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Abstract

Feature-based motion cues play an important role in biological visual perception. We present a motion-based frequency-domain scheme for

human periodic motion recognition. As a baseline study of feature based recognition we use unstructured feature-point kinematic data obtained

directly from a marker-based optical motion capture (MoCap) system, rather than accommodate bootstrapping from the low-level image

processing of feature detection. Motion power spectral analysis is applied to a set of unidentified trajectories of feature points representing whole

body kinematics. Feature power vectors are extracted from motion power spectra and mapped to a low dimensionality of feature space as motion

templates that offer frequency domain signatures to characterise different periodic motions. Recognition of a new instance of periodic motion

against pre-stored motion templates is carried out by seeking best motion power spectral similarity. We test this method through nine examples of

human periodic motion using MoCap data. The recognition results demonstrate that feature-based spectral analysis allows classification of

periodic motions from low-level, un-structured interpretation without recovering underlying kinematics. Contrasting with common structure-

based spatio-temporal approaches, this motion-based frequency-domain method avoids a time-consuming recovery of underlying kinematic

structures in visual analysis and largely reduces the parameter domain in the presence of human motion irregularities.

q 2006 Elsevier B.V. All rights reserved.

Keywords: Human periodic motion classification; Motion-based recognition; Gait analysis; Visual perception; Moving light displays (MLDs); Motion power

spectral analysis
1. Introduction

Humans communicate large amounts of information via

non-verbal body movements and activities, furnishing a rich

source of information about intention, emotion and identity.

This richness should be exploited when designing user

interfaces to intelligent autonomous systems [31]. Visual

interpretation of human activity is emerging as an essential and

challenging task in machine vision, demanded by potential

applications in human–machine interaction, domestic equip-

ment, surveillance systems and the entertainment industry. A

large body of research is dedicated to this task using image

sequences, as pointed by survey articles [17,29,40]. Remark-

able progress in human body detection, tracking, pose

estimation and more generally activity recognition, has been
0262-8856/$ - see front matter q 2006 Elsevier B.V. All rights reserved.
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achieved, but usually subject to expensive image analysis of

complex articulated movements.

By contrast, the ability of humans to perceive structure and

motion from sparse feature point motion cues has been

demonstrated by Johansson’s Moving light displays (MLDs)

[24]. In the MLDs shown in Fig. 1, an image sequence was

reduced to a set of moving light dots. These light dots were

images of markers, attached at the joint sites of a human

subject, contrasted to a dark background. The dots acted as

discrete feature-points presenting motion characteristics in the

spatio-temporal domain. The MLDs carried only motion

information but no structural information, since the displayed

points were discrete, unconnected and their identities unknown

to the system. One frame of static dots remained meaningless

to human observers, while they were able to recognise

activities such as walking, running or stair climbing from

such sequences conveyed by a small number of lights. Barclay

et al. [3] and Cutting and Kozlowski [12] also claimed that

human observers can identify an actor’s gender and even

friends by their gaits in MLDs. These pioneering psychological

works relating to human motion perception suggest that
Image and Vision Computing 24 (2006) 795–809
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Fig. 1. A clockwise circle-walking person in MLDs with 16 feature points.
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feature-based motion cues play an important role in recog-

nition. In the case of machine vision, the biological metaphor

suggests that it may be possible to use reduced spatio-temporal

information, such as embedded in MLDs, for recognition.

MLDs images, as feature-based motion cues, have been

widely used in studies of visual perception [3,12,20,24,28];

human motion tracking and activity recognition in computer

vision [6–9,13,19]; clinical gait analysis and sports science

research [2,14,37,38,43]; character animation [18,35]; aug-

mented reality and virtual reality [13]. Motion analysis from

reduced MLDs allows us to use quantitative, concise and

accurate data to investigate essential recognition features in

visual perception, motion modelling, kinematic formulation

and motion synthesis.

Despite agreement that humans are adept at recognising

actions from motion cues in MLDs, there is still no consensus

on how humans interpret the MLDs stimuli. Two distinct

theories exist. In the first, it is supposed that people use relative

motion information in the MLDs and rich pre-knowledge of

biological motion and structure to recover the 3D structure of

the moving object (person), and subsequently use the structure

for recognition—structure-based recognition. In the second,

motion information is to be used directly for recognition,

denoted by motion-based recognition.

During the last two decades, computer visual interpretation

of human activity has emphasised structure-based recognition.

Survey Refs. [17,29,40] point to substantial work in this

category. Researchers extracted information from images to

recover the time varying articulated non-rigid human from.

From the recovered underlying structure, high-level motion

parameters such as joint angles or trajectories rep resenting the

various body part dynamics could then be derived for motion

interpretation and recognition. The main problem of structure-

based recognition is the high computational cost of explicit
articulated structure reconstruction and body part identifi-

cation, required as a prior necessity. Therefore, structure-based

approaches are not readily employed for real-time vision

application. To simplify the process of image analysis many

studies in the model-based category have employed a subset of

body features, identified manually or by using markers, as input

for motion interpretation. Campbell and Bobick [17] classified

ballet dance steps using a phase space representation. The

phase space was related to each degree of freedom derived

from identified feature point data on an articulated human

body. Goddard [19] proposed a computational model for visual

motion recognition of gaits in walking, jogging, and running

from MLDs. He used the joint angles and angular velocities as

features for recognition. A difficulty in these works was the

necessity of prior identified individual points in the images.

