238 research outputs found

    On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard

    Full text link
    Wireless Body Area Networks (WBAN) support a variety of real-time health monitoring and consumer electronics applications. The latest international standard for WBAN is the IEEE 802.15.6. The security association in this standard includes four elliptic curve-based key agreement protocols that are used for generating a master key. In this paper, we challenge the security of the IEEE 802.15.6 standard by showing vulnerabilities of those four protocols to several attacks. We perform a security analysis on the protocols, and show that they all have security problems, and are vulnerable to different attacks

    A game theory control scheme in medium access for wireless body area network

    Full text link
    Wireless Body Area Network (WBAN) has been considered for applications in medical, healthcare and sports fields. Although there are several protocols for wireless personal area networks, specific features and reliability requirements in WBAN bring new challenges in protocol design. An appropriate control scheme in the MAC layer can make a significant improvement in network performance. Based on traffic priority and prior knowledge this paper proposes a game theoretical framework to smartly control access in contention period and contention free period as defined in IEEE 802.15.6 standard. The coordinator controls access probability of contention period based on users' priority in CSMA/CA and allocates suitable slots with strategies for best payoff based on link states in guaranteed time slots (GTS). The simulation results show the improved performance especially in heavily loaded channel condition when the optimal control mode is applied

    An Analysis Framework for Inter-User Interference in IEEE 802.15.6 Body Sensor Networks: A Stochastic Geometry Approach

    Get PDF
    Inter-user interference occurs when multiple body sensor networks (BSNs) are transmitting simultaneously in close proximity to each other. Interference analysis in BSNs is challenging due to the hybrid medium access control (MAC) and the specific channel characteristics of BSNs. This paper presents a stochastic geometry analysis framework for inter-user interference in IEEE 802.15.6 BSNs. An extended Matern point process is proposed to model the complex spatial distribution of the interfering BSNs caused by the hybrid MAC defined in IEEE 802.15.6. We employ stochastic geometry approach to evaluate the performance of BSNs, considering the specific channel characteristics of BSNs in the vicinity of human body. Performance metrics are derived in terms of outage probability and spatial throughput in the presence of inter-user interference. We conduct performance evaluation through extensive simulations and show that the simulation results fit well with the analytic results. Insights are provided on the determination of the interference detection range, the BSN density, and the design of MAC for BSNs

    Comparative study of IEEE 802.15.4 and IEEE 802.15.6 for WBAN-based CANet

    Get PDF
    International audienceIn this paper, we present an overview of IEEE 802.15.4 and 802.15.6 standards. Thereafter, in view of their various strengths and many similarities, we study the possibility of using one of these two norms to implement the body area network (WBAN) of CANet (an innovative ehealth project) scenario according to the nature of the studied sensors. To do so, we considered an hybrid differentiation layer, previously proposed, based on 802.15.4 and we made a classification of CANet ehealth sensors based on IEEE 802.15.6 native superframe periods and priority and service differentiation systems. Each choice between them has its advantages and disadvantages. Thus, it will be necessary to analyse in detail the simulation and prototyping results of 802.15.4 and 802.15.6 norms once implemented in CANet context in order to decide about the standard providing the optimal QoS

    HACMAC: A reliable human activity-based medium access control for implantable body sensor networks

    Get PDF
    Chronic care is an eminent application of implantable body sensor networks (IBSN). Performing physical activities such as walking, running, and sitting is unavoidable during the long-term monitoring of chronic-care patients. These physical activities cripple the radio frequency (RF) signal between the implanted sensor nodes. This is because various body postures shadow the RF signal. Although shadowing itself may be short, a prolonged activity will significantly increase the effect of the RF-shadowing. This effect dampens the communication between implantable sensor nodes and hence increases the chance of missing life-critical data. To overcome this problem, in this paper we propose a link quality-aware medium access control (MAC) protocol called HACMAC, which adapts the access mechanism during different human activities based on the wireless link-quality. Our simulation results show that compared with the access mechanism suggested by the IEEE 802.15.6 standard, the reliability of the wireless communication is increased using HACMAC even while transmitting at a strongly low transmission power of 25µW effective isotropic radiated power (EIRP) set by the IEEE 802.15.6 standar

    Performance Analysis of Priority-Based IEEE 802.15.6 Protocol in Saturated Traffic Conditions

    Get PDF
    Recent advancement in internet of medical things has enabled deployment of miniaturized, intelligent, and low-power medical devices in, on, or around a human body for unobtrusive and remote health monitoring. The IEEE 802.15.6 standard facilitates such monitoring by enabling low-power and reliable wireless communication between the medical devices. The IEEE 802.15.6 standard employs a carrier sense multiple access with collision avoidance protocol for resource allocation. It utilizes a priority-based backoff procedure by adjusting the contention window bounds of devices according to user requirements. As the performance of this protocol is considerably affected when the number of devices increases, we propose an accurate analytical model to estimate the saturation throughput, mean energy consumption, and mean delay over the number of devices. We assume an error-prone channel with saturated traffic conditions. We determine the optimal performance bounds for a fixed number of devices in different priority classes with different values of bit error ratio. We conclude that high-priority devices obtain quick and reliable access to the error-prone channel compared to low-priority devices. The proposed model is validated through extensive simulations. The performance bounds obtained in our analysis can be used to understand the tradeoffs between different priority levels and network performance.info:eu-repo/semantics/publishedVersio

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table
    • …
    corecore