5 research outputs found

    Study and Evaluation of a PCB-MEMS Liquid Microflow Sensor

    Get PDF
    This paper presents the evaluation of a miniature liquid microflow sensor, directly integrated on a PCB. The sensor operation is based on the convective heat transfer principle. The heating and sensing elements are thin Pt resistors which are in direct electrical contact with the external copper tracks of the printed circuit board. Due to the low thermal conductivity of the substrate material, a high degree of thermal isolation is obtained which improves the operating characteristics of the device. The sensor is able to operate under both the hot-wire and the calorimetric principle. In order to fully exploit the temperature distribution in the flowing liquid, multiple sensing elements are positioned in various distances from the heater. A special housing was developed which allowed implementation of the sensor into tubes of various cross sectional areas. The sensor sensitivity and measurement range as a function of the sensing element distance were quantified. A minimum resolution of 3 μL/min and a measurement flow range up to 500 μL/min were achieved

    Asymmetrical Sensing Configuration for Improved Sensitivity in Calorimetric High Flow Measurements in Constant Power Mode

    Get PDF
    This work compares the resolution of calorimetric flow sensors in constant power mode using symmetrically located sensing elements to those using asymmetrical locations, for flow rates higher than the turn-over point. The experimental results show that the resolution can be improved up to six times by placing the temperature sensors in unequal distances, for the same power consumption

    A Smart Dual-Mode Calorimetric Flow Sensor

    Get PDF
    A smart thermal flow sensor system is presented. It makes use of a novel heater control circuit which can automatically set the operating mode to either constant power or constant temperature difference. It overcomes the limitations of single-mode thermal flow sensors, such as temperature overshoots at low flow rates at constant power mode, or excessive power consumption at high flow rates at constant temperature difference mode. The system is especially useful for temperature sensitive and portable applications, such as respiratory monitoring for medical diagnostics. In this paper, detailed description of the sensor’s design, implementation, and experimental validation are presented. The proposed dual-mode flow sensor achieves an overtemperature reduction up to 9.5% compared with thermal flow sensors operating in constant power mode alone, and a power reduction up to 13.6% compared with thermal flow sensors operating in constant temperature difference mode alone for the flow range of 0 to 50 slm while offering an improved overall sensitivity

    Sensor calorimétrico de vazão para sistemas microfluídicos

    Get PDF
    Orientador: Prof. Dr. Cyro Ketzer SaulDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE. Defesa: Curitiba, 18/03/2016Inclui referências : f. 83-87Área de concentração: Engenharia e ciência de materiaisResumo: Este trabalho apresenta o desenvolvimento de um sensor térmico de vazão do tipo calorimétrico, aplicável a sistemas microfluídicos e construído com materiais de baixo custo, tais como acrílico, isopor e fita dupla face. O dispositivo consiste em um elemento aquecedor e dois termopares, posicionados antes e depois do aquecedor. Os materiais foram processados com fresa a laser de CO2 de 40 W de potência e pelo plotter de recorte. A construção do dispositivo teve foco na redução das perdas térmicas, melhorando, assim, a sensibilidade térmica. Isto foi feito por meio do uso de poliestireno expandido (isopor) e da inclusão de cavidades vazias na estrutura, para reduzir os efeitos da condução de calor, que são algumas ordens de grandeza maiores do que os efeitos da convecção de calor. A aquisição de dados foi realizada utilizando termopares ligados a amplificadores para termopar, estes ligados a um conversor analógico-digital (AD) com resolução de 16 bits que, por sua vez, foi conectado à plataforma Arduino Due. O controle de potência no aquecedor também foi realizado através da plataforma Arduino Due e a alimentação foi feita por uma fonte de computador para garantir estabilidade de tensão. A resolução de temperatura obtida é de 0,005 ºC/bit e o nível de ruído inferior a 0,05 ºC. O dispositivo caracterizado é capaz de realizar medidas de vazão em duas faixas, sendo a primeira de 0,2 a 3,0 ?l/min e a segunda na faixa de 10 a 100 ?l/min. Palavras-chave: sensor calorimétrico de vazão, microfluídica, usinagem laserAbstract: This work presents the development of a thermal flow sensor of the type calorimetric, applicable to microfluidic systems, that it was constructed using low cost materials like Plexiglas, Styrofoam and polymeric double side adhesive tapes. The device consists of a resistive heater and two thermocouples positioned in both inlet and outlet. All the materials were machined with a 40 W CO2 laser and a cutting plotter. The device constructive structure was conceived focusing on the materials performance in a way to reduce thermal losses, therefore improving thermal sensitivity. This was done by using expanded polystyrene (Styrofoam) and including air voids in the structure to reduce the effects of thermal conduction, which are a few orders of magnitude higher than convective heat conduction effects. Data acquisition was performed using thermocouples, connected to thermocouple amplifiers, then to a 16 bit resolution multiplexed Analog to Digital Converter (ADC) and finally to an Arduino Due platform. The heater power control was also performed with the Arduino platform using a Personal Computer power source to guarantee a stable voltage source. The temperature resolution obtained with this system was 0.005 oC/bit and the final noise level was below 0.05 oC. The device is able to detect flow rates in two different ranges, the first from 0.2 to 3.0 ?l/min and the second from 10 to 100 ?l/min. Keywords: calorimetric flow sensor, microfluidics, laser machinin

