67,848 research outputs found

    Serious interface design for dental health: Wiimote-based tangible interaction for school children

    Get PDF
    This paper describes a camera-based approach towards creating a tangible interface for serious games. We introduce our game for dental health targeted at school children which implements the Nintendo WiiMote as infrared camera. Paired with a gesture-recognition system, this combination allows us to apply real-world items as input devices. Thereby, the game tries to address different aspects of dental hygiene along with the improvement of children's motor skills. In our focus group test, we found that tangible interfaces offer great potential for educational purposes and can be used to engage kids in a playful learning process by addressing their childlike curiosity and fostering implicit learning

    A tangible interface for collaborative urban design for energy efficiency, daylighting, and walkability

    Get PDF
    An increasingly urbanizing human population presents new challenges for urban planners and designers. While the applicability of urban design tools for simulation experts is constantly improving, urban development scenarios require the input of multiple stakeholders, each with different outlooks, expertise, requirements, and preconceptions, and good urban design requires communication and compromise as much as it requires effective use of tools. The best tools will facilitate this communication while remaining evidence-based, allowing diverse planning teams to develop high quality, healthy, sustainable urban proposals. Presented in this paper is a new such tool, implemented as a tangible user interface, that allows varied stakeholders to quickly collaborate on creation and exploration of new urban design solutions. The tool provides performance feedback for a neighborhood’s operational energy costs, daylight availability, and walkability. Fast interaction is attained through a novel precalculation method that is also presented and validated. Details of the tool’s deployment as part of a case study that was conducted with members of the planning commission of Riyadh, SA, in March 2015 are given

    Pen and paper techniques for physical customisation of tabletop interfaces

    Get PDF

    Tac-tiles: multimodal pie charts for visually impaired users

    Get PDF
    Tac-tiles is an accessible interface that allows visually impaired users to browse graphical information using tactile and audio feedback. The system uses a graphics tablet which is augmented with a tangible overlay tile to guide user exploration. Dynamic feedback is provided by a tactile pin-array at the fingertips, and through speech/non-speech audio cues. In designing the system, we seek to preserve the affordances and metaphors of traditional, low-tech teaching media for the blind, and combine this with the benefits of a digital representation. Traditional tangible media allow rapid, non-sequential access to data, promote easy and unambiguous access to resources such as axes and gridlines, allow the use of external memory, and preserve visual conventions, thus promoting collaboration with sighted colleagues. A prototype system was evaluated with visually impaired users, and recommendations for multimodal design were derived

    A game-based approach to the teaching of object-oriented programming languages

    Get PDF
    Students often have difficulties when trying to understand the concepts of object-oriented programming (OOP). This paper presents a contribution to the teaching of OOP languages through a game-oriented approach based on the interaction with tangible user interfaces (TUIs). The use of a specific type of commercial distributed TUI (Sifteo cubes), in which several small physical devices have sensing, wireless communication and user-directed output capabilities, is applied to the teaching of the C# programming language, since the operation of these devices can be controlled by user programs written in C#. For our experiment, we selected a sample of students with a sufficient knowledge about procedural programming, which was divided into two groups: The first one had a standard introductory C# course, whereas the second one had an experimental C# course that included, in addition to the contents of the previous one, two demonstration programs that illustrated some OOP basic concepts using the TUI features. Finally, both groups completed two tests: a multiple-choice exam for evaluating the acquisition of basic OOP concepts and a C# programming exercise. The analysis of the results from the tests indicates that the group of students that attended the course including the TUI demos showed a higher interest level (i.e. they felt more motivated) during the course exposition than the one that attended the standard introductory C# course. Furthermore, the students from the experimental group achieved an overall better mark. Therefore, we can conclude that the technological contribution of Sifteo cubes – used as a distributed TUI by which OOP basic concepts are represented in a tangible and a visible way – to the teaching of the C# language has a positive influence on the learning of this language and such basic concepts

    Issues and techniques for collaborative music making on multi-touch surfaces

    Get PDF
    A range of systems exist for collaborative music making on multi-touch surfaces. Some of them have been highly successful, but currently there is no systematic way of designing them, to maximise collaboration for a particular user group. We are particularly interested in systems that will engage novices and experts. We designed a simple application in an initial attempt to clearly analyse some of the issues. Our application allows groups of users to express themselves in collaborative music making using pre-composed materials. User studies were video recorded and analysed using two techniques derived from Grounded Theory and Content Analysis. A questionnaire was also conducted and evaluated. Findings suggest that the application affords engaging interaction. Enhancements for collaborative music making on multi-touch surfaces are discussed. Finally, future work on the prototype is proposed to maximise engagement

    Evaluating musical software using conceptual metaphors

    Get PDF
    An open challenge for interaction designers is to find ways of designing software to enhance the ability of novices to perform tasks that normally require specialized domain expertise. This challenge is particularly demanding in areas such as music analysis, where complex, abstract, domain-specific concepts and notations occur. One promising theoretical foundation for this work involves the identification of conceptual metaphors and image schemas, found by analyzing discourse. This kind of analysis has already been applied, with some success, both to musical concepts and, separately, to user interface design. The present work appears to be the first to combine these hitherto distinct bodies of research, with the aim of devising a general method for improving user interfaces for music. Some areas where this may require extensions to existing method are noted. This paper presents the results of an exploratory evaluation of Harmony Space, a tool for playing, analysing and learning about harmony. The evaluation uses conceptual metaphors and image schemas elicited from the dialogues of experienced musicians discussing the harmonic progressions in a piece of music. Examples of where the user interface supports the conceptual metaphors, and where support could be improved, are discussed. The potential use of audio output to support conceptual metaphors and image schemas is considered
    corecore