46,446 research outputs found

    Toward Reliable Contention-aware Data Dissemination in Multi-hop Cognitive Radio Ad Hoc Networks

    Get PDF
    This paper introduces a new channel selection strategy for reliable contentionaware data dissemination in multi-hop cognitive radio network. The key challenge here is to select channels providing a good tradeoff between connectivity and contention. In other words, channels with good opportunities for communication due to (1) low primary radio nodes (PRs) activities, and (2) limited contention of cognitive ratio nodes (CRs) acceding that channel, have to be selected. Thus, by dynamically exploring residual resources on channels and by monitoring the number of CRs on a particular channel, SURF allows building a connected network with limited contention where reliable communication can take place. Through simulations, we study the performance of SURF when compared with three other related approaches. Simulation results confirm that our approach is effective in selecting the best channels for efficient and reliable multi-hop data dissemination

    Noncooperative equilibrium solutions for spectrum access in distributed cognitive radio networks

    Get PDF

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Spectrum sharing and cognitive radio

    Get PDF
    • 

    corecore