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Abstract—This paper considers the problem of channel se-
lection and dynamic spectrum access in distributed cognitive
radio networks. The ability of a cognitive radio to adaptively
switch between channels offers tremendous scope to optimize
performance. In this paper, the dynamic spectrum access in
a distributed network is modeled as a noncooperative game
and the equilibrium solutions are obtained through a bimatrix
game. The cost term of the utility function and the several
possible definitions of “price” and how they characterize the
equilibrium solutions provides a new perspective on the analysis.
In distributed cognitive radio networks, the secondary users are
vulnerable to several unexpected events such as primary user
arrival or a deep fade or sudden increase in interference which
could potentially disrupt or disconnect the transmission link.
In such cases, any strategic decision or information that could
lead to uninterrupted channel access and facilitate maintaining
links could be modeled as a Stackelberg game. Performance
characteristics for both the leader and follower nodes for the
defined utility functions are given.

I. INTRODUCTION

The underutilization of the limited spectrum has sparked
the need for flexible spectrum policies and dynamic spectrum
access [1]. Cognitive radios are autonomous radios that learn
about their environment and adaptively optimize their perfor-
mance by modifying their transmission parameters, including
switching to a different channel. Dynamic Spectrum Access
(DSA) is a new paradigm whereby a cognitive radio de-
vice opportunistically accesses the unutilized or under-utilized
spectrum bands. The ability of a cognitive radio to adaptively
switch between channels: spectrum mobility - offers tremen-
dous scope to optimize performance. The dynamic spectrum
access is challenging in a distributed type network, particularly
when the devices lack cooperation. Game theory is a mathe-
matical framework that provides a natural platform to study the
effects of players’ decision strategies and equilibrium solutions
in a competitive environment with limited resource constraints.
In game theoretical analysis, the optimizing parameter and
the definition of utility function characterizes the resulting
equilibrium solution(s), provided that they exist.

Spectrum resource management and dynamic spectrum
access have attracted significant research work recently.
In [2] Zhao et al. studied dynamic spectrum access based
on partially observable Markov decision processes and pro-

posed a decentralized cognitive MAC protocol. The optimal
spectrum allocation problem is analyzed through a variant of
graph coloring problem in [3] which described approximation
algorithms for centralized and distributed spectrum allocations.
Game theory has also been extensively used in modeling
resource allocation in cellular networks and recently in the
context of cognitive radio networks due to its effectiveness
in modeling dynamic strategic decisions. However, most of
the work has been in analyzing power control or spectrum
pricing/auctioning. In [5]-[7] the power control is modeled
as a noncooperative game; they study the existence and
convergence properties of equilibrium solutions. In [7] Nie
et al. proposed a game theoretic distributed adaptive channel
allocation scheme for cognitive radios and formulated to
capture selfish and cooperative behaviors of the players. Non-
cooperative channel allocation and load-balancing algorithms
are considered in [8] and spectrum utilization maximization
in [9]. In [10] Bloom et al. proposed a master-slave approach
of updating transmission powers and frequencies and modeled
as a Stackelberg game. The channel selection in a distributed
noncooperative type network is less explored and the discrete
nature of the problem makes it relatively difficult to model.

In this paper, the ability of a distributed cognitive radio to
select a channel satisfying its minimum requirement (e.g. data
rate or SINR) and the methodology of dynamically accessing
available spectrum is considered. The dynamic spectrum ac-
cess in a distributed network is modeled as a noncooperative
game and the equilibrium solutions are obtained through a
bimatrix game. The proposed utility functions are based on
the signal to interference plus noise ratio (SINR) and the
associated cost of accessing a channel.

The remainder of the paper is organized as follows: Section
II describes the system model and assumptions. Section III
introduces the utility functions and formulates the problem
as a noncooperative game. Section IV shows the existence
of an equilibrium solution and discusses its analysis. Section
V outlines some of the unexpected events and models the
channel access as a Stackelberg game. Section VI provides
some simulation results, with conclusion and future works
presented in Section VII.
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Fig. 1. Wireless Network with 3 user-pairs: User-pairs 1 and 2 in channel
1 and user-pair 3 in channel 2; Subscript denotes user index and superscript
denotes channel index.

