314,733 research outputs found

    A Possible Periodicity in the Radio Lightcurves of 3C454.3

    Full text link
    During the period 1966.5 - 2006.2 the 15GHz and 8GHz lightcurves of 3C454.3 (z=0.859) show a qsasi-periodicity of ~12.8 yr (~6.9 yr in the rest frame of the source) with a double-bump structure. This periodic behaviour is interpreted in terms of a rotating double-jet model in which the two jets are created from the black holes in a binary system and rotate with the period of the orbital motion. The periodic variations in the radio fluxes of 3C454.3 are suggested to be mainly due to the lighthouse effects (or the variation in Doppler boosting) of the precessing jets which are caused by the orbital motion. In addition, variations in the mass-flow rates accreting onto the black holes may be also involved.Comment: 15 pages, 11 figure

    Recognition of Human Periodic Movements From Unstructured Information Using A Motion-based Frequency Domain Approach

    Get PDF
    Feature-based motion cues play an important role in biological visual perception. We present a motion-based frequency-domain scheme for human periodic motion recognition. As a baseline study of feature based recognition we use unstructured feature-point kinematic data obtained directly from a marker-based optical motion capture (MoCap) system, rather than accommodate bootstrapping from the low-level image processing of feature detection. Motion power spectral analysis is applied to a set of unidentified trajectories of feature points representing whole body kinematics. Feature power vectors are extracted from motion power spectra and mapped to a low dimensionality of feature space as motion templates that offer frequency domain signatures to characterise different periodic motions. Recognition of a new instance of periodic motion against pre-stored motion templates is carried out by seeking best motion power spectral similarity. We test this method through nine examples of human periodic motion using MoCap data. The recognition results demonstrate that feature-based spectral analysis allows classification of periodic motions from low-level, un-structured interpretation without recovering underlying kinematics. Contrasting with common structure-based spatio-temporal approaches, this motion-based frequency-domain method avoids a time-consuming recovery of underlying kinematic structures in visual analysis and largely reduces the parameter domain in the presence of human motion irregularities

    Anisotropic Transport Properties of Ferromagnetic-Superconducting Bilayers

    Get PDF
    We study the transport properties of vortex matter in a superconducting thin film separated by a thin insulator layer from a ferromagnetic layer. We assume an alternating stripe structure for both FM and SC layers as found in [7]. We calculate the periodic pinning force in the stripe structure resulting from a highly inhomogeneous distribution of the vortices and antivortices. We show that the transport properties in FM-SC bilayer are highly anisotropic. In the absence of random pinning it displays a finite resistance for the current perpendicular to stripes and is superconducting for the current parallel to stripes. The average vortex velocity, electric field due to the vortex motion, Josephson frequency and higher harmonics of the vortex oscillatory motion are calculated.Comment: 4 pages, 2figures, Submitted to PR

    The angular momentum of a relative equilibrium

    Full text link
    There are two main reasons why relative equilibria of N point masses under the influence of Newton attraction are mathematically more interesting to study when space dimension is at least 4: On the one hand, in a higher dimensional space, a relative equilibrium is determined not only by the initial configuration but also by the choice of a complex structure on the space where the motion takes place; in particular, its angular momentum depends on this choice; On the other hand, relative equilibria are not necessarily periodic: if the configuration is "balanced" but not central, the motion is in general quasi-periodic. In this exploratory paper we address the following question, which touches both aspects: what are the possible frequencies of the angular momentum of a given central (or balanced) configuration and at what values of these frequencies bifurcations from periodic to quasi-periodic relative equilibria do occur ? We give a full answer for relative equilibrium motions in dimension 4 and conjecture that an analogous situation holds true for higher dimensions. A refinement of Horn's problem given by Fomin, Fulton, Li and Poon plays an important role. P.S. The conjecture is now proved (see Alain Chenciner and Hugo Jimenez Perez, Angular momentum and Horn's problem, arXiv:1110.5030v1 [math.DS]).Comment: 17 pages, 3 figure

    Time crystal platform: from quasi-crystal structures in time to systems with exotic interactions

    Full text link
    Time crystals are quantum many-body systems which, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasi-crystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.Comment: misprints correcte

    Profile driven interfaces in 1 + 1 dimensions : periodic steady states, dynamical melting and detachment

    Get PDF
    We study the steady state structure and dynamics of a 2-d Ising interface placed in an inhomogeneous external field with a sigmoidal profile which moves with velocity vev_{e}. In the strong coupling limit the problem maps onto an assymmetric exclusion process involving motion of particles in 1-d with position dependent right and left jump probabilities. For small vev_{e}, the interface is stuck to the field profile. As vev_{e} increases the profile detaches from the interface. At the transition point(and beyond), the interfacial structure and dynamics is characterized by KPZ exponents. For small vev_{e}, on the other hand, the interface is macroscopically smooth with a vanishing roughness exponent α\alpha. The interfacial structure is periodic with a periodicity which depends on the orientation of the interface. For a fixed orientation this periodic structure ``melts'' as vev_e is increased. We determine the dynamical ``phase - diagram'' of this system in the vev_e - orientation plane.Comment: 11 pages, 6 figures, To appear in Physica A as conference proceedings of Statphys - Kolkata I

    Nature of electron Zitterbewegung in crystalline solids

    Full text link
    We demonstrate both classically and quantum mechanically that the Zitterbewegung (ZB, the trembling motion) of electrons in crystalline solids is nothing else, but oscillations of velocity assuring the energy conservation when the electron moves in a periodic potential. This means that the nature of electron ZB in a solid is completely different from that of relativistic electrons in a vacuum, as proposed by Schrodinger. Still, we show that the two-band {\bf k.p} model of electronic band structure, formally similar to the Dirac equation for electrons in a vacuum, gives a very good description of ZB in solids. Our results indicate unambiguously that the trembling motion of electrons in solids should be observable.Comment: 5 pages, 3 figure
    corecore