1,286 research outputs found

    Efficient inference about the tail weight in multivariate Student tt distributions

    Full text link
    We propose a new testing procedure about the tail weight parameter of multivariate Student tt distributions by having recourse to the Le Cam methodology. Our test is asymptotically as efficient as the classical likelihood ratio test, but outperforms the latter by its flexibility and simplicity: indeed, our approach allows to estimate the location and scatter nuisance parameters by any root-nn consistent estimators, hereby avoiding numerically complex maximum likelihood estimation. The finite-sample properties of our test are analyzed in a Monte Carlo simulation study, and we apply our method on a financial data set. We conclude the paper by indicating how to use this framework for efficient point estimation.Comment: 23 page

    A Spline LR Test for Goodness-of-Fit

    Get PDF
    Goodness-of-Fit tests, nuisance parameters, cubic spline, Neyman smooth test, Lagrange Multiplier test, stable distributions, student t distributions

    Bayesian QTL mapping using skewed Student-t distributions

    Get PDF
    In most QTL mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may lead to detection of false positive QTL. To improve the robustness of Bayesian QTL mapping methods, the normal distribution for residuals is replaced with a skewed Student-t distribution. The latter distribution is able to account for both heavy tails and skewness, and both components are each controlled by a single parameter. The Bayesian QTL mapping method using a skewed Student-t distribution is evaluated with simulated data sets under five different scenarios of residual error distributions and QTL effects

    Adaptive Importance Sampling in General Mixture Classes

    Get PDF
    In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. The method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performances of the proposed scheme are studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.Comment: Removed misleading comment in Section

    Characterization of Student’s T- Distribution with Some Application to Finance

    Get PDF
    The distributional form of the returns on the underlying assets plays a key role in finance under valuation theories for derivative securities. Among them, Student t-distributions are generally applied in financial studies as heavy-tailed substitute to the normal distribution. Therefore, distributions of logarithmic asset returns can often be fitted extremely well using Student t-distribution with  degree of freedom, such that . The aim of this paper is to investigate the characterization behavior of Student t-distributions and its related properties into finance which are based on computational aspects using Mathematica. Furthermore, convolution, infinity divisibility and self-decomposability properties of Lévy-Student process are considered as background to the option pricing. Finally, applications of modeling high frequency price returns are discussed. Keywords: Characterization behavior, degree of freedom, heavy-tail, Lévy-Student proces

    Local Statistical Modeling via Cluster-Weighted Approach with Elliptical Distributions

    Get PDF
    Cluster Weighted Modeling (CWM) is a mixture approach regarding the modelisation of the joint probability of data coming from a heterogeneous population. Under Gaussian assumptions, we investigate statistical properties of CWM from both the theoretical and numerical point of view; in particular, we show that CWM includes as special cases mixtures of distributions and mixtures of regressions. Further, we introduce CWM based on Student-t distributions providing more robust fitting for groups of observations with longer than normal tails or atypical observations. Theoretical results are illustrated using some empirical studies, considering both real and simulated data.Cluster-Weighted Modeling, Mixture Models, Model-Based Clustering

    Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit

    Get PDF
    This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.

    On the Lp-quantiles for the Student t distribution

    Full text link
    L_p-quantiles represent an important class of generalised quantiles and are defined as the minimisers of an expected asymmetric power function, see Chen (1996). For p=1 and p=2 they correspond respectively to the quantiles and the expectiles. In his paper Koenker (1993) showed that the tau quantile and the tau expectile coincide for every tau in (0,1) for a class of rescaled Student t distributions with two degrees of freedom. Here, we extend this result proving that for the Student t distribution with p degrees of freedom, the tau quantile and the tau L_p-quantile coincide for every tau in (0,1) and the same holds for any affine transformation. Furthermore, we investigate the properties of L_p-quantiles and provide recursive equations for the truncated moments of the Student t distribution
    corecore