II. SYSTEM MODEL

Let N = {1, 2, . . . , N} be the set of cognitive radio
user-pairs distributed randomly in the network. The terms
“user” and “pair” are used interchangeably and user i means
transmitter i and receiver i. Let M = {1, 2, . . . ,M} be the
set of channels available for dynamic spectrum access. The
number of users in a channel at any point in time is given by
bk, k ∈ M. The channel selected by a user i is denoted by
ϕ(i) ∈ M. The SINR of a user i on selecting a channel ϕ(i)
is given by

γi = γ
ϕ(i)
i =

h
ϕ(i)
ii pi∑

∀j∈bϕ(i),j �=i h
ϕ(i)
ji pj + N0

(1)

where h
ϕ(i)
ii is the channel gain of the selected channel ϕ(i), pi

is transmission power of user i, N0 is the background noise
power at the receiver which is assumed to be same for all
the users. The channel gain is defined as h

ϕ(i)
ii = d−4

ii αϕ(i),
where dii is the Euclidean distance between the transmitter
i and receiver i, with path loss exponent 4 and αϕ(i)’s are
independent, unit mean random variables that model frequency
selective fading across the channels.

It is assumed that each user has a maximum transmit power
constraint, pi ≤ p̄, to ensure fairness among users in the shared
channel. It is also assumed that there is a constraint on the total
power in each channel,

∑bϕ(i)

i=1 pi ≤ P̄ i.e. the total power of
all users in channel ϕ(i) does not exceed P̄. It is assumed that
the adjacent channel interference (ACI) is negligibly small or
zero and only co-channel interference (CCI) is considered in
the analysis. Fig 1 shows a model network with 3 user-pairs
and illustrates the co-channel interference.

III. UTILITY FUNCTIONS

The channel selection and dynamic spectrum access is
modeled as a noncooperative game. Let Si denote the set of
strategies associated with player i. In this case, the players’
strategies are the choices of a transmitting channel, si =
1, 2, . . . ,M . The utility function Ui for user i is a function
of its SINR, and through the SINR a function of its strategy
si, and strategies of all other users, s−i; to explicitly show this
dependence, we introduce the notation Ũi(si, s−i) to denote
the utility function of user i as a function of the strategies.

Now, if s∗i is a Nash equilibrium solution, then for all i and
all si,

Ũi(s∗i , s
∗
−i) ≥ Ũi(si, s

∗
−i) (2)

A. Objective and utility function

The objective for each user i is to maximize γi. In terms
of the utility function of user i, this is formulated as the
maximization problem:

max Ui(γ
ϕ(i)
i ) (3)

subject to pi ≤ p̄

The channel selection for user i is then considered as the
integer-maximization of its utility functions, with pi = p̄ and
pj , j �= i fixed

ϕ(i) = arg max
ϕ(i)∈M

Ui

(
h

ϕ(i)
ii p̄∑

j �=i h
ϕ(i)
ij pj + N0

)
(4)

The power control scheme for wireless networks has been
extensively studied. Here we assume that the dynamic range
[0 ≤ pi ≤ p̄] is limited and hence pi = p̄. We therefore look
into the method of selecting the “best channel”. From (4) this
could be broken into a problem of finding a better channel
in terms of high channel gain h

ϕ(i)
ii and finding a channel

with least interference component
∑

j �=i h
ϕ(i)
ji pj . However, the

overall ratio SINR determines the nature of the channel quality.
To obtain explicit results, we pick Ui as a logarithmic plus

a linear one:

Ui(γ
ϕ(i)
i ) = ai log(1 + γ

ϕ(i)
i ) − biλ

ϕ(i)γ
ϕ(i)
i (5)

where ai and bi are the user preference parameters, and λϕ(i)

is the unit price set for channel ϕ(i). Thus, the term λϕ(i)γ
ϕ(i)
i

denotes the cost for the desired SINR. The log utility function
approximates the Shannon capacity or the maximum rate
achievable by user i in the selected channel ϕ(i). The objective
of maximizing γi and the greedy approach of finding the best
channel could be neutralized by the ‘cost’ function (second
term in the utility) which is a function of SINR.

IV. EQUILIBRIUM SOLUTIONS

A. Existence of pure strategy Nash Equilibrium

Proposition 1: Nash equilibrium exists in pure strategies for
the utility function defined in (5).

