3,399 research outputs found

    Study of Group Route Optimization for IoT enabled Urban Transportation Network

    Get PDF
    Traffic congestion is always a major issue in urban planning, especially when the vehicles in the roadway keep growing and the local authorities are lack of solutions to manage or distribute the traffics in the city. Although there are several factors that may cause traffic congestion, inefficiency in traffic management is always the main issue. Additionally, the most traditional methods of resolving traffic congestion or rerouting algorithm are mainly designed for individuals’ benefits, by simply planning a driver’s route based on minimum travel time or shortest path accordingly. There is lack of consideration in group benefit or urban development. However, with the development of technologies in Internet of Things (IoT), vehicle to vehicle (V2V) or Vehicle to Infrastructure (V2I) communications, group based routing becomes achievable. Instead of optimizing the routing path for individual drivers, this paper studies how to develop a new method to provide new routing method based on vehicles’ similarities in a specific urban’s transportation environmen

    IoT analytics and agile optimization for solving dynamic team orienteering problems with mandatory visits

    Get PDF
    Transport activities and citizen mobility have a deep impact on enlarged smart cities. By analyzing Big Data streams generated through Internet of Things (IoT) devices, this paper aims to show the efficiency of using IoT analytics, as an agile optimization input for solving real-time problems in smart cities. IoT analytics has become the main core of large-scale Internet applications, however, its utilization in optimization approaches for real-time configuration and dynamic conditions of a smart city has been less discussed. The challenging research topic is how to reach real-time IoT analytics for use in optimization approaches. In this paper, we consider integrating IoT analytics into agile optimization problems. A realistic waste collection problem is modeled as a dynamic team orienteering problem with mandatory visits. Open data repositories from smart cities are used for extracting the IoT analytics to achieve maximum advantage under the city environment condition. Our developed methodology allows us to process real-time information gathered from IoT systems in order to optimize the vehicle routing decision under dynamic changes of the traffic environments. A series of computational experiments is provided in order to illustrate our approach and discuss its effectiveness. In these experiments, a traditional static approach is compared against a dynamic one. In the former, the solution is calculated only once at the beginning, while in the latter, the solution is re-calculated periodically as new data are obtained. The results of the experiments clearly show that our proposed dynamic approach outperforms the static one in terms of rewardsThis project has received the support of the Ajuntament of Barcelona and the Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001)Peer ReviewedPostprint (published version

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Edge computing and iot analytics for agile optimization in intelligent transportation systems

    Full text link
    [EN] With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens' mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.This work was partially supported by the Spanish Ministry of Science (PID2019111100RB-C21/AEI/10.13039/501100011033, RED2018-102642-T), and the Erasmus+ program (2019I-ES01-KA103-062602).Peyman, M.; Copado, PJ.; Tordecilla, RD.; Do C. Martins, L.; Xhafa, F.; Juan-Pérez, ÁA. (2021). Edge computing and iot analytics for agile optimization in intelligent transportation systems. Energies. 14(19):1-26. https://doi.org/10.3390/en14196309126141

    Vehicular Crowdsourcing for Congestion Support in Smart Cities

    Get PDF
    Under present-day practices, the vehicles on our roadways and city streets are mere spectators that witness traffic-related events without being able to participate in the mitigation of their effect. This paper lays the theoretical foundations of a framework for harnessing the on-board computational resources in vehicles stuck in urban congestion in order to assist transportation agencies with preventing or dissipating congestion through large-scale signal re-timing. Our framework is called VACCS: Vehicular Crowdsourcing for Congestion Support in Smart Cities. What makes this framework unique is that we suggest that in such situations the vehicles have the potential to cooperate with various transportation authorities to solve problems that otherwise would either take an inordinate amount of time to solve or cannot be solved for lack for adequate municipal resources. VACCS offers direct benefits to both the driving public and the Smart City. By developing timing plans that respond to current traffic conditions, overall traffic flow will improve, carbon emissions will be reduced, and economic impacts of congestion on citizens and businesses will be lessened. It is expected that drivers will be willing to donate under-utilized on-board computing resources in their vehicles to develop improved signal timing plans in return for the direct benefits of time savings and reduced fuel consumption costs. VACCS allows the Smart City to dynamically respond to traffic conditions while simultaneously reducing investments in the computational resources that would be required for traditional adaptive traffic signal control systems

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions
    corecore