Goddard has argued the possibility of perception directly from

unstructured motion information embedded in MLDs.

Motion-based recognition deals with the recognition of an

object and/or its motion, directly from the whole characterised

motion pattern in a compact representation, regardless of any

underlying structure reconstruction prior to recognition. Shaw

and co-workers [9,36] review some representative works in this

category. Though relatively few researchers have attempted

motion-based recognition, Abdelkader et al. [1] proposed a

motion-based structure-free method to characterise motion

pattern in monocular video for human gait recognition. Boyd

and Little [6], using global shape-of-motion features derived

from MLD images, has shown that it is possible to recognise

individual people by their gait using non-structural means.

Recent work by Wang et al. [41,42], employing spatial–

temporal silhouette as biometric motion signature and PAC-

based eigenvalue analysis, achieved successful gait recognition

from outdoor image sequences in a reduced dimensionality of

feature space. These researches avoid the complex vision
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problem of kinematic structure recovery and confirm that

motion cues play an important role in recognition. We shall

summarise motion-based recognition, in particular human

periodic motion, in Section 2.

Stemming from cross-fertilisations and achievements drawn

from the cross-disciplines of psychology, human visual

research and together with the significant development of

human motion analysis in computer vision, the central task is to

investigate the capability of using feature-based motion cues

embedded in MLDs to develop an efficient computational

model for human periodic motion recognition, and therefore

demonstrate the potential of motion-based recognition by non-

structural means. Since the focus of this baseline study is

recognition, we do not accommodate bootstrapping from the

low-level image processing of feature detection in MLDs

images. Instead, we will use a marker-based optical MoCap

system to obtain feature-point biological-motion data, which

allows us to use the data directly for motion analysis.

We propose in this paper a motion-based frequency domain

approach for recognition of human periodic movements. The

rest of the paper is organised as follows: Section 2 reviews

related work on cyclic motion recognition. Section 3 states our

method of data collection. Section 4 describes the frequency

domain approach for recognition. Section 5 provides exper-

imental results on recognition of human cyclic motion. We

discuss and conclude our work in Sections 6 and 7.

2. Human periodic motion recognition

Approaches using motion directly, without regard to its

underlying structure, for (human) periodic motion recognition

are described in e.g. [1,4,6,10,15,32,33,39,41,42]. Motion-

based approaches characterise human periodic motion by, for

example, a set of static configurations of the body in each pose

in a manner of state-spaces, or by analysing shape of motion,

trajectories, templates and optical flow images in spatial–

temporal dimensions simultaneously. Fourier transforms are

often used to detect or recognise periodicity. The detected

periodicity is used to assist motion recognition. For such

spatio-temporal domain approaches, in order to deal with the

problems of human motion irregularities or change in speed,

techniques such as scale space or dynamic lime warping

(DTW), considered computationally expensive, are often used

for normalisation or for matching portions of scale space to

locate similar patterns in state-spaces or templates.

Early work by Polana and Nelson [32] proposed a method of

detecting periodic motion using Fourier transforms on several

point trajectories. They showed that in principle that the period

of the movement could be inferred from averaging the

fundamental frequencies of the point trajectories. Tsai et al.

[39] used the trajectory of one point of an object performing

some cyclic motion to compute trajectory curvature. An

autocorrelation was performed to enhance self-similarity

within the curvature function. The Fourier transform was

finally used to detect the presence of a cycle and its period from

the spatio-temporal curvature. Cutler and Davis [11] explored

the nature of an object’s self-similarity in periodic motion and
applied time–frequency analysis to detect and characterise the

periodicity in videos. Fujiyoshi and Lipton [15] generate a

‘star’ skeleton from the object boundary. They apply Fourier

analysis to its skeleton for detecting periodic motion. Then they

utilise both posture and motion cycle of the ‘star’ skeleton to

recognise activities such as walking and running. Huang et al.

[22] reported a template matching method using eigenspace

transformation for feature extraction. An enhanced canonical

analysis was employed to reduce feature dimensionality and

optimise the separability of different gait classes.

For motion-based methods, motion feature extraction from

original images is crucial. Some researchers mark feature

points manually or use markers to simplify image analysis for

direct recognition [7]. With recent advances in the field of

human motion tracking, sophisticated computer vision tech-

niques have been developed to detect joint movement of body

kinematics in consecutive frames. Methodologies can be

classified into two categories: model-free or articulated-

model based. Model-free methods, such as those using 2D

contours [5,25,27,34], are usually fast and sometimes real-

time, but are compromised in accuracy by their dependence on

statistical features related to position, shape, velocity, texture

and colour degraded by image noise and body part occlusion.

By contrast, articulated-model based methods match an

explicit volumetric model to image sequences, particularly in

multi-views [16,21,23,30], where motion and stereo measure-

ment of body segments is feasible, accurate and robust. In this

sense, many studies, as in the field of gait recognition, combine

motion-based recognition with a model-based approach, to

assist high fidelity feature detection from images [10,30,44].

