element Method (FEM) has become an established feature of metal forming technology. The objective of FEM is to replace costly and elaborate experimental testing with fast, low-cost computer simulation. The simulation study uses finite element method-based virtual prototyping techniques to characterize output parameters, gain insight into strain mechanics, and predict mechanical properties of shaped components. The research results are presented clearly and unambiguously through the evaluation of 7 criteria to compare the quality of the specimens hydroformed by two surveyed cases and optimize the crucial input process parameters. And these data can be applied in experiments, more efficient product and process design, calculation, and control of input parameters avoiding costly trial and error in industrial production. The findings can help technologists optimize process parameters in the hydroforming process of products with protrusion from a tubular blan

    A metamodel based optimisation algorithm for metal forming processes

    Get PDF
    Cost saving and product improvement have always been important goals in the metal\ud forming industry. To achieve these goals, metal forming processes need to be optimised. During\ud the last decades, simulation software based on the Finite Element Method (FEM) has significantly\ud contributed to designing feasible processes more easily. More recently, the possibility of\ud coupling FEM to mathematical optimisation algorithms is offering a very promising opportunity\ud to design optimal metal forming processes instead of only feasible ones. However, which\ud optimisation algorithm to use is still not clear.\ud In this paper, an optimisation algorithm based on metamodelling techniques is proposed\ud for optimising metal forming processes. The algorithm incorporates nonlinear FEM simulations\ud which can be very time consuming to execute. As an illustration of its capabilities, the\ud proposed algorithm is applied to optimise the internal pressure and axial feeding load paths\ud of a hydroforming process. The product formed by the optimised process outperforms products\ud produced by other, arbitrarily selected load paths. These results indicate the high potential of\ud the proposed algorithm for optimising metal forming processes using time consuming FEM\ud simulations

    Effect of Annealing Temperatures on Formability of SS 304 tubes during Tube Hydroforming Process: A Numerical study

    Get PDF
    Tube hydroforming is an advanced manufacturing process which utilizes a liquid medium to deform the tube with required shape. This method has an advantage of attaining uniform pressure throughout the tube at any time during the process. The main aim of the present study was to know the effect of different annealing temperatures on the tube hydroforming of SS 304 steel. Specimens were annealed with four different temperatures, viz., 100oC, 150oC, 200oC and 250oC. Annealed samples were tested to find the tensile properties in terms of yield strength, strength coefficient, strain hardening exponent, elongation and ultimate tensile strength. The evaluated mechanical properties were utilized to run the tube hydroforming simulations using finite element code. Effects of annealing temperatures on bulge height and thickness distribution of the bulged area of the tube were studied using FEM. Numerical simulations confirmed that the annealing temperatures had an effect on the bulge height and thickness distribution in the bulged zone of the tube

    Optimization of Tube Hydroforming Process Using Simulated Annealing Algorithm

    Get PDF
    AbstractIn this paper, forming parameters of tube hydroforming (THF) process are investigated and optimized using Simulated Annealing optimization algorithm linked with a finite element commercial code. The goal of this research is to obtain the maximum formability of two dimensional (2D) axisymmetric tubes under a failure criteria based on material's forming limit diagram (FLD). The initial approximated pressure loading path is determined by proved theoretical equations. Then the Simulated Annealing algorithm written in Matlab software is combined with a nonlinear structural finite element code ANSYS/ LS-DYNA in order to optimize internal hydraulic pressure. The results are compared by experimental observations and a good agreement was observed between them

    Investigation of manufacturing techniques and prototyping of the Smartcities Citycar frame

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 34).A study was performed to analyze different methods of manufacturing a full scale car frame for the Smart Cities Citycar, a folding electric vehicle being designed at the MIT Media Lab, as well as a half-scale prototype for testing driving and folding systems. Through looking at two case studies for similarly sized automobiles as well as analyzing the compatibility of metal casting, stamping, composite layup, and tube welding, it was resolved that the most effective method of manufacturing the full scale Citycar frame, in the future, will be through tube hydroforming because of the optimization of strength, stiffness, and cost. It is recommended that the planned half-scale prototype be produced using composite layup techniques as the facilities for heavy machinery operations are not readily available. There will be a foam mold created on which carbon fiber will be applied to create a strong, stiff, and light model that is useful for the future of the group in its testing and prototyping.by Arin S. Rogers.S.B

    Effect of loading paths on hydroforming ability of stepped hollow shaft components from double layer pipes