Proof: To show the existence of a pure strategy Nash equilib-
rium, a simple case of a 2-user and 2-channel bimatrix game is
investigated, before developing a general theory for N players
and M channels. Let us consider a simple bimatrix game
comprised of two (2 x 2)-dimensional matrices, A = {aij}
and B = {bij}, with each pair of entries (aij , bij) denoting
the outcome of the game. If player P1 adopts the strategy (in
this case, channel selection) “row i” and player P2 adopts the
strategy “column j”, then aij (respectively, bij) denotes the
payoff for player P1 (respectively, player P2). If U1 and U2

are user utility matrices then,
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U1 =
log(1 +

h1
11p1

h1
21p2+n0

) − λ1 h1
11p1

h1
21p2+n0

log(1 +
h1
11p1
n0

) − λ1 h1
11p1
n0

log(1 +
h2
11p1
n0

) − λ2 h2
11p1
n0

log(1 +
h2
11p1

h2
21p2+n0

) − λ2 h2
11p1

h2
21p2+n0

U2 =
log(1 +

h1
22p2

h1
12p1+n0

) − λ1 h1
22p2

h1
12p1+n0

log(1 +
h2
22p2
n0

) − λ2 h2
22p2
n0

log(1 +
h1
22p1
n0

) − λ1 h1
22p2
n0

log(1 +
h2
22p2

h2
12p1+n0

) − λ2 h2
22p2

h2
12p1+n0

From the above matrices, the Nash equilibrium (NE) are the
points where both users share the same channel and have their
minimum SINR requirements satisfied. It is clear that since the
above indices in U1 and U2 involve multiple parameters, the
NE is parameter dependent. If λ1 < λ2 γ2

γ1 then (row 1, column

1) is the Nash equilibrium. Similarly, if λ2 < λ1 γ1

γ2 then (row
2, column 2) is the Nash equilibrium. If NE is denoted by
ϕ∗ = (I, J), then user 1 selects channel I and user 2 selects
channel J . If ϕ∗ is the Nash equilibrium channel selection,
then

ϕ∗ =

{
(1,1) if λ1 < λ2 γ2

γ1

(2,2) if λ2 < λ1 γ1

γ2

The study is extended for a 3-user x 2-channel case. The
entries of matrix A corresponds to possible outcomes of all 3
players if player P3’s strategy is fixed at channel 1, and the
matrix B provides possible outcomes if P3’s strategy is fixed
at channel 2.

A =
U1(γ1

1), U2(γ1
2), U3(γ1

3) U1(γ1
1), U2(γ2

2), U3(γ1
3)

U1(γ2
1), U2(γ1

2), U3(γ1
3) U1(γ2

1), U2(γ2
2), U3(γ1

3)

B =
U1(γ1

1), U2(γ1
2), U3(γ2

3) U1(γ1
1), U2(γ2

2), U3(γ2
3)

U1(γ2
1), U2(γ1

2), U3(γ2
3) U1(γ2

1), U2(γ2
2), U3(γ2

3)

If h
ϕ(i)
ii pi∑

j �=i h
ϕ(i)
ji pj+N0

≥ γi,min, then the Nash equilibria

channel selection is given by

ϕ∗ =

{
(1,1,2), (1,2,1), (2,1,1) and (1,1,1) if λ1 < λ2 γ2

γ1

(2,2,1), (2,1,2), (1,2,2) and (2,2,2) if λ2 < λ1 γ1

γ2

On the other hand, if h
ϕ(i)
ii pi∑3

j=1,j �=i h
ϕ(i)
ji pj+N0

< γi,min and if

h
ϕ(i)
ii pi∑2

j=1,j �=i h
ϕ(i)
ji pj+N0

≥ γi,min, i.e. b1 = b2 = 2, then

ϕ∗ =

{
(1,1,2), (1,2,1), (2,1,1) if λ1 < λ2 γ2

γ1

(2,2,1), (2,1,2), (1,2,2) if λ2 < λ1 γ1

γ2

Generalizing for N users and M channels,
Let ϕ(i) = {ki; ki ∈ M, i ∈ N} be the channel selected

by user i. Let h
ki
ii pi∑

∀j∈Bki
h

ki
ji pj+N0

≥ γi,min

where Bki is the set of users in channel ki for which the
inequality holds for user i, i.e. the set of users sharing the
channel and satisfying user i’s criterion. Let bki be the number
of users in set Bki .