For example, Ning et al. [30] employed a simplified human

model with enhanced motion constraints for efficient tracking

and recognition. Cunado et al. [10] and Yam et al. [44]

extracted motion features of the upper leg in video by model-

based geometrical matching. Subsequently, a phase-weighted

Fourier description was applied to construct frequency domain

gait signatures for classification. To counter the inherent

recognition difficulty due to human gait irregularity, variability

and complexity, they have argued the advantages of

encompassing full-body motion signals but noted the difficulty

of handling the ever-increasing dimensionality.

The direct application of whole-body frequency domain

analysis for motion recognition has received much less

attention in video-based analysis. Works emphasising fre-

quency domain analysis are, for example, Angeloni et al. [2]

and Köhle and Merki [26]. Angeloni et al. use gait kinematic

data from MLDs to analyse the frequency content of whole

body movement. Their work presents the characteristic spectral

distribution among articulated body parts. Köhle and Merkl

demonstrate that the kinetic data from ground reaction force

platforms can also be used to classify gait patterns in clinical

gait analysis, through Fourier transforms of vertical force

components and classification by self-organising maps. The

works of both Angeloni and Köhle show that motion frequency

spectra may include cues suitable for motion recognition.

We are pursuing a new motion-based method for human

motion interpretation. We propose a frequency domain
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approach to recognise human periodic motion using unidenti-

fied kinematic data fromMLDs. As a baseline study, our MLDs

data is obtained by a laboratory-based motion capture (MoCap)

system, aiming to analyse strategical recognition capabilities

rather than the bootstrapping of feature-detection from innate

image computing. The central goal was to determine whether

or not motion characteristics exist not only in the spatio-

temporal domain, but also in the frequency domain; whether

or not recognition could be exploited by low-level, non-

parametric representations, preserved even in the reduced

unstructured MLDs data without recovering underlying

geometry by complex image analysis for articulated

movements. We demonstrate that the explored motion features

in the frequency domain can be effective for classification by

non-structural means in the presence of human motion

irregularities. The approach is algorithmically and computa-

tionally simpler than structure-based spatio-temporal

techniques.
Fig. 2. Modelling periodic movements in frequency domain by z-trajectories.
3. MLDs data collection

All human kinematic data used in our work are acquired

from a marker-based 3D optical motion capture (MoCap)

system, the Vicon 512. The system provides 3D coordinates of

unidentified trajectories of markers attached to a subject, in the

manner of a 3D-MLD system. The data are not affected by the

projective distortions of particular camera views. In this

respect, we differ from other classical MLD investigations,

which detect data from 2D projected image sequences. The

available 3D MoCap data allows us to use the data directly for

motion analysis without dealing with feature point detection

from images in a low level.

In our motion capture system, the world coordinate system

has its origin on the ground. The xy-plane is parallel to the

ground plane, and the z-axis is vertical. Other conditions for

data collection in our experiments are:

† Motions are captured in a control volume, about 4 m

(length)!4 m (width)!2.5 m (height). The measurement

accuracy is to the order of a millimetre.

† Sixteen markers, regarded as feature points, are attached on

human subjects at the following locations (the labels used to

indicate them in the following are in the brackets): head

(HEAD), anatomical T10 (BACK), shoulders (LSHO,

RSHO), elbows (LELB, RELB), wrists (LWRI, RWRI),

hips (LASI, RASI), knees (LKNE, RKNE), ankles (LANK,

RANK), hallux (LTOE, RTOE). They are effective in

indicating motion cues in MLDs.

† The obtained trajectories are nearly always uninterrupted,

because the multi-dimensional views furnished by the

multi-camera system minimise occlusion events in most

motions. Some small trajectory gaps arising from body

occlusion are filled by interpolation during MoCap post-

processing.

† The correspondence between a 3D trajectory and the

marker identity is not assumed known in the motion to be

identified. This allows generalisation to harsher scenarios in
which feature point identity is not available. In Figs. 4–7,

we have indicated ordered feature point identities purely for

display clarity and illustration. Identity information is not

used in the recognition process.
4. A frequency domain method

The movements of feature points contain information both of

motion and structure identity. For most common periodic

activities carried out on a level (horizontal) floor, the vertical

components, which are the z-coordinates of 3D-MLD trajec-

tories, imply crucial cues relative to ground (zZ0) and provide a

simple input for Fourier analysis. They can be used without

transformation, because they contain no horizontal drift and are

motion orientation invariant. In this study, we use only the

z-trajectories as the motion cue to be analysed. We find that cues

from the unidentified z-trajectories alone suffice to discriminate

between a number of simple periodic human activities.

The overall frequency domain schema for modelling periodic

movements by feature-point z-trajectories is shown in Fig. 2.

4.1. Power spectral analysis for whole body movement

Our experimental analysis assumes availability only of

vertical components of the unidentified trajectories of feature

points, iZ1,.,I, obtained from 3D-MLDs. We apply spectral

analysis to the z-component zi(n) of the trajectory of each

feature point i of frame samples nZ0,., NK1, N being the

trial length. The Fourier decomposition of the z-trajectory is

expressed by

ziðnÞZ
1

2
aið0ÞC

1

N

XNK1

kZ1

aiðkÞ cosð2pnk=NÞCbiðkÞ sinð2pnk=NÞ;

(1)

where ai(k) and bi(k) are the Fourier coefficients of feature point i

in units of millimeter. To achieve an adequate frequency

resolution, the length N of each trial is between 256 and 1300

frames, ideally including about 5 gait cycles (Gc) for a specific

periodic movement.



