4,137 research outputs found

    Scalable-resolution structured illumination microscopy

    Get PDF
    Structured illumination microscopy suffers from the need of sophisticated instrumentation and precise calibration. This makes structured illumination microscopes costly and skill-dependent. We present a novel approach to realize super-resolution structured illumination microscopy using an alignment non-critical illumination system and a reconstruction algorithm that does not need illumination information. The optical system is designed to encode higher order frequency components of the specimen by projecting PSF-modulated binary patterns for illuminating the sample plane, which do not have clean Fourier peaks conventionally used in structured illumination microscopy. These patterns fold high frequency content of sample into the measurements in an obfuscated manner, which are de-obfuscated using multiple signal classification algorithm. This algorithm eliminates the need of clean peaks in illumination and the knowledge of illumination patterns, which makes instrumentation simple and flexible for use with a variety of microscope objective lenses. We present a variety of experimental results on beads and cell samples to demonstrate resolution enhancement by a factor of 2.6 to 3.4 times, which is better than the enhancement supported by the conventional linear structure illumination microscopy where the same objective lens is used for structured illumination as well as collection of light. We show that the same system can be used in SIM configuration with different collection objective lenses without any careful re-calibration or realignment, thereby supporting a range of resolutions with the same system

    Blind fluorescence structured illumination microscopy: A new reconstruction strategy

    Get PDF
    In this communication, a fast reconstruction algorithm is proposed for fluorescence \textit{blind} structured illumination microscopy (SIM) under the sample positivity constraint. This new algorithm is by far simpler and faster than existing solutions, paving the way to 3D and/or real-time 2D reconstruction.Comment: submitted to IEEE ICIP 201

    Structured illumination microscopy using micro-pixellated light-emitting diodes

    Get PDF
    Structured illumination is a flexible and economical method of obtaining optical sectioning in wide-field microscopy [1]. In this technique the illumination system is modified to project a single-spatial frequency grid pattern onto the sample [2, 3]. The pattern can only be resolved in the focal plane and by recording images for different transverse grid positions (or phases) an image of the in-focus parts of the object can be calculated. Light emitting diodes (LEDs) are becoming increasingly popular for lighting and illumination systems due to their low cost, small dimensions, low coherence, uniform illumination, high efficiency and long lifetime. These properties, together with recent developments in high brightness, ultraviolet operation and microstructured emitter design offer great potential for LEDs as light sources for microscopy. In this paper we demonstrate a novel structured illumination microscope using a blue micro-structured light emitting diode as the illumination source. The system is potentially very compact and has no-moving-parts

    Structured Illumination Microscopy of Biological Structures

    Get PDF
    Abstract of presentation held at Norwegian Electro-Optics Meeting, Henningsvær, Norway, 2-4 May 2018.Resolution in optical microscopy has long been limited to the Abbe diffraction limit, i.e. about 250 nm laterally for visible wavelengths on a very good microscope. In the last two decades several techniques have been devised to circumvent this limit: an achievement which was recognized with the 2014 Nobel Prize in Chemistry. Structured Illumination Microscopy (SIM) was the first of these techniques to become commercially available, and continues to be the only super-resolution technique which is practically compatible with living cells, while also requiring the least modification to conventional sample-labeling protocols. SIM utilizes Moiré patterns and frequency shifting to improve resolution 2X in each dimension, as well as significantly improve the contrast for the mid-range spatial frequencies. These advances have unlocked a new realm of biological inquiry: the combination of the high biochemical specificity of fluorescent probes with resolution previously only possible with electron microscopy now enables the direct study of sub-organelle colocalization and the dynamics of living cells. Here, we will present both the basics of the SIM technique as well as a sampling of its biological applications from our lab at UiT, including sub-mitochondrial localization and dynamics, sieve-like nanostructures in liver cells, and large-scale visualization of super-resolved cardiac tissue sections, as well as discuss the practical limitations and implications of this work

    Structured illumination microscopy with unknown patterns and a statistical prior

    Full text link
    Structured illumination microscopy (SIM) improves resolution by down-modulating high-frequency information of an object to fit within the passband of the optical system. Generally, the reconstruction process requires prior knowledge of the illumination patterns, which implies a well-calibrated and aberration-free system. Here, we propose a new \textit{algorithmic self-calibration} strategy for SIM that does not need to know the exact patterns {\it a priori}, but only their covariance. The algorithm, termed PE-SIMS, includes a Pattern-Estimation (PE) step requiring the uniformity of the sum of the illumination patterns and a SIM reconstruction procedure using a Statistical prior (SIMS). Additionally, we perform a pixel reassignment process (SIMS-PR) to enhance the reconstruction quality. We achieve 2×\times better resolution than a conventional widefield microscope, while remaining insensitive to aberration-induced pattern distortion and robust against parameter tuning

    Integrated optical device for Structured Illumination Microscopy

    Get PDF
    Structured Illumination Microscopy (SIM) is a key technology for high resolution and super-resolution imaging of biological cells and molecules. The spread of portable and easy-to-align SIM systems requires the development of novel methods to generate a light pattern and to shift it across the field of view of the microscope. Here we show a miniaturized chip that incorporates optical waveguides, splitters, and phase shifters, to generate a 2D structured illumination pattern suitable for SIM microscopy. The chip creates three point-sources, coherent and controlled in phase, without the need for further alignment. Placed in the pupil of a microscope's objective, the three sources generate a hexagonal illumination pattern on the sample, which is spatially translated thanks to thermal phase shifters. We validate and use the chip, upgrading a commercial inverted fluorescence microscope to a SIM setup and we image biological sample slides, extending the resolution of the microscope. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen
    • …
    corecore