The channels are arranged according to their cost, say,
λk1 < λk2 < λk3 < . . . λkm , ∀k ∈ M. If there exists
λk1 < λk2 γk2

γk1
< λk3 γk3

γk2
< . . . λkm γkm

γkm−1
then channel k1

could take maximum of bk1 users and channel k2 takes bk2

user and so on. The Nash equilibrium is then given by

ϕ∗ = {(k1)1, . . . , (k1)bk1 , (k2)1, . . . , (k2)bk2 , . . . kx}N (6)

and the repeated permutations of this combination. The num-
ber of such equilibrium combinations is given by m!

bk1 !bk2 !...bx!

For example, let N = 4, M = 3. If λ2 < λ3 < λ1

and if b2 = b3 = 2, then the channel selection is given by
ϕ∗ = {2, 2, 3, 3} and the repeated permutations of the set.
The number of NE through repeated permutations for the given
example is 4!

2!2! = 6 solutions.

V. CHANNEL SELECTION AS STACKELBERG GAME

In distributed cognitive radio networks, the secondary users
are vulnerable to unexpected events such as primary user
arrival or a deep fade or sudden increase in interference. In
such cases, any strategic decision or information that could
facilitate or lead to an uninterrupted channel access and link
maintenance could be modeled. The strategy enforcing node(s)
take the role of leader and the rationally following (benefiting)
nodes take the role of followers and the arrangement is
modeled as Stackelberg game. So far noncooperative games
have been considered where the roles of the players (users)
are symmetric, that is to say, no single player dominates the
decision process. The channel access of the disconnecting
secondary user due to the other user’s strategy is modeled
as a Stackelberg game [11]. Before looking into modeling the
channel access as a Stackelberg game, some of the scenarios
and unexpected events which could potentially disconnect or
disrupt the channel access are listed. Unexpected events are
changes in the network which happen faster than the channel
scanning time.

A. Unexpected Events

1) Primary user arrival: In the event of a primary user’s
arrival one or more secondary users have to evacuate the
channel with minimal or no interference. In a distributed
network, the secondary user’s response to such an unexpected
event is a reactive one. The channel switching has to be
immediate.

2) Interference: In a dynamic access regime, multiple SUs
attempting to access a channel is a real possibility despite
power constraints, and that could lead to a sudden increase
in interference. Another source of interference is adjacent
channel interference.

3) Fading: Fading is another source of disconnection. This
is an intrinsic characteristic of a channel and depends on the
location and mobility of the user.

B. Channel access as a leader-follower game

So far the dynamic spectrum access has been analyzed as a
noncooperative game where the cognitive radios autonomously
decide the channels to access based on the assessed local
information. In the event of unexpected scenarios, any strategic
decision or information by a user could facilitate uninterrupted
channel access. Such a user is referred to as a ‘leader’. The
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user(s) who do not have information on accessing channel and
rationally decide whether to follow or not are referred to as
‘followers’.

Since this is a distributed type network and the users
access channels in noncooperative fashion, this leader-follower
scenario is only temporary. To declare a node as a leader, the
node finds a channel for access and declares or broadcasts
the ‘new’ channel information. In the cases of multiple nodes
satisfying the above criteria in the same channel only one
node is declared as a leader. Hence one channel corresponds
to one leader which forms the strategy profile for the follower.
The leader node does not have any other control over other
users in addition to strategic information. The leader-follower
relationship lasts only until the follower’s initial access in the
newly switched channel.

C. Utility function

The utility function defined in (5) is used here with the
modification by including a virtual cost (Λ) in the price term
for the leader(s) and the follower(s).

UL = a(L) log(1+γ
ϕ(L)
L )−b(L)λϕ(L)γ

ϕ(L)
L +

∑
j∈bk j �=L

ΛLγ
ϕ(L)
j

(7)
UF = a(F ) log(1+γ

ϕ(L)
F )−b(F )λϕ(L)γ

ϕ(L)
F −ΛLγ

ϕ(L)
F (8)

where λ is the price per unit for the channel and Λ is the
virtual price that the leader sets for the switching channel.