Q. Meng et al. / Image and Vision Computing 24 (2006) 795–809 799
The power magnitude for the kth frequency harmonic of

feature point i is given directly from the Fourier coefficients

ai(k) and bi(k) as

PiðkÞ Z a2iðkÞ Cb2iðkÞ; kZ 1;2;.;N=2 (2)

in units of millimeter square. Examples of such power spectra

for a clockwise circle-walking with detected gait cycle (Gc) of

0.97 Hz are given in Fig. 3.
Fig. 3. Examples of vertical-component power spectra of a clockw
From power spectral analysis ofwhole-body feature points for

a number of common cyclic movements, such as walking,

running, jumping, skipping, we find the dominant power of

human movements occupies only a narrow bandwidth, with an

upper limit of about 10 Hz. The power spectral distribution shows

clustering around a fundamental activity frequency and its

harmonics [2,10]. The magnitude envelope of a specific power

spectrum retains time-shift invariancy regardless ofwhere in time
ise circle-walking person. NZ1024, fd Z60 Hz, GcZ0.97 Hz.



Fig. 3 (continued)
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the periodic motion is sampled. This characteristic requires no

spatio-temporal alignment in frequency domain comparison.

Motion power spectra reflect not only the overall vertical

activeness of body parts, consistent with undergoing motion

intensity, but also provide a power distribution signature

associated with swing/oscillation frequencies underlying the

specific motion. For example, as shown in Fig. 3, active body
parts, such as elbow, wrist, knee, ankle and toe, usually exhibit

larger power components than relatively steady parts, e.g.

head, shoulder, back and hips. The spectra of different feature

points present characteristic distributions as well as intra-limb

association, e.g. knee–ankle–toe, and elbow–wrist. Full body

motion power distribution hints at the possibility of dis-

criminating motion patterns for classification.
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Human body parts in skeletal linkage undergoing periodic

locomotion present natural rhythmic patterns related to a

fundamental activity cycle. This is evident from the power

spectra of body parts in Fig. 3. Bi-pedal activities (e.g. walking,

running, skipping alterative feet) may exhibit a doubling of the

overall activity cycle frequency in certain body parts (e.g. head

an hips) [43] with dominant energy around twice the gait cycle.

This is observable in the spatio-temporal trajectories of Fig. 3,

in which the hip and head cycles appear at twice the knee

frequency during walking.

Low frequency components well under the first fundamental

in the spectra reflect secular postural changes and human motion

irregularity over the trial track. These low frequency noise

components are relatively more evident for body parts under-

going small vertical movements, such as for head, back and

shoulder duringwalking.The spectra of active bodyparts, such as

elbow,wrist, knee, ankle and toe, show remarkablemotion power

clustering around the Gc and its harmonics, and a relatively

diminished motion noise. We can also observe that the power

components of the left (outside) toe (Fig. 3(j)) are larger than that

of the right (inside) toe during circlemotion Fig. 3(i), though their

spectral patterns would show bilateral symmetry in normal

forward gait. The power discrepancy arises because the circle

walking has larger outside than inside foot movement.

For the same kind of motion in different subjects, spectral

patterns of the same feature points are similar, hinting at the

motion nature, differences being attributed to variation in

individual speed and amplitude. To achieve a speed-invariant

representation for the same kind of movement, we normalise

whole-body spectra to the fundamental activity cycle or

generalised gait-cycle (Gc). To obtain an accurate Gc, we

sum corresponding power components over all feature points i

at each frequency k*Df within a band-limited frequency [0.4–

5.0] Hz, where DfZfd/N denotes the frequency resolution, fd
denotes the chosen sample rate, 60 Hz being used in our

experiments for human motion. The frequency corresponding

to the maximum power magnitude in the first clustering of the

resulting spectral sum

K�dmax
k

X
i

PiðkÞ

( )
; kZ 1;.;N=2 (3)

is regarded as the activity cycle, or generalised gait-cycle

(GcZK*Df).
The detected cycle frequency is subsequently used to

normalise the power spectrum frequency axis from Hertz to

generalised Gc. Power spectra for different activities with

specific speeds are now aligned by fundamental frequency and

its harmonics. Fig. 4 shows examples of Gc-scaled whole-body

power spectra.1
1 In Figs. 4–7, the 16 feature points are arranged in the order of HEAD,

BACK, LSHO, RSHO, LELB, RELB, LWRI, RWRI, LASI, RASI, LKNE,

RKNE, LANK, RANK, LTOE, RTOE. This particular arrangement is given for

illustration purposes only.
4.2. Feature power vector and motion template

Frequency resolution DfZfd/N of a power spectrum will

differ for different trial lengths N. There is not a consistent

distribution unit of spectral components among these spectra,

making impossible a component by component comparison of

different trials. A uniform motion template for trials is needed

to allow direct comparison of spectral data.

