6,762 research outputs found

    Latest Hydroforming Technology of Metallic Tubes and Sheets

    Get PDF
    This Special Issue and Book, ‘Latest Hydroforming Technology of Metallic Tubes and Sheets’, includes 16 papers, which cover the state of the art of forming technologies in the relevant topics in the field. The technologies and methodologies presented in these papers will be very helpful for scientists, engineers, and technicians in product development or forming technology innovation related to tube hydroforming processes

    Simulation of Pipe Hydroforming

    Get PDF
    The importance of investigating the formation of a torsion beam and understanding how it can be manipulated to perform at an optimum condition is crucial to car manufacturers. Developing and remodelling the torsion beam can allow both a simpler structure and quicker assembly while reducing the space required for a car suspension’s system, thus saving time and costs for manufacturers. Nowadays, the use of hydroforming technology has become widespread because it is able to obtain complex hollow parts more easily and has been continually developed to become a globally applied technology in the formation of a torsion beam of a vehicle. With regards to the current issues in academic research and real-world production, this research uses a finite element analysis (FEA) method-based software tool DYNAFORM, to simulate the pipe hydroforming process in order to show the overall manufacturing process, thus providing a precise FEA simulation model of a torsion beam suspension for the automotive manufacturing. This will also provide a math model (a regression equation) for further research and the further application of this technology in the future

    Bulging Test of Aluminium at room temperature

    Get PDF
    During Compression Testing, a solid specimen (Hexagonal in Cross-Section) is compressed axially between the punch and the bottom plates. As a result of this, the work piece material undergoes deformation which basically is Bulging at its centre position. This test can further be carried out at different temperatures to record the nature of compression for different ranges of temperatures. In Compression or Upsetting, the presence of frictional constraints between the dies and the work piece directly affects the plastic deformation of the work piece. The friction at the faces of contact retards the plastic flow of metals around the surface and in its vicinity. A conical wedge of a relatively undeformed metal is formed directly below it while the rest of the cylindrical metal suffers high strain hardening and subsequently bulges out. However, in practice, the use of lubricants greatly reduces the degree of bulging to a great extent. Hence it is necessary to apply a correction factor for the purpose of bulging design of die. For a ductile material like Aluminium used here lateral distortion takes place and due to restraining influence of friction of the load faces, the cross section becomes greater at the centre, the test piece taking up a barrel shape. Hence this is also termed as Barreling. In this particular experimentation the behavior of Aluminium specimen under different loading conditions and at room temperature is recorded and the data thus generated is utilized in predicting the behavior of Aluminium and other metals under cold loading conditions

    Proposal for a lunar tunnel-boring machine

    Get PDF
    A need exists for obtaining a safe and habitable lunar base that is free from the hazards of radiation, temperature gradient, and micrometeorites. A device for excavating lunar material and simultaneously generating living space in the subselenian environment was studied at the conceptual level. Preliminary examinations indicate that a device using a mechanical head to shear its way through the lunar material while creating a rigid ceramic-like lining meets design constraints using existing technology. The Lunar Tunneler is totally automated and guided by a laser communication system. There exists the potential for the excavated lunar material to be used in conjunction with a surface mining process for the purpose of the extraction of oxygen and other elements. Experiments into lunar material excavation and further research into the concept of a mechanical Lunar Tunneler are suggested

    Investigation of Surface Roughness and Lay on Metal Flow in Hot Forging

    Get PDF
    A study was conducted to explore the possibility of using machining marks (i.e. surface roughness and lay) as a parameter for die design. The study was performed using 6061-T6 aluminum 1.25 diameter rounds and 0.25 square bar stock to investigate the effects of temperature, surface roughness, and lay on metal flow and friction factor. Metal flow was assessed using component true strains and spread ratio. Compression testing was performed using an instrumented die set that was mounted on a 10 ton hydraulic pres. Cigar tests were performed where the axis of the specimen were oriented at angles of 0o, 45o and 90o with respect to the surface lay on the compression platens. Ring tests were completed to quantify friction factor at different die temperatures and surface roughness values. Results indicate that die temperature has a strong effect on bulge radius and friction factor. Lay and surface roughness were found to exhibit an effect on metal flow but surface lay of the dies was not discernible on friction factor. The study was repeated under limited conditions using graphite lubricant in order to discover if the trend was repeatable using conditions observed in industry. This was found to be the case

    Subselenean tunneler melting head design: A preliminary study

    Get PDF
    The placement of base facilities in subsurface tunnels created as a result of subsurface mining is described as an alternative to the establishing of a base on the lunar surface. Placement of the base facilities and operations in subselenean tunnels will allow personnel to live and work free from the problem of radiation and temperature variations. A conceptual design for a tunneling device applicable to such a lunar base application was performed to assess the feasibility of the concept. A tunneler was designed which would melt through the lunar material leaving behind glass lined tunnels for later development. The tunneler uses a nuclear generator which supplies the energy to thermally melt the regolith about the cone shaped head. Melted regolith is exacavated through intakes in the head and transferred to a truck which hauls it to the surface. The tunnel walls are solidified to provide support lining by using an active cooling system about the mid section of the tunneler. Also addressed is the rationale for a subselenean tunneler and the tunneler configuration and subsystems, as well as the reasoning behind the resulting design

    Proceeding Of Mechanical Engineering Research Day 2016 (MERD’16)

    Get PDF
    This Open Access e-Proceeding contains a compilation of 105 selected papers from the Mechanical Engineering Research Day 2016 (MERD’16) event, which is held in Kampus Teknologi, Universiti Teknikal Malaysia Melaka (UTeM) - Melaka, Malaysia, on 31 March 2016. The theme chosen for this event is ‘IDEA. INSPIRE. INNOVATE’. It was gratifying to all of us when the response for MERD’16 is overwhelming as the technical committees received more than 200 submissions from various areas of mechanical engineering. After a peer-review process, the editors have accepted 105 papers for the e-proceeding that cover 7 main themes. This open access e-Proceeding can be viewed or downloaded at www3.utem.edu.my/care/proceedings. We hope that these proceeding will serve as a valuable reference for researchers. With the large number of submissions from the researchers in other faculties, the event has achieved its main objective which is to bring together educators, researchers and practitioners to share their findings and perhaps sustaining the research culture in the university. The topics of MERD’16 are based on a combination of fundamental researches, advanced research methodologies and application technologies. As the editor-in-chief, we would like to express our gratitude to the editorial board and fellow review members for their tireless effort in compiling and reviewing the selected papers for this proceeding. We would also like to extend our great appreciation to the members of the Publication Committee and Secretariat for their excellent cooperation in preparing the proceeding of MERD’16

    Comparison of Four Numerical Methods of EHL Modeling

    Get PDF

    Liquid rocket actuators and operators

    Get PDF
    All the types of actuators and associated operators used in booster, upper stage, and spacecraft propulsion and reaction-control systems except for chemical-explosive actuators and turbine actuators are discussed. Discussion of static and dynamic seals, mechanical transmission of motion, and instrumentation is included to the extent that actuator or operator design is affected. Selection of the optimum actuator configuration is discussed for specific application which require a tradeoff study that considers all the relevant factors: available energy sources, load capacity, stroke, speed of response, leakage limitations, environmental conditions, chemical compatibility, storage life and conditions, size, weight, and cost. These factors are interrelated with overall control-system design evaluations that are beyond the scope of this monograph; however, literature references are cited for a detailed review of the general considerations. Perinent advanced-state-of-the-art design concepts are surveyed briefly
    corecore