1,888 research outputs found

    Overlay networks for smart grids

    Get PDF

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Digital Twin-Driven Network Architecture for Video Streaming

    Full text link
    Digital twin (DT) is revolutionizing the emerging video streaming services through tailored network management. By integrating diverse advanced communication technologies, DTs are promised to construct a holistic virtualized network for better network management performance. To this end, we develop a DT-driven network architecture for video streaming (DTN4VS) to enable network virtualization and tailored network management. With the architecture, various types of DTs can characterize physical entities' status, separate the network management functions from the network controller, and empower the functions with emulated data and tailored strategies. To further enhance network management performance, three potential approaches are proposed, i.e., domain data exploitation, performance evaluation, and adaptive DT model update. We present a case study pertaining to DT-assisted network slicing for short video streaming, followed by some open research issues for DTN4VS.Comment: 8 pages, 5 figures, submitted to IEEE Network Magazin

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    Efficient video transfer using LAN caching assisted by cloud computing

    Get PDF
    There is a good probability of accessing same video content multiple times from a cloud based Video Streaming Server by same peer or different peers of a given LAN, effectively increasing Internet bandwidth or data flow for same content from server to client, thereby over loading routers between server and client and also resulting in higher power consumption at routers. This proposed concept tries to avoid multiple streaming of high volume video files from Server by caching first successful streamed data on to LAN peer which is currently viewing the video data and subsequently the same LAN peer streaming the video to other desiring peers when demanded for. Proposed implementation model retains all other server activities with server except for allowing an available LAN peer copy of video to be streamed to another peer of the same LAN when requested for

    DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks

    Full text link
    Video conferencing has become the preferred way of interacting virtually. Current video conferencing applications, like Zoom, Teams or WebEx, are centralized, cloud-based platforms whose performance crucially depends on the proximity of clients to their data centers. Clients from low-income countries are particularly affected as most data centers from major cloud providers are located in economically advanced nations. Centralized conferencing applications also suffer from occasional outages and are embattled by serious privacy violation allegations. In recent years, decentralized video conferencing applications built over p2p networks and incentivized through blockchain are becoming popular. A key characteristic of these networks is their openness: anyone can host a media server on the network and gain reward for providing service. Strong economic incentives combined with lower entry barrier to join the network, makes increasing server coverage to even remote regions of the world. These reasons, however, also lead to a security problem: a server may obfuscate its true location in order to gain an unfair business advantage. In this paper, we consider the problem of multicast tree construction for video conferencing sessions in open p2p conferencing applications. We propose DecVi, a decentralized multicast tree construction protocol that adaptively discovers efficient tree structures based on an exploration-exploitation framework. DecVi is motivated by the combinatorial multi-armed bandit problem and uses a succinct learning model to compute effective actions. Despite operating in a multi-agent setting with each server having only limited knowledge of the global network and without cooperation among servers, experimentally we show DecVi achieves similar quality-of-experience compared to a centralized globally optimal algorithm while achieving higher reliability and flexibility

    Reliable and Energy-Efficient Hybrid Screen Mirroring Multicast System

    Get PDF
    This paper presents a reliable and energy-efficient hybrid screen mirroring multicast system for sharing high-quality real-time multimedia service with adjacent mobile devices over WiFi network. The proposed system employs overhearing-based multicast transmission scheme with Raptor codes and NACK-based retransmission to overcome well-known WiFi multicast problems such as low transmission rate and high packet loss rate. Furthermore, to save energy on mobile devices, the proposed system not only shapes the screen mirroring traffic, but also determines the target sink device and Raptor encoding parameters such as the number of source symbols, symbol size, and code rate while considering the energy consumption and processing delay of the Raptor encoding and decoding processes. The proposed system is fully implemented in Linux-based single board computers and examined in real WiFi network. Compared to existing systems, the proposed system can achieve good energy efficiency while providing a high-quality screen mirroring service.11Nsciescopu
    corecore