Considering the nature of clustering distributions in power

spectra and observing that power magnitudes have insignificant

contributions above fourth Gc, we extract a set of dominant

power components around Gc and its harmonics to fourth Gc

from each spectrum Pi, and regard the result as a feature power

vector ðni of the feature point i:

nið0Þ ZDCi Z
1

2
aið0Þ;

niðnÞjnZ1;.;4 Z
P
k2Wn

PiðkÞ;

nið5Þ Z
P

k;W1;.;4;ks0

PiðkÞ;

nið6Þ Z
P
ks0

PiðkÞ:

(4)

The first element ni(0) of the vector ðni is the DC component

in the Fourier decomposition, denoting the average vertical

position of this point. The elements ni(n) where nZ1,.,4 are

representative values reflecting distribution clusters around Gc

and its harmonics. To mitigate the frequency resolution

problem, we utilise sum-windows Wn to sum power

components within the range of G20% Gc around the nth

Gc. The G20% windowing ratio is based on a statistical

analysis of a series of spectra. We found 80% of the total power

is clustered in this range around Gc harmonics. Moreover, this

windowing ratio ensures not only a good separation between

Gc harmonics, but also reduces the effect of spectral spreading

which might be caused by degraded trajectories due to slightly

irregular cycles, inherent data detection noise and possible

interpolation (see Section 6). The element ni(5) is used to

represent the non-selected ‘small-power’ components that have

not been included in the G20% Gc power windows of ni(1) to

ni(4). The last item ni(6) is used to represent the sum of motion

powers over all frequencies of feature point i.

DC components and total motion-powers of each feature-

point in the example trials of running, skipping and walking are

given in Fig. 5. DC components indicate the average vertical

positions of feature points relative to the ground-based origin

during movements. Large motion powers occur with active

limbs, such as wrist, elbow, toe, ankle and knee as exemplified

in Fig. 5(b).

To generate a uniform motion template, we stack feature

power vectors of the I feature points into an I!7 matrix, VZ
fðnijiZ1;.;Ig: Each column in the motion template, correspond-

ing to a Gc harmonic, is scaled relative to the maximum value in

this column. By this means, the power amplitudes are normalised

to reduce intra-activity subject dependency. After normalisation,

averaging among subjects is used to obtain a single representative



Fig. 4. Gc-scaled whole-body power spectra.
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standard motion template for a specific motion. Some examples

of motion templates are shown in Fig. 6.

Feature power vectors effectively aggregate the frequency

components into just seven feature power elements (ni(0) to

ni(6)), a highly reduced dimensionality of feature space. The

uniform feature power vector description is now no longer

dependent on differently sampled trials associated with specific

speeds. This makes direct comparisons of spectral data possible

and computationally efficient.
4.3. Motion recognition

Motion recognition is straightforward at this stage. It is

achieved by finding the best match between an observed

motion template and pre-stored standard motion templates. We

apply the algorithm to an observed motion to generate its

motion template UZ fðmjjjZ1;.;Jg, with J unidentified

feature power vectors. The feature points of the observed

motion can be an adequate subset (J%I) of those used in the



Fig. 5. DC components and total motion powers of feature points in three

movements.

2 Only six labels are displayed, the full list of 16 feature points is given in the

footnote 1.
3 In Fig. 7 and Table 1, motion are named in short as: walk-C for clockwise

circle-walking; walk-AC for anticlockwise circle-walking; B-walk-C for

butterfly clockwise circle-walking (walking while waving hands up and

down); walk-S for walking-on-spot; run-C for clockwise circle-running; run-S

for running-on-spot; jump1 for jumping with arms raised to horizontal level,

and jump2 for jumping with arms raised over head; skip1 for skipping with feet

stepping alternately, and skip2 for skipping with feet stepping together.
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standard templates. We use a J!I match matrix MaZ
ma

j;ijjZ1;.;J; iZ1;.;I
� �

ma
j;i Z

X6
nZ0

jmjðnÞKnaiðnÞjun; (5)

where ðuZ ½u0;u1;.;u6� is a weight vector, to store the

weighted difference between each jth motion vector ðmj in the

observed template and each ith motion vector ðnai in the model

template, for activity a. The weight factors (un, nZ0,.,6)

restore the relative importance of the spectral power

components before the scaling described in Section 4.2, so

that spectral windowed components with larger powers (e.g.

around first Gc and second Gc) carry more weight than those of

smaller powers (e.g. around third Gc).

We note that the DC component (nZ0) in the motion

template, indicating the average normalised vertical position

relative to the ground-base origin, hints significantly at the pose

in motion to infer heuristic structure identity. We demonstrated

the importance of the DC component through perception

experiments by aligning MLDs of all feature points on the

same horizontal reference level, that is, we filtered out the DC
height information. Human observers had great difficulty in

recognising undergoing activities, despite easy identification in

standard MLDs. This suggests an appropriate DC weight factor

should be assigned along with dominant spectral components.

We found best classification results were achieved at a DC

weight factor between 0.3 and 0.4 in general.