    Desenvolvimento e caracterização de método para medição de vazão em microcanais empregando indicadores de pH

    Get PDF
    Orientador: Prof. Dr. Cyro Ketzer SaulTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE. Defesa: Curitiba, 19/04/2017Inclui referências : f. 135-144Resumo: O controle e o monitoramento da vazão são características fundamentais em determinadas aplicações das plataformas microfluídicas. Nestes sistemas, as medidas de vazão são realizadas em canais de dimensões micrométricas e usualmente na faixa de10 !a 10 "litros por minuto. A literatura relata a existência de uma diversidade sensores microfluídicos de vazão (SMV). Os sensores relatados com maior frequência empregam princípios térmicos em seus funcionamentos. As restrições associadas aos SMV, tanto os apresentados na literatura quanto os disponíveis comercialmente, em conjunto com a crescente evolução dos sistemas Lab-on-Chip, resultam no aumento da demanda por novos SMV. Este trabalho apresenta o desenvolvimento de um SMV cujo funcionamento envolve uma combinação de princípios eletroquímicos e ópticos. O dispositivo mede o tempo de voo (sigla em inglês - TOF) ao monitorar opticamente uma perturbação eletroquímica produzida no fluido que contém uma substância indicadora de pH (vermelho de fenol). Na construção do SMV foi empregado o PMMA (polimetilmetacrilato) como material estruturante e filmes adesivos, com espessuras da ordem de micrometros, na definição dos canais microfluídicos. O sistema de controle e aquisição de dados foi desenvolvido a partir de uma plataforma de prototipagem eletrônica aberta (Arduíno UNO R3). A caracterização do SMV foi efetuada medindo o tempo de voo em função da vazão imposta pelo sistema de bombeamento. Foram utilizados canais com larguras variando de 1 a 3 mm e alturas entre 75 e 300 #. A variação na altura do microcanal mostrou ter uma maior influência sobre a sensibilidade dos dispositivos. Os SMV desenvolvidos neste trabalho possibilitaram realizar medidas de vazão entre 0,7-150 #%/&', com resoluções variando de 0,1 #%/&' a 10 #%/&'. Com base nas análises dos resultados obtidos no processo de caracterização dos dispositivos, uma função que correlaciona o tempo de voo com a vazão imposta no microcanal foi proposta. Além da vazão e dos fatores geométricos, esta função leva em consideração outros três fatores: o tempo de delay ()*), termo de velocidade associado à difusão na direção axial (+,-) e o coeficiente de proporcionalidade entre a velocidade média no microcanal e a velocidade média do pulso de marcador (.). A validação desta função foi realizada através de simulações numérica (Excel) e de elementos finitos (Comsol). A função proposta nesta pesquisa se destaca por possibilitar a descrição do tempo de voo de um pulso de marcador em situações onde o mesmo não atinge o topo do canal (23 > 1) e também no caso onde os efeitos da difusão são comparáveis a velocidade de propagação (+4 ~ +,-).Abstract: Flow rate control and monitoring are key parameters in certain microfluidic platforms applications. In those systems, flow rate measurements are usually performed in micrometric channels ranging from 10 ! to 10 "liters per minute. The literature reports the existence of a variety of microfluidic flow rate sensors (SMV in portuguese). The most common being those employing thermal principles of operation. The restrictions associated with available SMV and the growing Lab-on-Chip systems trends yield the development of new SMVs. This work presents the development of a SMV whose operation involves a combination of electrochemical and optical principles. The device measures the Time of Flight (TOF) by optically monitoring an electrochemical disturbance produced in the fluid. The polymer PMMA (polymethylmethacrylate) was employed in the SMV construction as the structural material. Adhesive films with thicknesses in the order of microns were used to define the channels height and also for sealing. The control system and data acquisition were developed by mean of an open source electronic prototyping platform (Arduino UNO R3). The SMV characterization was performed by measuring the TOF in function of the flow rate imposed by the pumping system. Initially the relationship between the sensor dimensions and the measurement sensitivity was investigated. Channels of 1, 2 and 3 mm width and 75 # height were used for characterization. Channels of 3 mm width and height varying from 75 to 300 # were also used. It was found that the height of the microchannel has a direct effect on the device sensitivity. The SMV developed in this work proved to be able to perform flow rate measurements ranging from 0.7 to 150#%/&' with resolutions ranging from 0.1 to 10 #%/&'. Through the analyses of results obtained during the devices' characterization, a function that correlates time of flight with the imposed flow rate was proposed. Besides flow rate and geometric factors, this function takes into account three others factors: the delay time (()), the axial diffusion velocity (*+,) and the proportionality coefficient between the microchannel mean velocity and the maker pulse mean velocity (c). The proposed function validation was performed through numeric and finite element simulations. The goal of this proposed function is to describe the time of flight in conditions where de maker pulse does not reach the microchannel top (-. > 1) and also when the diffusion effects are comparable to the mean velocity (*2 ~ *+,)
    corecore