5,361 research outputs found

    Transforming pedagogy using mobile Web 2.0

    Get PDF
    Blogs, wikis, podcasting, and a host of free, easy to use Web 2.0 social software provide opportunities for creating social constructivist learning environments focusing on student-centred learning and end-user content creation and sharing. Building on this foundation, mobile Web 2.0 has emerged as a viable teaching and learning tool, facilitating engaging learning environments that bridge multiple contexts. Today’s dual 3G and wifi-enabled smartphones provide a ubiquitous connection to mobile Web 2.0 social software and the ability to view, create, edit, upload, and share user generated Web 2.0 content. This article outlines how a Product Design course has moved from a traditional face-to-face, studio-based learning environment to one using mobile Web 2.0 technologies to enhance and engage students in a social constructivist learning paradigm. Keywords: m-learning; Web 2.0; pedagogy 2.0; social constructivism; product desig

    Facilitating social constructivist learning environments for product design Students using social software (Web2) and wireless mobile device.

    Get PDF
    It is well understood and has been well documented that there is much to gain by using social software in creating collaborative learning communities. However little is known about using a context independent interactive collaborative environment with an emphasis upon sharing, ease of use, customization and personal publishing (MobileWeb2). This paper describes an innovative and integrated MobileWeb2 technology in a product design live project setting, that assists product designers to solve a real problem to serve a real client. Students and teaching staff use a smartphone to capture design decisions and prototypes and collate and share these via an online eportfolio. From the data collected from staff/students surveys it was found that this method provided a stimulating collaborative environment that develops personal skill to bring out their latent creativity in such a way that these will become part of their project. Opportunities for mobile web2 product design projects are outlined. The logistics of providing access to appropriate hardware and software for all students are also discussed

    Mobile VLE vs. Mobile PLE: How Informal is Mobile Learning?

    No full text
    Mobile Learning Systems are often described as supporting informal learning; as such they are a good fit to the idea of Personal Learning Environments (PLEs), software systems that users choose and tailor to fit their own learning preferences. This paper explores the question of whether existing m-learning research is more in the spirit of PLEs or Virtual Learning Environments (VLEs). To do this we survey the mobile learning systems presented at M-Learn 2007 in order to see if they might be regarded as informal or formal learning. In order to categorise the systems we present a four dimensional framework of formality, based on Learning Objective, Learning Environment, Learning Activity and Learning Tools. We use the framework to show that mobile systems tend to be informal in terms of their environment, but ignore the other factors. Thus we can conclude that despite the claims of m-learning systems to better support informal and personal learning, today’s m-learning research is actually more in the spirit of a VLE than a PLE, and that there remains a great deal of unexplored ground in the area of Mobile PLE systems

    Strategies for mlearning integration : evaluating a case study of staging and scaffolding mlearning integration across a three-year bachelor’s degree

    Get PDF
    This paper outlines the third iteration of integrating mobile web 2.0 within a Bachelors level course. An analysis and comparison of the impact of mobile web 2.0 across all three years of the 2009 course enables the development of implementation strategies that can be used to integrate mlearning into other tertiary courses, and inform the design of further Product Design mlearning integration iterations

    Emerging technologies for learning (volume 2)

    Get PDF

    Big Data Privacy Context: Literature Effects On Secure Informational Assets

    Get PDF
    This article's objective is the identification of research opportunities in the current big data privacy domain, evaluating literature effects on secure informational assets. Until now, no study has analyzed such relation. Its results can foster science, technologies and businesses. To achieve these objectives, a big data privacy Systematic Literature Review (SLR) is performed on the main scientific peer reviewed journals in Scopus database. Bibliometrics and text mining analysis complement the SLR. This study provides support to big data privacy researchers on: most and least researched themes, research novelty, most cited works and authors, themes evolution through time and many others. In addition, TOPSIS and VIKOR ranks were developed to evaluate literature effects versus informational assets indicators. Secure Internet Servers (SIS) was chosen as decision criteria. Results show that big data privacy literature is strongly focused on computational aspects. However, individuals, societies, organizations and governments face a technological change that has just started to be investigated, with growing concerns on law and regulation aspects. TOPSIS and VIKOR Ranks differed in several positions and the only consistent country between literature and SIS adoption is the United States. Countries in the lowest ranking positions represent future research opportunities.Comment: 21 pages, 9 figure

    Mobilising teacher education: a study of a professional learning community

    Get PDF
    This paper reports on a study of a community of university educators that investigated the introduction of mobile technologies into their learning and teaching. The study was conducted by a subgroup of that community. Given the ubiquity of mobile devices, members of the community felt they needed to develop expertise in mobile learning so that they could incorporate it into their teaching. They studied their own learning, supported by a critical friend who evaluated the community's functioning and activities, providing valuable feedback. Activities of this group were informed by and focused on: development of awareness of the potential of mobile devices for learning; construction of action plans within the community; and implementation of these plans. They also included investigating best-practice approaches by interviewing experts in the field, exploring the literature on mobile learning and then initiating and testing some mobile learning pedagogies in the context of their own teacher education subjects. The community met regularly to discuss emerging issues and applications. The paper shares some of the findings gained from studying the community, and discusses the challenges and constraints that were experienced. The authors conclude with recommendations for professional learning communities aiming to learn about technology-mediated teaching practices
    corecore