Relative power distribution ratios of feature power

vector components of feature points before normalisation

(Eq. (4)) are used to guide weighting factor selection (un,

nZ1,.,5). Considering all the investigated activities over

all trials, we set activity-independent weights to ðuZ
½0:34;0:2;0:2;0:03;0;0:03;0:2� subject to

P6
iZ0 uiZ1. The

last parameter u6 is used to emphasise the total power

intensity which could be weighted equivalently as the

dominant components at the first and second Gc. Our

weighting ignores the contribution from the fourth Gc

(u4Z0), and u5Z0.03 admits a small contribution from

the sum of small powers that are omitted by the

windowing process around first–third Gc.

The motion match of point j is taken to be the minimum

element mini ma
j;i

� �
in the jth row of match matrix Ma for

activity a. This allows motion power spectral similarity Sa
P

from all best matches of the J feature points of activity a to be

defined by:

Sa
P Z 1K

PJ
jZ1

mini ma
j;i

� �
J

0
BBB@

1
CCCA

3

: (6)

The motion with maximum similarity Sa
P for all

the searched activity templates is taken to indicate

recognition.

Fig. 7 shows two examples of motion recognition indicated

by the motion power spectral similarity Sa
P. The observed

motion template (with 16 feature points along the vertical

axis2) is compared with six standard motion templates (with 16

feature points along horizontal axis2), respectively, in a manner

of match matrix. Each 16!16 match matrix is intuitively

illustrated by a grey-scale graph with 256-levels, in which the

progression of white to black denotes increasing difference. For

easy observation, we superimposed red on the whitest square to

illustrate the best similarity, and green for the second best. For

illustration clarity on recognition results, we also arrange

feature points of the observed motion in the same order with

feature points in the standard templates,3 but feature-point

identity information was not used in the recognition process.



Fig. 6. Examples of motion templates.
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In this arrangement, we can easily observe the best Sa
P is

reasonably derived from a match matrix with a set of red

(or green) squares lying along the matrix diagonal. In

the correct match matrix, green squares usually appear

next to red squares, indicating symmetry of corresponding

left/right body part movements. In this respect, the

match matrix may be used to infer not only overall motion

similarity, but also imply feature point identity apart from

left/right pairings.

5. Experimental results

All experiments were conducted using real motion capture

data from a marker-based optical motion capture system, the
Vicon 512, as described in Section 3. The motion tracks were

captured from a group of 15 subjects that consisted of males

and females with ages from 5 to 60 years. Human motion

irregularity is inevitable over individuals and trials, though

standard activity motion poses were demonstrated to the

performers. The trials used for motion template generation

were generally separate from test trials used in motion

identification.

Recognition was tested on some representative periodic

activities, namely walking-on-spot (walk-S), circle-walking

(walk-C), clockwise butterfly walking (B-walk-C), running-on-

spot (run-S), clockwise circle-running (run-C), skipping type 1

(skip1), skipping type 2 (skip2), jumping type 1 (jump1),

jumping type 2 (jump2).



Fig. 7. Motion recognition indicated by match matrix and Sa
P.
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5.1. Recognition by motion power spectral similarity Sa
P

Recognition indicated by motion power spectral similarity

Sa
P is shown in Table 1. The averaged similarity parameters

in the table matrix indicate the extent of similarity between

each type of observed movement (listed in the table column

heading 2–10) among each stored motion templates (listed

in the leftmost column). The highest column entries,

highlighted, indicate the best motion similarity for inferring

classification. From the averaged similarity measurement,
we observe the highest column value occurs when the

observed activity matches the correct motion template

activity. The different classes of movement, such as walking,

running, jumping and skipping, are clearly distinguished.

Even with similar movements, such as run-spot and run-C,

there is discrimination because the magnitudes of power

spectra for left and right limbs have a bias in circular

activities.

Correct recognition rates for nine types of periodic

movements using MoCap data are given in Table 2. We



Table 1

Recognition of human periodic movements by Sa
P and Sa

P�Gc

Observed activity Sa
P Sa

P�Gc

� �
Activity motion template Walk-C

.75–1.1 Hz

Walk-C

.8–1.0 Hz

B-walk-C

.8–1.1 Hz

Run-C

1.3–1.5 Hz

Run-S

1.3–1.5 Hz

Jump-1

.9–1.2 Hz

Jump-2

.9–1.1 Hz

Skip-1

.8–1.1 Hz

Skip-2

1.4–1.9 Hz

Walk-C (GcZ0.90 Hz) .88 (.87) .78 (.82) .83 (.85) .68 (.63) .69 (.63) .68 (.69) .70 (.75) .60 (.65) .59 (.51)

Walk-AC (GcZ0.90 Hz) .87 (.86) .78 (.82) .83 (.85) .68 (.63) .69 (.63) .67 (.68) .70 (.75) .59 (.64) .59 (.50)

Walk-S (GcZ0.93 Hz) .81 (.83) .79 (.83) .80 (.81) .67 (.64) .68 (.64) .66 (.68) .69 (.75) .59 (.65) .58 (.51)

B-walk-C (GcZ0.92 Hz) .75 (.78) .72 (.76) .90 (.90) .60 (.58) .61 (.57) .71 (.73) .72 (.77) .49 (.56) .57 (.50)

