114 research outputs found

    Structure-Preserving Model Reduction for Mechanical Systems

    Get PDF

    Balanced truncation for time-delay systems via approximate gramians

    Get PDF
    In circuit simulation, when a large RLC network is connected with delay elements, such as transmission lines, the resulting system is a time-delay system (TDS). This paper presents a new model order reduction (MOR) scheme for TDSs with state time delays. It is the first time to reduce a TDS using balanced truncation. The Lyapunov-type equations for TDSs are derived, and an analysis of their computational complexity is presented. To reduce the computational cost, we approximate the controllability and observability Gramians in the frequency domain. The reduced-order models (ROMs) are then obtained by balancing and truncating the approximate Gramians. Numerical examples are presented to verify the accuracy and efficiency of the proposed algorithm. ©2011 IEEE.published_or_final_versionThe 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25-28 January 2011. In Proceedings of the 16th ASP-DAC, 2011, p. 55-60, paper 1C-

    Model Reduction of Hybrid Systems

    Get PDF

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Methods of model reduction for large-scale biological systems: a survey of current methods and trends

    Get PDF
    Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed
    corecore