VI. SIMULATION RESULTS

This section presents some of the simulation results investi-
gating the defined utility function, channel access performance
and a brief study on the performance of the Stackelberg game.
In this simulation, a varying number of users-pairs (1 to 15)
are considered, accessing M = 5 available channels. The user
SINR threshold values are randomly selected from 15dB to
30dB. The noise power spectrum density at each user-pair is
N0 = −100dBm. The maximum transmit signal power on
each channel is P̄ = 50mW . The shared channels are assumed
to be equal in the start of simulation. For utility function (5)
the user preference parameter is set a(i) = 0.5 and b(i) = 0.5
unless changed. The results are averaged over 100 simulation
runs.

The simulation results compare the performance of the
defined utility function with functions considering only SINR
or cost. The users arrive randomly and access the channel
based on their utility. The users recalculate their utility in the
event of any changes in channel conditions.

A. Characteristics of utility function and channel access

The utility function defined in (5) is compared with the
functions that consider only SINR and the function considering
only cost. The cost (utility) is the product of unit price
of the selected channel and SINR. In Figure 2 the average
interference perceived is plotted against the number of users.
Figure 3 shows the average utility (cost). In Fig 2 and Fig 3
there are three regions that characterize the utility function. In
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Fig. 2. Average interference perceived by an user ; M = 5; Avg SINR per
user = 30dB;

0 5 10 15
4

6

8

10

12

14

16

18

Number of users

A
ve

ra
ge

 u
til

ity
 p

er
 u

se
r

 

 

SINR based utility function
Cost based utility function
Defined utility function

Fig. 3. Average utility(cost) of an user ; M = 5; Avg SINR per user = 30dB;

Fig 2, in the initial stage as the users arrive, the interference in
SINR based function is nil since as the users arrive each user
finds a channel with least or no interference irrespective of
the price. On the other hand, for the price based function the
interference is additive since the least priced channel attracts
the users. With the user preference parameter of a(i) = 0.5
and b(i) = 0.5 the defined utility function balances between
SINR and price function. In the mid region, the difference
between the functions demonstrates their characteristics, with
the SINR based functions interference averse and the price
based function interference prone. In the end, when the chan-
nels are saturated with users, all users face relatively equal
interference. With the balanced user preference parameter,
the defined utility function accesses the channels based on
merit of utility and balances between the two without unduly
compromising either of them.

B. Spectrum mobility: Adaptive nature

The adaptive nature of the defined utility function is shown
in Fig 4 and Fig 5. Since the utility function is SINR based,
any change in user arrival or channel switching results in a
change in interference and the user begins to search for the
least interfered channel. The change in interference and its
adaptability is illustrated in Fig 4. The channel switching and
resulting change in utility is shown in Fig 5.

C. Performance of Stackelberg game

In this section, the utilities and interference changes due
to the unexpected events are illustrated for the leader node

4

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on June 2, 2009 at 04:42 from IEEE Xplore.  Restrictions apply.



0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

90

Simulation Time

In
te

rf
er

en
ce

 le
ve

l p
er

ce
iv

ed
 (

dB
)

 

 

User 1
User 2
User 3

Fig. 4. Variation in interference perceived vs user arrival

0 50 100 150 200 250 300 350 400 450
3

4

5

6

7

8

9

10

11

Simulation Time

U
se

r 
ut

ili
tie

s 
(c

os
t)

 

 
User 1
User 2
User 3

Fig. 5. Variation in user utility(cost) vs user arrival

and the follower node respectively. In the example simulation,
the unexpected event happens at 63rd simulation time unit.
Fig 6 illustrates the utilities before and after the unexpected
event. The dip in the leader’s utility cost after the event is
due to the virtual price (Λ) from followers. Fig 7 shows the
corresponding interference variations.

VII. CONCLUSION AND FUTURE WORK

This paper has analyzed channel selection and dynamic
spectrum access as a noncooperative game. The existence
of a pure strategy Nash equilibrium and the condition for
equilibrium is shown through a bimatrix game. The importance
of the definition of the utility function and how cost factor
influences the equilibrium were demonstrated with simulation
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results. The three regions for interference and utility illustrated
the characteristics of the utility functions. The adapting nature
in the event of interference and the user controllable nature of
the utility functions were illustrated. In the event of unexpected
scenarios, the users that share some information to avoid the
link disconnection is modeled as a leader-follower game and
analysed for existence of an equilibrium solution. A brief
discussion on the performance of the Stackelberg game was
also provided.
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