Run-C (GcZ1.39 Hz) .73 (.71) .70 (.69) .74 (.72) .85 (.88) .77 (.79) .70 (.72) .72 (.72) .69 (.68) .58 (.61)

Run-S (GcZ1.42 Hz) .71 (.69) .71 (.70) .63 (.63) .75 (.78) .84 (.86) .65 (.67) .63 (.64) .70 (.69) .50 (.53)

Jump-1 (GcZ1.1 Hz) .58 (.62) .56 (.62) .74 (.77) .63 (.61) .64 (.63) .90 (.91) .86 (.86) .55 (.63) .53 (.46)

Jump-2 (GcZ0.92 Hz) .60 (.66) .62 (.69) .73 (.76) .63 (.60) .63 (.58) .83 (.82) .91 (.92) .54 (.62) .45 (.37)

Skip-1 (GcZ0.97 Hz) .62 (.64) .60 (.66) .48 (.56) .65 (.63) .67 (.64) .52 (.59) .52 (.60) .77 (.81) .54 (.46)

Skip-2 (GcZ1.70 Hz) .63 (.60) .61 (.60) .60 (.59) .61 (.65) .62 (.67) .56 (.58) .54 (.54) .57 (.56) .78 (.80)

Table 2

Correct recognition rates of periodic movements

Walk-S (%) Walk-S (%) B-walk-C (%) Run-C (%) Run-S (%) Jump1 (%) Jump2 (%) Skip1 (%) Skip2 (%)

93 86 94 90 88 95 96 84 85
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found best recognition rates occur for jumping, because the

designed jumping activities were simple for subjects to execute

uniformly, and active body movements enforced frequency

domain motion signatures which largely concealed the spectral

noise from small posture irregularity. Walking in a circle

(walk-C) shows better results than running. This is expected as

individual running patterns were more dispersive than walking

patterns in our lab-based observations. The B-walk-C gained

more credits than walk-C due to the enhanced spectral

characteristic of rhythmically exaggerated arm waving in

walking. Performers showed motion non-uniformity for some

movements open to personal interpretation, such walking or

running on spot and especially skipping. Though such

subjective factors affected acquisition of ideal periodic motion

data in practice, correct recognition has been achieved in most

cases.

The experimental results demonstrate that motion compari-

son using frequency-domain spectral analysis offers effective

discrimination among different periodic motions, based solely

on unidentified vertical trajectories, in the presence of human

motion irregularity.
4 Model template Gcs are given in the leftmost column, and the range of

observed Gcs are shown in the subsequent column headings, Table 1.
5.2. Recognition by combined similarity Sa
P�Gc

We have found that the parameter Sa
P reflects motion power

characteristics of the whole-body, giving rise to recognition

possibility. The parameterSa
P has beenmade insensitive to speed

variability for the same activity, by scaling with respect to theGc.

The same scaling, however, has also lost the important

discriminating factor of speed among different activities,

represented by the value of Gc itself. We therefore considered

activity periodicity assisted recognition, defined as combined

motion power spectral similarity Sa
P�GcZ fSa

P;SGcg, formally:

Sa
Gc Z 1K

jGcaobservedKGcamodelj

Gcamodel

; (7)
Sa
P�Gc Z 0:8Sa

P C0:2Sa
Gc: (8)

As shown inTable 1, the combined similarity parameterSa
P�Gc

increases the ability to distinguish motions with substantially

different activity periodicity, such as running and walking. It will

not help to discriminatemotions with similar activity periodicity,

such as walking and Jump2 (with activity periodicitiesGc around

0.92 Hz).4
6. Discussion

The proposed frequency domain approach exhibits a

desirable tolerance to human motion irregularity and data

measurement noise, because the spectral domain description

naturally confines the effect of data corruption to spectral

widening while retaining clustered signatures. Such a

characteristic has no analogue in spatio-temporal modelling.

Retention of special signature can be clearly observed in

Figs. 3 and 4. The original MoCap tracks present high

irregularity of human motion embedded with MoCap noise,

while their spectra show clear clustering patterns hinting at

unique motion signatures.

To demonstrate the ability of the proposed spectrum-based

recognition approach to handle missing data, possibly a source

of serious data degradation, some synthetic experiments were

conducted. We randomly cut data from a number of MoCap

z-trajectories obtained for different body parts during different

kinds of periodic movements. Then, several interpolation

methods, such as Linear, cubic spline, cubic Hermite

polynomial, were applied to fill the gaps in the corrupted

data. Based on the least square comparison between

reconstructed and original trajectories, cubic splines provided

the best interpolation, and were employed to investigate the
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effect of track reconstruction on their spectral decomposition.

We found small gaps can be accurately filled by cubic splines

to give spectral fidelity and do not compromise recognition.

In Fig. 8, we show some examples in synthetic situation.

Original MoCap hip and knee z-tracks for walking-on-spot

include about 20 gait cycles. For each track, 30 gaps were

randomly generated with average gap size of 25% gait period.

