332,962 research outputs found

    Metric Learning for Temporal Sequence Alignment

    Get PDF
    In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio to audio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better performance for the alignment

    Structured penalized regression for drug sensitivity prediction

    Full text link
    Large-scale {\it in vitro} drug sensitivity screens are an important tool in personalized oncology to predict the effectiveness of potential cancer drugs. The prediction of the sensitivity of cancer cell lines to a panel of drugs is a multivariate regression problem with high-dimensional heterogeneous multi-omics data as input data and with potentially strong correlations between the outcome variables which represent the sensitivity to the different drugs. We propose a joint penalized regression approach with structured penalty terms which allow us to utilize the correlation structure between drugs with group-lasso-type penalties and at the same time address the heterogeneity between omics data sources by introducing data-source-specific penalty factors to penalize different data sources differently. By combining integrative penalty factors (IPF) with tree-guided group lasso, we create the IPF-tree-lasso method. We present a unified framework to transform more general IPF-type methods to the original penalized method. Because the structured penalty terms have multiple parameters, we demonstrate how the interval-search Efficient Parameter Selection via Global Optimization (EPSGO) algorithm can be used to optimize multiple penalty parameters efficiently. Simulation studies show that IPF-tree-lasso can improve the prediction performance compared to other lasso-type methods, in particular for heterogenous data sources. Finally, we employ the new methods to analyse data from the Genomics of Drug Sensitivity in Cancer project.Comment: Zhao Z, Zucknick M (2020). Structured penalized regression for drug sensitivity prediction. Journal of the Royal Statistical Society, Series C. 19 pages, 6 figures and 2 table

    Pattern-Based Analysis of Time Series: Estimation

    Full text link
    While Internet of Things (IoT) devices and sensors create continuous streams of information, Big Data infrastructures are deemed to handle the influx of data in real-time. One type of such a continuous stream of information is time series data. Due to the richness of information in time series and inadequacy of summary statistics to encapsulate structures and patterns in such data, development of new approaches to learn time series is of interest. In this paper, we propose a novel method, called pattern tree, to learn patterns in the times-series using a binary-structured tree. While a pattern tree can be used for many purposes such as lossless compression, prediction and anomaly detection, in this paper we focus on its application in time series estimation and forecasting. In comparison to other methods, our proposed pattern tree method improves the mean squared error of estimation

    DuETT: Dual Event Time Transformer for Electronic Health Records

    Full text link
    Electronic health records (EHRs) recorded in hospital settings typically contain a wide range of numeric time series data that is characterized by high sparsity and irregular observations. Effective modelling for such data must exploit its time series nature, the semantic relationship between different types of observations, and information in the sparsity structure of the data. Self-supervised Transformers have shown outstanding performance in a variety of structured tasks in NLP and computer vision. But multivariate time series data contains structured relationships over two dimensions: time and recorded event type, and straightforward applications of Transformers to time series data do not leverage this distinct structure. The quadratic scaling of self-attention layers can also significantly limit the input sequence length without appropriate input engineering. We introduce the DuETT architecture, an extension of Transformers designed to attend over both time and event type dimensions, yielding robust representations from EHR data. DuETT uses an aggregated input where sparse time series are transformed into a regular sequence with fixed length; this lowers the computational complexity relative to previous EHR Transformer models and, more importantly, enables the use of larger and deeper neural networks. When trained with self-supervised prediction tasks, that provide rich and informative signals for model pre-training, our model outperforms state-of-the-art deep learning models on multiple downstream tasks from the MIMIC-IV and PhysioNet-2012 EHR datasets.Comment: Accepted at MLHC 2023, camera-ready versio

    Gaussian process prediction for time series of structured data

    Get PDF
    Paaßen B, Göpfert C, Hammer B. Gaussian process prediction for time series of structured data. In: Verleysen M, ed. Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco - i6doc.com; 2016: 41--46.Time series prediction constitutes a classic topic in machine learning with wide-ranging applications, but mostly restricted to the domain of vectorial sequence entries. In recent years, time series of structured data (such as sequences, trees or graph structures) have become more and more important, for example in social network analysis or intelligent tutoring systems. In this contribution, we propose an extension of time series models to strucured data based on Gaussian processes and structure kernels. We also provide speedup techniques for predictions in linear time, and we evaluate our approach on real data from the domain of intelligent tutoring systems

    Detection and prediction of clopidogrel treatment failures using longitudinal structured electronic health records

    Full text link
    We propose machine learning algorithms to automatically detect and predict clopidogrel treatment failure using longitudinal structured electronic health records (EHR). By drawing analogies between natural language and structured EHR, we introduce various machine learning algorithms used in natural language processing (NLP) applications to build models for treatment failure detection and prediction. In this regard, we generated a cohort of patients with clopidogrel prescriptions from UK Biobank and annotated if the patients had treatment failure events within one year of the first clopidogrel prescription; out of 502,527 patients, 1,824 patients were identified as treatment failure cases, and 6,859 patients were considered as control cases. From the dataset, we gathered diagnoses, prescriptions, and procedure records together per patient and organized them into visits with the same date to build models. The models were built for two different tasks, i.e., detection and prediction, and the experimental results showed that time series models outperform bag-of-words approaches in both tasks. In particular, a Transformer-based model, namely BERT, could reach 0.928 AUC in detection tasks and 0.729 AUC in prediction tasks. BERT also showed competence over other time series models when there is not enough training data, because it leverages the pre-training procedure using large unlabeled data

    GCformer: An Efficient Framework for Accurate and Scalable Long-Term Multivariate Time Series Forecasting

    Full text link
    Transformer-based models have emerged as promising tools for time series forecasting. However, these model cannot make accurate prediction for long input time series. On the one hand, they failed to capture global dependencies within time series data. On the other hand, the long input sequence usually leads to large model size and high time complexity. To address these limitations, we present GCformer, which combines a structured global convolutional branch for processing long input sequences with a local Transformer-based branch for capturing short, recent signals. A cohesive framework for a global convolution kernel has been introduced, utilizing three distinct parameterization methods. The selected structured convolutional kernel in the global branch has been specifically crafted with sublinear complexity, thereby allowing for the efficient and effective processing of lengthy and noisy input signals. Empirical studies on six benchmark datasets demonstrate that GCformer outperforms state-of-the-art methods, reducing MSE error in multivariate time series benchmarks by 4.38% and model parameters by 61.92%. In particular, the global convolutional branch can serve as a plug-in block to enhance the performance of other models, with an average improvement of 31.93\%, including various recently published Transformer-based models. Our code is publicly available at https://github.com/zyj-111/GCformer
    corecore