373,812 research outputs found

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Rule groupings: An approach towards verification of expert systems

    Get PDF
    Knowledge-based expert systems are playing an increasingly important role in NASA space and aircraft systems. However, many of NASA's software applications are life- or mission-critical and knowledge-based systems do not lend themselves to the traditional verification and validation techniques for highly reliable software. Rule-based systems lack the control abstractions found in procedural languages. Hence, it is difficult to verify or maintain such systems. Our goal is to automatically structure a rule-based system into a set of rule-groups having a well-defined interface to other rule-groups. Once a rule base is decomposed into such 'firewalled' units, studying the interactions between rules would become more tractable. Verification-aid tools can then be developed to test the behavior of each such rule-group. Furthermore, the interactions between rule-groups can be studied in a manner similar to integration testing. Such efforts will go a long way towards increasing our confidence in the expert-system software. Our research efforts address the feasibility of automating the identification of rule groups, in order to decompose the rule base into a number of meaningful units

    Building validation tools for knowledge-based systems

    Get PDF
    The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification

    Structure preserving specification languages for knowledge-based systems

    Get PDF
    Much of the work on validation and verification of knowledge based systems (KBSs) has been done in terms of implementation languages (mostly rule-based languages). Recent papers have argued that it is advantageous to do validation and verification in terms of a more abstract and formal specification of the system. However, constructing such formal specifications is a difficult task. This paper proposes the use of formal specification languages for KBS-development that are closely based on the structure of informal knowledge-models. The use of such formal languages has as advantages that (i) we can give strong support for the construction of a formal specification, namely on the basis of the informal description of the system; and (ii) we can use the structural correspondence to verify that the formal specification does indeed capture the informally stated requirements

    Forecasting peak load electricity demand using statistics and rule based approach

    Get PDF
    Problem statement: Forecasting of electricity load demand is an essential activity and an important function in power system planning and development. It is a prerequisite to power system expansion planning as the world of electricity is dominated by substantial lead times between decision making and its implementation. The importance of demand forecasting needs to be emphasized at all level as the consequences of under or over forecasting the demand are serious and will affect all stakeholders in the electricity supply industry. Approach: If under estimated, the result is serious since plant installation cannot easily be advanced, this will affect the economy, business, loss of time and image. If over estimated, the financial penalty for excess capacity (i.e., over-estimated and wasting of resources). Therefore this study aimed to develop new forecasting model for forecasting electricity load demand which will minimize the error of forecasting. In this study, we explored the development of rule-based method for forecasting electricity peak load demand. The rule-based system synergized human reasoning style of fuzzy systems through the use of set of rules consisting of IF-THEN approximators with the learning and connectionist structure. Prior to the implementation of rule-based models, SARIMAT model and Regression time series were used. Results: Modification of the basic regression model and modeled it using Box-Jenkins auto regressive error had produced a satisfactory and adequate model with 2.41% forecasting error. With rule-based based forecasting, one can apply forecaster expertise and domain knowledge that is appropriate to the conditions of time series. Conclusion: This study showed a significant improvement in forecast accuracy when compared with the traditional time series model. Good domain knowledge of the experts had contributed to the increase in forecast accuracy. In general, the improvement will depend on the conditions of the data, the knowledge development and validation. The rule-based forecasting procedure offered many promises and we hoped this study can become a starting point for further research in this field

    Referent Tracking for Command and Control Messaging Systems

    Get PDF
    is an XML-based language designed to allow Command and Control (C2) systems to interface easily with Modeling and Simulation (M&S) systems. While some of the XML-tags defined in this language correspond to types of entities that exist in reality, others are mere syntactic artifacts used to structure the messages themselves. Because these two kinds of tags are not formally distinguishable, JBML messages in effect confuse data with what the data represent. In this paper we show how a realism-based ontology combined with a rule language can be used to make these distinctions explicit. The approach allows storage of the contents of JBML messages in a Referent Tracking System in a format that mimics the structure of reality thereby providing an aid to message validation

    Development and validation of computational models of cellular interaction

    Get PDF
    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues

    Identification of Evolving Rule-based Models.

    Get PDF
    An approach to identification of evolving fuzzy rule-based (eR) models is proposed. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rules based on ranking using the informative potential of the data. In this way, the rule-base structure is inherited and updated when new informative data become available, rather than being completely retrained. The adaptive nature of these evolving rule-based models, in combination with the highly transparent and compact form of fuzzy rules, makes them a promising candidate for modeling and control of complex processes, competitive to neural networks. The approach has been tested on a benchmark problem and on an air-conditioning component modeling application using data from an installation serving a real building. The results illustrate the viability and efficiency of the approach. (c) IEEE Transactions on Fuzzy System
    • …
    corecore