The simulated total missing data is therefore about 38% of the

trajectory length. Cubic spline interpolated trajectory segments

are shown by red dotted lines in the figure. We observe the

reconstructed spectra, even for the highly distorted hip track

shown in Fig. 8(c), maintain broad fidelity to the original. This

demonstrates the robustness of spectral analysis for handling
Fig. 8. Effect of simulated data distortion though interpolation on power spectra

segments are shown by red dotted lines.)
trajectory distortion, and the potential accuracy of motion

template matching.

From Fig. 8, we note that spectral distortion arising from

degraded track data by interpolation over larger gaps is most

likely to appear as power spread around Gc harmonics and

added small-power terms which could ambiguiate the

boundary between Gc harmonics. This is because band-limited

interpolation essentially works as a low-pass filter. The

windowing method used for detecting feature motion vectors

has been designed to reduce such spectral ambiguity (see

Section 4.2). Meanwhile, for motion template comparison and

recognition, the small-power term is less weighted in order to

reduce the influence of spectral noise arising particularly from
in a case of walking-on-spot, GcZ1 Hz. (Cubic spline interpolated trajectory
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the small-power signals of trajectory noise (see Section 4.3).

From the synthetic data distortion experiments, we found that

recognition based on the proposed frequency-domain motion

cues not unduly affected by interpolation.

As a feasibility study at this stage, we utilised an activity-

independent weight vector for motion template matching. We

noted from our experiments that activity-dependent weight

vector could be used to improve recognition. This is left for the

future work.

7. Conclusions

We proposed a motion-based frequency domain approach

based on the spectral analysis of whole-body motion data

sampled at selected feature points to discriminate and

recognise human periodic activities. The approach demon-

strates the feasibility of feature-based motion cues for

recognition by utilising unidentified kinematic data from

MLDs. Full-body power spectral analysis applied to the

vertical-trajectory components was found to be adequate to

furnish motion cues, obviating the need for costly horizontal

movement analysis. Feature power vectors are detected to

efficiently code a motion template, as an activity signature

averaged for a number of subjects, for indexing each kind of

motion. Recognition is carried out by motion template

comparison of an observed motion with standard motion

templates to find a best match.

In addition, the frequency domain approach has by nature a

robustness to spatio-temporal corrupted data arising form

human motion irregularity and measurement noise through

spectral clustering. Heuristic methods were investigated to

exploit this frequency domain attribute. Feature power vectors

separately aggregate trivial and massive raw spectral com-

ponents into a small number of numerical measures that

effectively retain clustering signatures and confine the effect

of power spreading. The uniform description makes direct

comparisons of spectral data possible in a condensed parameter

dimension. Normalisation both on frequency and power

magnitude allows template matching to be independent on

differently sampled trials associated with specific speeds and be

carried out for a wide range of subjects. The choice of feature

points is not a priori prescribed. The only requirement is that the

chosen feature points effectively reflect motion cues and are

common to all templates, and that the observed movement is

based on all or a subset of the feature points used in template

construction.

We have found that inherent characteristics of human

periodic movements exist in the algorithmically simple yet

computationally efficient frequency domain, contrasting pre-

vious work in the spatio-temporal domain. Frequency domain

features hint at motion nature in a manageable parameter

domain in the presence of human motion irregularities,

allowing effective classification from low-level, reduced

information embedded in MLDs by non-structural means.

The experiences gained from the present study of using

MLDs data suggest research extension to more complex

activity modelling including individual recognition by motion-
based methods. Much of this baseline study using concise

MLDs data would be transferable to the harsher scenario of

image sequences, subject to feature data acquisition which

could take advantage of recent advance in human motion

tracking and image analysis technique. This research is

consistent with, and could contribute to, the important research

areas of biologically inspired machine vision.
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[38] A.J. Stoddart, P. Mrázek, D. Ewins, D. Hynd, Marker based motion

capture inbiomedical application, IEEElectronics andCommunications103

(1999).

[39] P.S. Tsai, M. Shah, K. Keiter, T. Kasparis, Cyclic motion detection

for motion based recognition, Pattern Recognition 27 (12) (1994)

1591–1603.

[40] L. Wang, W. Hu, T. Tan, Recent developments in human motion analysis,

Pattern Recognition 36 (3) (2003) 585–601.

[41] L. Wang, T. Tan, W. Hu, H. Ning, Automatic gait recognition based on

statistical shape analysis, IEEE Transactions on Image Processing 12 (9)

(2003) 1120–1131.

[42] L. Wang, T. Tan, H. Ning, W. Hu., Silhoutte analysis based

gait recognition for human identification, IEEE Transactions on

Pattern Analysis and Machine Intelligence 25 (12) (2003) 1505–1518.

[43] M. Whittle, Gait analysis: An Introduction, Butterworth-Heinemann,

Oxford, 1996.

[44] C. Yam, M. Nixon, J. Carter, Automated person recognition by walking

and running via model-based approaches, Pattern Recognition 37 (5)

(2004) 1057–1072.


	Recognition of human periodic movements from unstructured information using a motion-based frequency domain approach
	Introduction
	Human periodic motion recognition
	MLDs data collection
	A frequency domain method
	Power spectral analysis for whole body movement
	Feature power vector and motion template
	Motion recognition

	Experimental results
	Recognition by motion power spectral similarity SPa
	Recognition by combined similarity SP-Gca

	Discussion
	Conclusions
	Acknowledgements
	References


