1,170 research outputs found

    Genetic Algorithm for Program Synthesis

    Full text link
    A deductive program synthesis tool takes a specification as input and derives a program that satisfies the specification. The drawback of this approach is that search spaces for such correct programs tend to be enormous, making it difficult to derive correct programs within a realistic timeout. To speed up such program derivation, we improve the search strategy of a deductive program synthesis tool, SuSLik, using evolutionary computation. Our cross-validation shows that the improvement brought by evolutionary computation generalises to unforeseen problems

    Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms

    Full text link
    We introduce Meta-F*, a tactics and metaprogramming framework for the F* program verifier. The main novelty of Meta-F* is allowing the use of tactics and metaprogramming to discharge assertions not solvable by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate verified code automatically. Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides substantial gains in proof development, efficiency, and robustness.Comment: Full version of ESOP'19 pape

    Trident: Controlling Side Effects in Automated Program Repair

    Get PDF
    The goal of program repair is to eliminate a bug in a given program by automatically modifying its source code. The majority of real-world software is written in imperative programming languages. Each function or expression in imperative code may have side effects, observable effects beyond returning a value. Existing program repair approaches have a limited ability to handle side effects. Previous test-driven semantic repair approaches only synthesise patches without side effects. Heuristic repair approaches generate patches with side effects only if suitable code fragments exist in the program or a database of repair patterns, or can be derived from training data. This work introduces Trident, the first test-driven program repair approach that synthesizes patches with side effects without relying on the plastic surgery hypothesis, a database of patterns, or training data. Trident relies on an interplay of several parts. First, it infers a specification for synthesising side-effected patches using symbolic execution with a custom state merging strategy that alleviates path explosion due to side effects. Second, it uses a novel component-based patch synthesis approach that supports lvalues, values that appear on the left-hand sides of assignments. In an evaluation on open-source projects, Trident successfully repaired 6 out of 10 real bugs that require insertion of new code with side effects, which previous techniques do not therefore repair. Evaluated on the ManyBugs benchmark, Trident successfully repaired two new bugs that previous approaches could not. Adding patches with side effects to the search space can exacerbate test-overfitting. We experimentally demonstrate that the simple heuristic of preferring patches with the fewest side effects alleviates the problem. An evaluation on a large number of smaller programs shows that this strategy reduces test-overfitting caused by side-effects, increasing the rate of correct patches from 33.3% to 58.3%

    Toward Tool-Independent Summaries for Symbolic Execution

    Get PDF
    We introduce a new symbolic reflection API for implementing tool-independent summaries for the symbolic execution of C programs. We formalise the proposed API as a symbolic semantics and extend two state-of-the-art symbolic execution tools with support for it. Using the proposed API, we implement 67 tool-independent symbolic summaries for a total of 26 libc functions. Furthermore, we present SumBoundVerify, a fully automatic summary validation tool for checking the bounded correctness of the symbolic summaries written using our symbolic reflection API. We use SumBoundVerify to validate 37 symbolic summaries taken from 3 state-of-the-art symbolic execution tools, angr, Binsec and Manticore, detecting a total of 24 buggy summaries

    Separation Logic

    Get PDF
    Separation logic is a key development in formal reasoning about programs, opening up new lines of attack on longstanding problems

    Developing and Measuring Parallel Rule-Based Systems in a Functional Programming Environment

    Get PDF
    This thesis investigates the suitability of using functional programming for building parallel rule-based systems. A functional version of the well known rule-based system OPS5 was implemented, and there is a discussion on the suitability of functional languages for both building compilers and manipulating state. Functional languages can be used to build compilers that reflect the structure of the original grammar of a language and are, therefore, very suitable. Particular attention is paid to the state requirements and the state manipulation structures of applications such as a rule-based system because, traditionally, functional languages have been considered unable to manipulate state. From the implementation work, issues have arisen that are important for functional programming as a whole. They are in the areas of algorithms and data structures and development environments. There is a more general discussion of state and state manipulation in functional programs and how theoretical work, such as monads, can be used. Techniques for how descriptions of graph algorithms may be interpreted more abstractly to build functional graph algorithms are presented. Beyond the scope of programming, there are issues relating both to the functional language interaction with the operating system and to tools, such as debugging and measurement tools, which help programmers write efficient programs. In both of these areas functional systems are lacking. To address the complete lack of measurement tools for functional languages, a profiling technique was designed which can accurately measure the number of calls to a function , the time spent in a function, and the amount of heap space used by a function. From this design, a profiler was developed for higher-order, lazy, functional languages which allows the programmer to measure and verify the behaviour of a program. This profiling technique is designed primarily for application programmers rather than functional language implementors, and the results presented by the profiler directly reflect the lexical scope of the original program rather than some run-time representation. Finally, there is a discussion of generally available techniques for parallelizing functional programs in order that they may execute on a parallel machine. The techniques which are easier for the parallel systems builder to implement are shown to be least suitable for large functional applications. Those techniques that best suit functional programmers are not yet generally available and usable

    Tagungsband zum 21. Kolloquium Programmiersprachen und Grundlagen der Programmierung

    Get PDF
    Das 21. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2021) setzt eine traditionelle Reihe von Arbeitstagungen fort, die 1980 von den Forschungsgruppen der Professoren Friedrich L. Bauer (TU München), Klaus Indermark (RWTH Aachen) und Hans Langmaack(CAU Kiel) ins Leben gerufen wurde.Die Veranstaltung ist ein offenes Forum für alle interessierten deutschsprachigen Wissenschaftlerinnen und Wissenschaftler zum zwanglosen Austausch neuer Ideen und Ergebnisse aus den Forschungsbereichen Entwurf und Implementierung von Programmiersprachen sowie Grundlagen und Methodik des Programmierens. Dieser Tagungsband enthält die wissenschaftlichen Beiträge,die bei dem 21. Kolloquium dieser Tagungsreihe präsentiert wurden, welches vom 27. bis 29. September 2021 in Kiel stattfand und von der Arbeitsgruppe Programmiersprachen und Übersetzerkonstruktion der Christian-Albrechts-Universität zu Kiel organisiert wurde
    • …
    corecore