3,680 research outputs found

    Embedding object-oriented design in system engineering

    Get PDF
    The Unified Modeling Language (UML) is a collection of techniques intended to document design decisions about software. This contrasts with systems engineering approaches such as for exampleStatemate and the Yourdon Systems Method (YSM), in which the design of an entire system consisting of software and hardware can be documented. The difference between the system- and the software level is reflected in differences between execution semantics as well as in methodology. In this paper, I show how the UML can be used as a system-level design technique. I give a conceptual framework for engineering design that accommodates the system- as well as the software level and show how techniques from the UML and YSM can be classified within this framework, and how this allows a coherent use of these techniques in a system engineering approach. These ideas are illustrated by a case study in which software for a compact dynamic bus station is designed. Finally, I discuss the consequences of this approach for a semantics of UML constructs that would be appropriate for system-level design

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Towards a Unified View of AI Planning and Reactive Synthesis

    Get PDF
    International audienceAutomated planning and reactive synthesis are well-established techniques for sequential decision making. In this paper we examine a collection of AI planning problems with temporally extended goals, specified in Linear Temporal Logic (LTL). We characterize these so-called LTL planning problems as two-player games and thereby establish their correspondence to reactive synthesis problems. This unifying view furthers our understanding of the relationship between plan and program synthesis, establishing complexity results for LTL planning tasks. Building on this correspondence, we identify restricted fragments of LTL for which plan synthesis can be realized more efficiently

    Verification of Branching-Time and Alternating-Time Properties for Exogenous Coordination Models

    Get PDF
    Information and communication systems enter an increasing number of areas of daily lives. Our reliance and dependence on the functioning of such systems is rapidly growing together with the costs and the impact of system failures. At the same time the complexity of hardware and software systems extends to new limits as modern hardware architectures become more and more parallel, dynamic and heterogenous. These trends demand for a closer integration of formal methods and system engineering to show the correctness of complex systems within the design phase of large projects. The goal of this thesis is to introduce a formal holistic approach for modeling, analysis and synthesis of parallel systems that potentially addresses complex system behavior at any layer of the hardware/software stack. Due to the complexity of modern hardware and software systems, we aim to have a hierarchical modeling framework that allows to specify the behavior of a parallel system at various levels of abstraction and that facilitates designing complex systems in an iterative refinement procedure, in which more detailed behavior is added successively to the system description. In this context, the major challenge is to provide modeling formalisms that are expressive enough to address all of the above issues and are at the same time amenable to the application of formal methods for proving that the system behavior conforms to its specification. In particular, we are interested in specification formalisms that allow to apply formal verification techniques such that the underlying model checking problems are still decidable within reasonable time and space bounds. The presented work relies on an exogenous modeling approach that allows a clear separation of coordination and computation and provides an operational semantic model where formal methods such as model checking are well suited and applicable. The channel-based exogenous coordination language Reo is used as modeling formalism as it supports hierarchical modeling in an iterative top-down refinement procedure. It facilitates reusability, exchangeability, and heterogeneity of components and forms the basis to apply formal verification methods. At the same time Reo has a clear formal semantics based on automata, which serve as foundation to apply formal methods such as model checking. In this thesis new modeling languages are presented that allow specifying complex systems in terms of Reo and automata models which yield the basis for a holistic approach on modeling, verification and synthesis of parallel systems. The second main contribution of this thesis are tailored branching-time and alternating time temporal logics as well as corresponding model checking algorithms. The thesis includes results on the theoretical complexity of the underlying model checking problems as well as practical results. For the latter the presented approach has been implemented in the symbolic verification tool set Vereofy. The implementation within Vereofy and evaluation of the branching-time and alternating-time model checker is the third main contribution of this thesis

    Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems

    Get PDF
    This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled

    Teleo-Reactive policies for managing human-centric pervasive services.

    No full text
    Event-Condition-Action (ECA) policies are often used to manage various aspects of adaptation and execution of pervasive systems. Such policies are well suited for services where: 1) given actions are reliably executed when they are requested, 2) there is no priority ordering amongst multiple available actions, and 3) execution is instantaneous with respect to the validity of conditions under which they were initiated. However, for a pervasive service that integrates human agents and human activities, these assumptions do not generally hold. Humans may misbehave by postponing the execution of certain actions or ignoring them all together. Performing an action may take a long time so that the action is no longer needed or more important actions may need to be executed. Managing such behaviours through ECA policies is complex and difficult to implement. This paper introduces a new management policy type, called a Teleo-Reactive policy, whose semantics are based on continuous monitoring of the environment and prioritising available actions. The semantics result in more flexible and concise formulation of management policies for human-centric pervasive services. We demonstrate how these policies can be applied in a real-world use case scenario set in a nursing home and describe the underlying implementation based on the Androids Java platform. © 2010 IEEE
    corecore