1,985 research outputs found

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    Structure preserving reduced order modeling for gradient systems

    Full text link
    Minimization of energy in gradient systems leads to formation of oscillatory and Turing patterns in reaction-diffusion systems. These patterns should be accurately computed using fine space and time meshes over long time horizons to reach the spatially inhomogeneous steady state. In this paper, a reduced order model (ROM) is developed which preserves the gradient dissipative structure. The coupled system of reaction-diffusion equations are discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of ordinary differential equations (ODEs) are integrated in time by the average vector field (AVF) method, which preserves the energy dissipation of the gradient systems. The ROMs are constructed by the proper orthogonal decomposition (POD) with Galerkin projection. The nonlinear reaction terms are computed efficiently by discrete empirical interpolation method (DEIM). Preservation of the discrete energy of the FOMs and ROMs with POD-DEIM ensures the long term stability of the steady state solutions. Numerical simulations are performed for the gradient dissipative systems with two specific equations; real Ginzburg-Landau equation and Swift-Hohenberg equation. Numerical results demonstrate that the POD-DEIM reduced order solutions preserve well the energy dissipation over time and at the steady state

    General Numerical Framework to Derive Structure Preserving Reduced Order Models for Thermodynamically Consistent Reversible-Irreversible PDEs

    Full text link
    In this paper, we propose a general numerical framework to derive structure-preserving reduced order models for thermodynamically consistent PDEs. Our numerical framework has two primary features: (a) a systematic way to extract reduced order models for thermodynamically consistent PDE systems while maintaining their inherent thermodynamic principles and (b) a strategic process to devise accurate, efficient, and structure-preserving numerical algorithms to solve the forehead reduced-order models. The platform's generality extends to various PDE systems governed by embedded thermodynamic laws. The proposed numerical platform is unique from several perspectives. First, it utilizes the generalized Onsager principle to transform the thermodynamically consistent PDE system into an equivalent one, where the transformed system's free energy adopts a quadratic form of the state variables. This transformation is named energy quadratization (EQ). Through EQ, we gain a novel perspective on deriving reduced order models. The reduced order models derived through our method continue to uphold the energy dissipation law. Secondly, our proposed numerical approach automatically provides numerical algorithms to discretize the reduced order models. The proposed algorithms are always linear, easy to implement and solve, and uniquely solvable. Furthermore, these algorithms inherently ensure the thermodynamic laws. In essence, our platform offers a distinctive approach to derive structure-preserving reduced-order models for a wide range of PDE systems abiding by thermodynamic principles

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    Numerical simulation of combustion instability: flame thickening and boundary conditions

    Get PDF
    Combustion-driven instabilities are a significant barrier for progress for many avenues of immense practical relevance in engineering devices, such as next generation gas turbines geared towards minimising pollutant emissions being susceptible to thermoacoustic instabilities. Numerical simulations of such reactive systems must try to balance a dynamic interplay between cost, complexity, and retention of system physics. As such, new computational tools of relevance to Large Eddy Simulation (LES) of compressible, reactive flows are proposed and evaluated. High order flow solvers are susceptible to spurious noise generation at boundaries which can be very detrimental for combustion simulations. Therefore Navier-Stokes Characteristic Boundary conditions are also reviewed and an extension to axisymmetric configurations proposed. Limitations and lingering open questions in the field are highlighted. A modified Artificially Thickened Flame (ATF) model coupled with a novel dynamic formulation is shown to preserve flame-turbulence interaction across a wide range of canonical configurations. The approach does not require efficiency functions which can be difficult to determine, impact accuracy and have limited regimes of validity. The method is supplemented with novel reverse transforms and scaling laws for relevant post-processing from the thickened to unthickened state. This is implemented into a wider Adaptive Mesh Refinement (AMR) context to deliver a unified LES-AMR-ATF framework. The model is validated in a range of test case showing noticeable improvements over conventional LES alternatives. The proposed modifications allow meaningful inferences about flame structure that conventionally may have been restricted to the domain of Direct Numerical Simulation. This allows studying the changes in small-scale flow and scalar topologies during flame-flame interaction. The approach is applied to a dual flame burner setup, where simulations show inclusion of a neighbouring burner increases compressive flow topologies as compared to a lone flame. This may lead to favouring convex scalar structures that are potentially responsible for the increase in counter-normal flame-flame interactions observed in experiments.Open Acces
    corecore