    Get PDF
    The step hollow shaft components are composed of two layers of different materials, they are formed using tube hydroforming process due to its high strength and rigidity, low weight and flexible profiles, compared to traditional casting, welding, and forming methods. These products are effectively used in industries such as the automotive, shipbuilding, aerospace and defense, and oil and gas sectors. The success of various double layer pipe hydroforming process depends on several factors, with the most important being the internal pressure path and axial loading path. This paper presents research on the effect of input loading paths on the hydroforming ability of a different two-layer metal structure - an outer layer of SUS304 stainless steel and an inner layer of CDA110 copper - using 3D numerical simulations on Abaqus/CAE software. Output criteria were used to evaluate the forming ability of the formed components, including Von Mises stress, Plastic strain component (PEmax), wall thinning, and pipe profile, based on which the input loading paths were combined during the forming process. These output criteria allow for more accurate predictions of material behavior during the hydroforming process, as well as deformation and stress distribution. This can support the design process, improve product quality, reduce errors, and increase production efficiency. The research results can be applied as a basis for optimizing load paths for the next experimental step in the near future, for undergraduate and graduate training, as well as allowing designers and engineers to optimize the process of hydroforming of different 2-layer tubes, reducing costs, improving accuracy, flexible design, minimizing risks, and increasing efficienc

    SRF Cavity Fabrication and Materials

    Full text link
    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10{\mu}g/g. The hydrogen content should be kept below 2{\mu}g/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. The equator welds are particularly critical. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on halfcells and by careful tracking of weld shrinkage. The established procedure is suitable for large series production. The main aspects of quality assurance management are mentioned. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and EBW. Accelerating gradients at the level of 35-45 MV.m-1 can be achieved by applying Electropolishing (EP) treatment....Comment: 37 pages, contribution to the CAS-CERN Accelerator School: Superconductivity for Accelerators, Erice, Italy, 24 April - 4 May 2013, edited by R. Baile

    Solving optimisation problems in metal forming using Finite Element simulation and metamodelling techniques

    Get PDF
    During the last decades, Finite Element (FEM) simulations\ud of metal forming processes have become important\ud tools for designing feasible production processes. In more\ud recent years, several authors recognised the potential of\ud coupling FEM simulations to mathematical optimisation\ud algorithms to design optimal metal forming processes instead\ud of only feasible ones.\ud Within the current project, an optimisation strategy is being\ud developed, which is capable of optimising metal forming\ud processes in general using time consuming nonlinear\ud FEM simulations. The expression “optimisation strategy”\ud is used to emphasise that the focus is not solely on solving\ud optimisation problems by an optimisation algorithm, but\ud the way these optimisation problems in metal forming are\ud modelled is also investigated. This modelling comprises\ud the quantification of objective functions and constraints\ud and the selection of design variables.\ud This paper, however, is concerned with the choice for\ud and the implementation of an optimisation algorithm for\ud solving optimisation problems in metal forming. Several\ud groups of optimisation algorithms can be encountered in\ud metal forming literature: classical iterative, genetic and\ud approximate optimisation algorithms are already applied\ud in the field. We propose a metamodel based optimisation\ud algorithm belonging to the latter group, since approximate\ud algorithms are relatively efficient in case of time consuming\ud function evaluations such as the nonlinear FEM calculations\ud we are considering. Additionally, approximate optimisation\ud algorithms strive for a global optimum and do\ud not need sensitivities, which are quite difficult to obtain\ud for FEM simulations. A final advantage of approximate\ud optimisation algorithms is the process knowledge, which\ud can be gained by visualising metamodels.\ud In this paper, we propose a sequential approximate optimisation\ud algorithm, which incorporates both Response\ud Surface Methodology (RSM) and Design and Analysis\ud of Computer Experiments (DACE) metamodelling techniques.\ud RSM is based on fitting lower order polynomials\ud by least squares regression, whereas DACE uses Kriging\ud interpolation functions as metamodels. Most authors in\ud the field of metal forming use RSM, although this metamodelling\ud technique was originally developed for physical\ud experiments that are known to have a stochastic na-\ud ¤Faculty of Engineering Technology (Applied Mechanics group),\ud University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands,\ud email: [email protected]\ud ture due to measurement noise present. This measurement\ud noise is absent in case of deterministic computer experiments\ud such as FEM simulations. Hence, an interpolation\ud model fitted by DACE is thought to be more applicable in\ud combination with metal forming simulations. Nevertheless,\ud the proposed algorithm utilises both RSM and DACE\ud metamodelling techniques.\ud As a Design Of Experiments (DOE) strategy, a combination\ud of a maximin spacefilling Latin Hypercubes Design\ud and a full factorial design was implemented, which takes\ud into account explicit constraints. Additionally, the algorithm\ud incorporates cross validation as a metamodel validation\ud technique and uses a Sequential Quadratic Programming\ud algorithm for metamodel optimisation. To overcome\ud the problem of ending up in a local optimum, the\ud SQP algorithm is initialised from every DOE point, which\ud is very time efficient since evaluating the metamodels can\ud be done within a fraction of a second. The proposed algorithm\ud allows for sequential improvement of the metamodels\ud to obtain a more accurate optimum.\ud As an example case, the optimisation algorithm was applied\ud to obtain the optimised internal pressure and axial\ud feeding load paths to minimise wall thickness variations\ud in a simple hydroformed product. The results are satisfactory,\ud which shows the good applicability of metamodelling\ud techniques to optimise metal forming processes using\ud time consuming FEM simulations
    • …
    corecore